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THE GEOMETRY OF FRACTIONAL STABLE MATCHINGS
AND ITS APPLICATIONS

CHUNG-PIAW TEO anp JAY SETHURAMAN

We study the classical stable marriage and stable roommates problems using a polyhedral
approach. We propose a new LP formulation for the stable roommates problem, which has a
feasible solution if and only if the underlying roommates problem has a stable matching. Fur-
thermore, for certain special weight functions on the edges, we construct a 2-approximation al-
gorithm for the optimal stable roommates problem. Our technique exploitsfeatures of the geometry
of fractional solutions of this formulation. For the stable marriage problem, we show that arelated
geometry allows us to express any fractional solution in the stable marriage polytope as a convex
combination of stable marriage solutions. This also leads to a genuinely simple proof of the
integrality of the stable marriage polytope.

1. Introduction. In this paper we use a polyhedral approach to study stable matching
problems with strict preferences. The two versions of the stable matching problem we study
are the stable marriage problem and the stable roommates problem. In the marriage problem,
there are two finite, digoint sets of men and women. Each man has preferences over the
women, and each woman has preferences over the men. For simplicity of presentation, we
assume that the number of men and women are identical, and that each individua’s prefer-
ences are strict. A matching M of the men to the women is unstable if thereisaman mand
woman w such that m and w prefer each other to their assigned partners under M; in this
case, (m, w) is caled a blocking pair. In their pioneering paper, Gale and Shapley (1962)
showed that every instance of the stable marriage problem has astable matching. The structure
of the marriage problem has been extensively studied in the subsequent literature. The com-
puter science community has extended and improved on Gale and Shapley’ s agorithm, iden-
tifying many new structural properties of the marriage problem. (Seefor ingtance Knuth 1976,
Gusfield and Irving 1989.) Interest within the economics community was aroused by Roth's
discovery (Roth 1984) that a version of the stable marriage agorithm, which evolved by a
trial-and-error process that spanned more than haf a century, has been in use since 1951 in
the Hospital-Residents market. (Roth and Sotomayor 1991 contains further details of the use
of the marriage problem as a model for two-sided matching markets.) Vande Vate (1989)
initiated the study of the marriage problem using a mathematical programming approach. He
obtained a complete characterization of the convex hull of the stable marriage solutions. This
polyhedral description has been extended by Rothblum (1992) to the case when the matching
need not be perfect (i.e., some men would rather remain single than be matched to certain
women and vice versa). Since the origina proof by Vande Vate israther complicated, several
simpler proofs have been proposed in the literature (Rothblum 1992, Roth, Rothblum and
Vande Vate 1993).

A related question raised by the Gale-Shapley algorithm is the issue of fairnessin the
stable marriage problem. It is well known that the Gale-Shapley algorithm returns either
a men-optimal or a women-optimal stable marriage solution, depending on the imple-
mentation. For the men-optimal solution obtained by the algorithm, each man is matched
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to the best partner he can hope for under the stability condition, which (curiously) also
resultsin each woman being matched to her worst possible partner in any stable marriage.
(Not surprisingly, an obvious analogous result holds for the women-optimal solution.)
Several studies have been reported on finding stable marriage solutions that are ‘‘fair’’
(in some sense) to both sexes. Irving, Leather and Gusfield (1987) introduced and studied
the egalitarian stable marriage problem: They showed that a stable marriage solution that
minimizes the objective function

> > (mr(m, w) + wr(w, m))

m w

can be constructed in polynomial time. Here, mr (m, w) is the position of woman w in
man m's list, and wr (w, m) is the position of man min woman w’s list. Knuth (1976)
described and solved (attributed to S. Selkow) the minimum-regret stable marriage prob-
lem. The regret of a marriage in this case is measured by the person (man or woman)
who has the worst partner (in terms of ranking) init. A minimum-regret stable marriage
is a solution that attains the minimum regret among al the stable marriages.

In their pioneering work, Gale and Shapley also initiated the study of the stable room-
mates problem. In an instance of this problem, we have a set of 2n persons (say college
students) who need to be paired up as roommates. Each person has a preference list
ranking all the other persons in the set. We assume all preferences are strict. A matching
is unstable when two people are not paired in the matching, but prefer each other to their
assigned roommates. Such a pair is called a blocking pair. A matching is stable if and
only if there are no blocking pairs.

Unlike the stable marriage problem, the stable roommates problem need not have a
solution. Knuth (1976), in one of his twelve unsolved problems associated with stable
matching, asked whether the feasibility of an instance of the stable roommates problem
can be settled in polynomial time. His question has been answered by Irving (1985), and
also more recently by Subramanian (1994) who relates the problem to the more genera
network stability problem.

Feder (1992) showed that if weights of the type c(i, j) + c(j, i) are imposed on the
edge{i, j}, then the minimum cost version of the stable roommates problem is aready
NP-hard, even if the cost functions{ c(i, j)} are restricted to the class which satisfies:

c(i,j) =c(i,k) onlyifiprefersjtokforadli,j, k.

Gusfield and Irving (1989) designed a 2-approximation algorithm for this problem under
this restriction.

Abeledo and Rothblum (1994) recently initiated the study of the polyhedral structure
of the stable roommates problem. Generalizing Vande Vate' sformulation for the marriage
problem, they showed that many structural properties of the stable roommates problem
can be derived via linear algebraic arguments, mainly via linear programming duality.
However, the proposed formulation has a major weakness—it is not strong enough (to
be used) to decide the existence of a stable matching. In other words, there are infeasible
instances of the stable roommeates problem for which the associated polytope is nonempty.

In this work, we continue the polyhedral study of the stable matching polytope. Our
contributions are;

 Using an observation due to Roth, Rothblum and VVande Vate (1993), we show in §2
that any fractional solution in the stable marriage polytope can be written as a convex com-
bination of stable marriage solutions in an eegant way, thus providing a genuinely simple
proof of the integrality of the stable marriage polytope. (Abeledo, Blum and Rothblum 1996
have a so recently obtained a more complicated approach to this problem.) We aso prove an
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interesting structural property of the stable marriage solutions, generaizing the well-known
median property first discovered by Conway (see Gusfidd and Irving 1989). The proof
technique uses a rounding approach, which captures the stability condition in a purely geo-
metric way. More importantly, this paper proposes a new approach to address the asymmetry
often observed in the stable marriage problem by showing the existence of a solution which
is‘‘fair’ to everyone (men and women) involved in the problem.

« We propose an LP model, which can be used to handle objective functions of the
type considered in the egalitarian version and/or the type considered in the minimum-
regret version of the stable marriage problem. This provides a unified and more general
framework to discuss other issues of fairnessin the marriage problem viaL P methodol ogy.

« We strengthen the fractional matching polytope (for the roommates case) studied in
Abeledo and Rothblum (1994) by proposing a new class of valid inequalities for the
roommates problem. Furthermore, we show that the proposed class of valid inequalities
can be separated in polynomial time. We show further that the formulation studied in this
paper can be used to settle the existence question of the stable roommates problem under
strict preferencelists, i.e., astable roommates matching existsif and only if our polyhedron
is nonempty. This provides a LP aternative to Irving's (Irving 1985) combinatorial a-
gorithm for the decision version of the roommates problem. It also complements a recent
study by Abeledo and Blum (1996) who showed that the feasibility question can be settled
by solving a series of LP problems. For certain classes of cost functions on the edges, the
stable roommates solution obtained from our formulation is within a factor of 2 of the
optimum stable roommates sol ution.

It isalso interesting to compare these results with the known results on perfect matching
problems. Both the optimization version of the perfect matching problem and the feasi-
bility version of the stable roommates problem are known to be solvable in polynomial
time. Although the stable roommates problem can be addressed and understood by trans-
forming the problems to the space of rotational posets (cf. Gusfield and Irving 1989),
very little was known about the stable roommates polytope in the space of the natural
edge variables prior to this work. The Odd Cyclic Preference inequalities which we have
identified in this paper play an analogous role to the odd-set constraints in the perfect
matching polytope. The latter, coupled with the matching constraints, gives rise to a
complete characterization of the perfect matching polytope in nonbipartite graphs. The
former, coupled with the matching and stability constraints, completely resolvesthe issue
of feasibility of stable roommates problems. The proof technique used can be made con-
structive, giving rise to a LP-based heuristic to construct solutions for the optimal stable
roommates problem. We refer the readers to Teo and Sethuraman (1997) for details of
the experiments and some encouraging observations.

In the rest of this paper, we let Zp(-) and Z,p(-) denote respectively the optimal integral
and fractional solutions to the underlying formulation of the stable matching problem. We
will often omit presenting the IP formulations since these can be easily congtructed from the
LP formulations. Furthermore, we assumed that all participantsin the problem instances must
be matched in al stable matchings. In the marriage case, most of the results considered here
aredirectly applicableto the more generd version with nonperfect matching because of Roth's
result that the same participants are matched in every stable matching (Roth 1984).

2. Stable marriage polytope revisited. For women w; and w;, we write w;, >, w; if
man m prefersw; to w;. Let

1 if m ismatched tow;,
Xij=
: 0 otherwise.
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Any incidence vector that corresponds to a stable matching is called a stable marriage
solution. Consider the following relaxation of the problem (Vande Vate 1989):

(1)  (Psu): Y x;=1 0O,
i
(2) z Xj= 1 Djy
(3) Xj+ Y Xkt Y xg=1 0i,j,
KW <mwj k:m<<Wlm
(4) %;=0 0ij.

Inequality (3) isclearly valid, otherwise, we must haveZkWW]m Xej = Land Ziep <, w Xk
= 1. Som and w; are matched to less favourable mates in the matching and thus (m,
w;) is a blocking pair. Note that the polytope (Psv) is always nonempty (cf. Gale and
Shapley 1962).

THeorem 1 (VANDE VATE 1989). The polytope (Psy) isthe convex hull of the sta-
ble marriage solutions.

To give a simple proof of this result, we need the following known property of the
stable marriage polytope:

LeEmMA 1 (RoTtH, RotHBLUM AND VANDE VATE 1993). Let x be a feasible solu-
tion in the stable marriage polytope. Then

X;>0 impliesx;+ Y Xu+ Y x;=1

KWe<mWj I<:r'r1<<WJ m

For the sake of completeness, we sketch the proof from Roth, Rothblum and Vande
Vate (1993).

Proor. Consider the primal problem

min{z XijiX€E (PSM)}

and its dual
max Zai"'zﬁi_zyid
i j ij
(5)
subjectto o + G — > Yik— > =1 ai, j,
KW= mwj k:m<>wjm
(6) Vi,j ZO, D|,J

Set i = 2 vij, B = 2i vij, vij = %. Then the constraints in the dual reduce to

')’i,j + Z Yik + z ')’k,j = 11 DI ’ j!

KWke<mWj k:m<<wlm
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whichisclearly trueif y;; = x; and x isfeasible in the primal. Furthermore, thisisadual
solution with objective function value Z;; x ;. Hence the lemma follows directly from the
complementary slackness property of optimal primal and dual solutions. O

We show next that Lemma 1 gives rise to a particularly interesting geometry for the
stable marriage problem. Notethat since X, x;; = 1, then for each man m , we can construct
nintervals of the type (a, b] (left-open, right-closed) of length x; ; —one for each woman
w; (some of these intervals can be empty). We can arrange these n intervals in any
nonoverlapping order to cover theline segment (0, 1] . We can do the same for the women.
By slight abuse of terminology, we will also denote by x;;’ s the n dijoint subintervalsin
(0, 1] that correspond to the arrangement.

Proor oF THEOREM 1. Let x be any feasible solution in Pg,. We show that x can
be written as a convex combination of stable matchings. Consider the following table of
2nrows: Foreschmanm, x;,j = 1, ..., narearranged in decreasing preference of m
to cover the interval (0, 1]. For each woman w;, X;, i = 1, ..., n are arranged in
increasing preference of w; to cover the interval (0, 1]. Note that Lemma 1 suggests a
nice property of the arrangement, i.e.,

if x; > 0, then the subinterval spanned by x;; in the arrangement corresponding to m and w;
coincidesin (0, 1] (see Figure 1).

We generate a random number U uniformly in (0O, 1] and construct a matching in the
following way:

Match m to w if X, x > 0 and in the row corresponding to m;, U liesin the sub-interval spanned
by X« in (0, 1]. Similarly, match w; to m if in the row corresponding to w;, U lies in the sub-
interval spanned by x; in (O, 1].

By Lemma 1, and by the way we construct the table (see Figure 1), m; is matched to
w; if and only if w; is matched to m . Furthermore, no two men can be matched to the
same woman, and similarly no two women can be matched to the same man. So the above
assignment gives rise to a perfect matching. Any woman (say wy) who is preferred by m
to his mate w; in this assignment (i.e., the subinterval x;, is on the left of x; in the
arrangement by m ) is assigned a mate whom she strictly prefersto m;, since in the row

0 1
decreasing preference for man m ; - Rl
- X s b
I\ 1’-] 4
m. v v
! :
B — ] :
T x| . 2 X
LK : ‘my > m.}
. : kw. 1
{k.wk>mwj} L i o
w. ! ¢
J < X.. >
i

increasing preference for woman w j —

Ficure 1. The table of arrangements.
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(in the table) corresponding to w, the random number U lies strictly to the right of the
subinterval x; . Hence the matching is stable.

Let X, be the assignment obtained. In other words, Xy (i, j) = 1if and only if my and
w; are matched to each other under the above assignment. Then

E(Xu(i,])) = P (U liesin the subinterval spanned by x; ;) = X;;.

Thusx(i,j) = fol Xu(ii, j)du and x can be written as convex combination of X, asu varies
over the interval (0, 1]. Note that there are at most O(n?) distinct assignments arising
from X, asu varies. O

The above argument gives rise to an efficient constructive procedure to express any
fractional stable marriage solution as a convex combination of integral stable marriage
solutions:

 Let x be a feasible fractiona solution in the stable marriage polytope. [Using the
values of x, construct the table of 2n rows as in the proof of Theorem 1.]

- Sort the coordinates of the endpoints of al the subintervals. Each row gives rise to
at most n + 1 distinct coordinates, so there are at most O(n?) distinct coordinates obtained
inthisway, say they are0 = I; < I, < --- < |, = 1, for some integer p.

 For each random number U in the interval (I, I,.1], the assignment produced by U
in the randomized algorithmisidentical. Let X,, ., bethe (integral ) stable marriage solution
obtained with U = I,,;. Then

p—1
X=73 (1= )X,
j=1

The rounding approach can also be used to derive the following surprising property of
the stable marriage solutions:

THEOREM 2. Let Xy, X5, ..., X bel distinct stable marriage solutions. Each man
m; has | possible mates under these matchings. Assign him the woman whose rank is
k among the | (possibly nondistinct) women. For each woman w;, assign her to the
man whom she ranked | + 1 — k among the | men she was assigned to under the
matchings. This assignment givesrise to another, not necessarily distinct, stablemar-
riage solution.

ProoF. Let x(i, ) = (/1) -1 X,(i, j). Then x is a fractional point in the stable
marriage polytope. Consider the case U = k/I — ¢ under the randomized rounding scheme,
where ¢ > 0 is an arbitrarily small number. Every man is then assigned to the woman
whose rank is k among the | matchings. Similarly, every woman is assigned to the man
whose rank is| + 1 — k among the | matchings. Furthermore, it follows from the proof
to Theorem 1 that the assignment is a stable marriage solution. O

When | = 3 and k = 2, the above reduces to the well-known median property due
to Conway (cf. Gusfield and Irving 1989). When | corresponds to the total number of
distinct stable marriage solutions in the problem, and k = 1, the above gives rise to
the men-optimal assignment considered in Gale and Shapley (1962). When the total
number of solutions, |, is odd, the case k = (I + 1)/2 is of special interest—thereis
a stable marriage solution in which every person is assigned to a partner who is the
““median’’ partner among all their possible mates! It is an interesting open problem
to determine whether the median solution can be computed in polynomial time.
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ExampPLE. Consider the following stable marriage instance (cf. Irving, Leather and
Gusfield 1987).

man decreasing preferences woman decreasing preferences
1 31574286 1 43812576
61348752 37586412
74365128 75836214
53826147 64273158
41287365 87156432
62578431 54762831
78162345 14562837
26718345 25437816

0 N OO O b~ WN
0w N o o b~ WDN

We list below al 23 stable matchings given in terms of permutations. (For instance, in
matching M,, man 1 marries woman 1, man 2 marries woman 3, man 3 marries woman
7, man 4 marries woman 5 etc.)

M=3 17 5 4 6 8 2 M,=1 3 7 5 4 6 8 2
M;=3 1 45 2 6 8 7 M=3 1 7 8 4 5 6 2

Mi=1 3 452 6 87 M=12378 456 2

Mg=5 3 4 8 2 7 6 1 Mw=1 4 3 5 2 6 8 7
My=3 1 4 6 8 5 2 7 Mp,=5 4 3 8 2 7 6 1
Mz=5 3 4 6 8 7 2 1 Myu=1 4 3 6 8 5 2 7
Ms=5 4 3 6 8 7 2 1 Meg=5 4 1 8 2 7 6 3
M;=5 8 3 6 7 4 2 1 Mg=5 8 1 6 7 4 2 3
Mo=5 41 6 8 7 6 3 My=7 8 1 6 3 4 2 5
My=7 8 2 1 6 4 3 5 Mp=1 4 3 8 2 5 6 7

Mz=1 3 4 6 8 5 2 7

Now, we can arrange al 23 partners for each man according to his order of preference
(with repetitions). That list is as follows:
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3
=

:33333111111115555555577
:11111333333344444448888
7T 7774444444433333311112
:55555888888886666666661
44442222222228888887736
6666655555555 7777774444
:88888666666666222222223
02222777777 7771111133355

0o N OO 0o b~ W N P

In this arrangement, any column will yield a stable matching; the median stable match-
ing is just the 12th column.

2.1. Onfinding ‘‘fair’’ stable marriage solutions. One approach to finding fair sta-
ble marriage solutionsisto incorporate an appropriate objective function into the problem.
Let M(x), W(x) denote respectively the worst ranking obtained by a man and a woman
under the stable marriage solution x. In this section, we propose an LP model to handle
this problem when the objective function is of the type

2 (c(iyj) +e(j, D)%, + F(M()) + g(W(x))

where (c(i, j) + c(j, i)) is the weight on the edge {i, j} and f, g are nondecreasing
functions of M(x) and W (x) respectively. This class of objective functions includes as
specia cases severa versions of stable marriage problems that have been proposed in the
literature to deal with the issues of fairness. For instance, the minimum regret stable
marriage problem can be reduced to the above with f (k) = g(k) = k*"fork=1, ...,
n,andc(i,j) =c(j,i)=0fordli,j.

Let x be a stable marriage solution. For each man m, let Wi 1y, Wi (2, . . ., Wi(n) be the
ordering of the potential partners under his preferences. Similarly, we order the potentia
partners of w; by myyy, ..., M. We model the worst ranking obtained by a man and a
woman under x by

n

MEO =3 o W00 = g

k=1

where

yk=max<zxi,i(|)>, Zk=max<zxj(|),j>, k=1,2,...,n.
m 1=k

W I=k

Note that in thisway, yx = 1 only when some man has been assigned to a partner whom
he ranked k or worse in his preference list. Hence Z§_; v« and Z¢_; z, model the worst
ranking obtained by a man and awoman in x.
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Let f(0) = g(0) = 0. A natural LP relaxation for the problem is as follows:
(MM) min 3 (c(i,1) + (), )%y + 3 ((F(k) = f(k=1))%

(7) +(9(k) — g(k—1))z)

subjectto:  y x; =1 [i,
i

(8) iZXa,j =1 0j,

(9) Xj+ Y Xkt Y xg=1 0i,j,
K< km<ym

(10) Ve = .gk)(i'i(l) Oi, k,

(11) zc = gkx""“ 0j, k,

(12) X Yo 2= 0, 0Oi,j, k.

THEOREM 3. Z p(MM) = Zp(MM).

Proor. Let (x*, y*, z*) be an optimal solution to the LP relaxation of (MM). Note
that at optimality, we may assume

* * * *
Y =max Yy Xy,  Zd =max Yy Xiqy,-
M=k Wi 1=k

We round x* to a stable marriage solution X using the rounding procedure in the proof
of Theorem 1. Hence we have E(X;) = xi*,j. Let Yy« = mMaXy -k Xig), and z
= maX,, -k X),j- Let U be the random number generated in the rounding procedure.

E(w) =P (U { U liesin the subinterval spanned by X, for some| = k})
m
=max Y X\ = Y-
M =k

Similarly, E(z) = zy . Hence Z p(MM) = Zp(MM). O

To see that the above models the minimum-regret version of the stable marriage prob-
lem, we consider the case with n men and n women. Let m = 2n. If we set f (k) = g(k)
=kMfork=1,...,n,and ¢; = Ofor dl i, j, the above reduces to finding a stable
marriage solution x*, which is optimal for the objective function min(M(x)™ + W(x)™).
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We claim that the solution X is also optimal for the objective function min{ max (M (X),
W (X))} . Suppose otherwise, then let X’ be a stable marriage solution that is optimal for
the latter objective function and

{max(M(x"), W(x'))} + 1 = {max(M(x*), W(x*))}.
Since
max (M(x*), W(x*))™ = (M(x*)™ + W(x*)™)
= (M(X")™+ W(x")™) = 2max(M(x"), W(x"))™,

we have, by combining the two conditions that

1+ 1 ) =2
max(M(x"), W(x")) ) —
Since max(M(X), W(X)) = n, we obtain (1 + 1/n)?" < 2, which is a contradiction.

3. Fractional stable roommates polytope. Abeledo and Rothblum (1994) consid-
ered the following formulation for the roommates problem:

(13) (FSM) Y x;=1 0i,
i
(14) i+ S x;+ Y x,=1 0Oi,j.
ll<ji <
(15) x; =0 Oi,j.

Congtraints (14) must be valid, since otherwise, j is matched to someone inferior to i
whereas i is matched to someone inferior to j and so (i, j) is a blocking pair. We call
constraints (14) the paired inequalities. Note that in the roommates case, the variable x; ;
models the decision whether person i is matched to person j.

By considering the dual of (FSM), and by the argument used in Lemma 1, Abeledo
and Rothblum (1994) proved an analogous result for (FSM):

LEMmMA 2 (ABELEDO AND RoTtHBLUM 1994). Let x be a feasible solution in
(FSM). Then

%;>0 impliesx; + ¥ Xx+ ¥ %=1

kek<ij kek<ji

RemARK. This formulation is dlightly different from the one discussed by Abeledo
and Rothblum (1994). Here, we insist that ; x;; be equal to 1 for every i, whereas they
alowed Z; x;; to be less than or equal to 1. Curiously, this slight difference makes the
above polytope infeasible in certain instances, whereas the polytope considered by Abe-
ledo and Rothblum (1994) is always feasible. As an example, consider the following
stable roommates problem, involving four people. The preference lists of the individuals
are
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P(1):2 3,4
P(2):3,1, 4
P(3): 1,2 4
P(4):1,23

We leave it to the reader to check that the above problem does not have a solution (no
one can be matched to 4), and our formulation of this problem (FSM) does not have a
solution either.

However, there are infeasible instances of the stable roommates problem for which
(FSM) is nonempty (see the 6 node example below), and so (FSM) cannot be used to
address the feasibility question for the stable roommates problem. A natural way to im-
prove the above formulation is to include the odd-set constraints from the matching poly-
tope =ijcs X; = [ S|/20for every set S of odd cardinality. However, the following
example shows that even the odd-set constraints are not strong enough:

ExamMPLE (SEE ABELEDO AND RoTHBLUM 1994). Consider the stable roommates
problem with 6 nodes and the following preference lists:

P(1):23,5,6,4
P(2):3,4,6,15
P(3):4,5,1, 2,6
P(4):5,6,2 3,1
P(5): 6, 1,3, 4,2
P(6):1,2 4,5, 3

It can be verified easily that vector x with x;; = 3 for {i, j} intheset {{1, 2},{2, 3},
{3,4},{4,5},{5 6}, {6, 1}} and x;; = O otherwise is a feasible solution in (FSM)
but there does not exist any stable roommates solution. Furthermore, the above x is an
extreme point of the polyhedron (FSM) and does not violate the odd-set constraints.

Using the proof technique of the previous section, we can show that the polyhedron
(FSM) is half integral. (This result has also been observed earlier by Abeledo and Roth-
blum 1994.)

Generate a uniform random variate U in (0, %] . For each person i, arrange x;j (for all j) to cover
theinterval (0, 1], in decreasing preference of i. Assigni to if U fallsin the subinterval spanned
by x;. The assignment X, obtained is a union of digjoint cycles. X,/2 is then a half-integral
solution in (FSM).

The proof of the above statement follows from similar arguments as in the stable mar-
riage polytope. Furthermore, the arrangement described above gives rise to an efficient
procedure to express any fractional solution in (FSM) as a convex combination of half-
integral solutionsin (FSM). The main intuition behind these resultsis again the geometry
(Figure 2) of the fractional solutions (cf. Lemma 2, we leave the details to the readers).

4. On a new class of valid inequalities. Let x,, = 1 if (u, v) is an edge in the
matching, O otherwise. Consider distinct nodes i, j, k such that j prefers k to i. For the
matching to be stable, the following must be valid,
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. - .
decreasing preference

2 Xkj=a

k<. 1
<

j 4 —+4

< Xi,j—>

FicUre 2. Geometry of afractional solution in the stable roommates polytope.

S(i,j,k)z%(z Xj+ Y x.k>s%,

[HEST ll=y

since the above is dominated by the paired inequalities (14) in (FSM).

The above inequality can be extended to an odd cycle version: Supposeig, i, ..., ic
(C even) are such that i, prefersiy,; to i1, where the indices are taken modulo (C + 1).
Then by adding up the above inequality, we have

C+1
2

c
> S(ik-1, Ik, Tkr1) =

k=0

Note that the nodes in the cycle need not be distinct. The coefficients of all variables
appearing in the LHS are integral. Hence by rounding down the right-hand side, we have
the following odd cyclic preference inequality:

S C+1
> S(ik-1, ik Is1) = L 2 J .
k=0
Thus we obtain an improved formulation:
(16) (Px) > X;=1 Ui,
i
Ll<ji 1<
S cC+1 . .
(18) > S(ik-1, ik, Ike1) = > i1 <iglke1, kK=10,...,C.
k=0
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Returning to the (FSM) polyhedron of the previous example (6 nodes), since Z_; X 3
= Xo3 = 3, Di—s X5 = Xa5 = 3, 2i=y5 X1 = Xe1 = 3, this extreme point solution violates
the odd cyclic preference inequality on nodes 1, 3 and 5. Note that the odd cyclic in-
equalitieson {1, 3, 5} and { 2, 4, 6} give rise to the following constraints,

> o Xe=1 > Xe=1

ecE(K) ecE(H)

where the graphs K and H are as shown in Figure 3.

The set E(H) U E(K) contains all the edges in the graph and since 2, X, = 3 for any
stable matching x, the above shows that this instance of the roommates problem isinfea-
sible. (In our version of the stable roommates problem, we insist that al preference lists
be complete, and that al participants be matched in any stable matching.)

The class of odd cyclic preference inequalities is exponential in humber. We now
describe a polynomial time separation routine for this class of inequalities, thus proving
that optimizing alinear objective over (Pg) issolvablein polynomial timeviatheellipsoid
algorithm.

Separation routine. Notethat separation over (FSM) (and hence (17)) istrivial since
there are only O(n?) of these constraints. We define a new directed graph G’ = (V', A’)
with

V' ={(,j):ieV,jeV},
AT ={((,]), (J, k) :T <k}
For each arc ((i, ), (j, k)) in A’, define aweight

C(i,j,k)Zl— z le_ Z Xik -

Ll=;ji L=y

H

1
2
6 2 6
5 3 5 3
0
4

Ficure 3. Certificate of infeasibility.
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Note that c(i, j, k) = 0 by (17). Furthermore, an odd directed cycle € = (ig, i1, ..., ic)
(inthat order) in G’ givesrise to an odd cyclic preference inequality, with cost

cey=1el-2 % > X

0=k=C ll=jik-1

Thusc (€) = 1if and only if Zo_i—c 2=, X = (|€] — 1)/2, whichis (18).

Note that finding a shortest odd cycle in the directed graph G’ with a nonnegative
weight function on the edges can be solved easily by solving O(|V'|) shortest directed
path problemsin an associated bipartite graph (see Grotschel, Lovasz and Schrijver 1988).

5. Feasibility of the stable roommates problem. In this section, we prove the fol-
lowing result:

THeoReEM 4. (Pg) isfeasibleif and only if the corresponding stable roommates prob-
lemisfeasible.

Since one direction is easy, we prove the converse direction. As (P<) is contained in
(FSM), we have:

Lemma 3. If x € (Px), then

%;>0 impliesx; + ¥ x;+ ¥ x;=1

Il<ij LI<ii

We use the above lemmato derive a proof for the theorem using the following steps:

« For each personi, we arrangethe n subintervalsx ; asj variesin decreasing preference
of i. See also Figure 2. If x;, is the subinterval that covers the point 3, then we assign k
to i. In this way, the assignment gives rise to a union of digoint cycles and a partia
matching.

« Using the odd cyclic preference inequalities, we show that the length of each cycle
arising this way must be even.

« We congtruct a stable matching from the union of even cycles and the partial matching.

ProorF oF THEOREM 4. Suppose X is a feasible solution in (Ps), we show how to
construct a stable matching from x. Pictorially, if nonoverlapping intervals of length x;
are arranged to cover the interval (0, 1] in decreasing preference of i, let m(i) denote the
node that corresponds to the interval that covers the point 3. More formally m(i) is the
unigue j such that

> Xk <3= > Xk

kek>ij kk=ij

Furthermore, we denote p(i) = j if m(j) = i. Notethat if X m, corresponds to an interval
(a, b] such that a < 3 < b, then by Lemma 3, m(m(i)) = i. Hence i and m(i) are
matched to each other in our assignment. On the other hand, if X ¢, corresponds to an
interval spanning (a, 3] for some a, then m(m(i)) # i. In that case, our assignment gives
rise to a digoint union of cycles and a partial matching. Let € = (ig, i1, ..., Iic, o) be
such a cycle in the assignment, with m(i,) = ix,:, and indices are taken with respect to
modulo (C + 1).

Clam 1. Cisodd, i.e, ¢isaneven cycle.

Proor. Suppose C iseven. Since m(ix_1) = iy, the subinterval x,_,;, spans (&, 3] for
somea, < 3, inthe row corresponding to i, in our table. Hence in the row corresponding
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to iy, the interva corresponding to x; , covers (3, 1 — a] (by Lemma 3). So
Sicide, X, = 3. Summing for al k = 0'to C, we have

c C+1
z z Xl,i|< = 2 ’
k=0 I=jix-1

contradicting (18). O

The above shows that the cycles arising from our assignment are even in length. We
show next that we can extract two stable matchings from the edges of the union of digoint
even cycles and partial matching, denoted by ).

Let an edge (i, j) be an obstructing pair if p(i) <; j <; m(i) and p(j) <;i <; m(j).
Note that for an obstructing pair (i, j),

W

> X > Xy = 3,

Il=;i Li=p(i)

> X

Il =ij =ip(i)

v

1
X = 3.

Note that the fractional value of x;; is necessarily O if {i, j} is an obstructing pair. By
definition, if (i, j) isan obstructing pair, then the nodei (and aso j) must be in the vertex
set of some even cycle Cin ).

Claim 2. Let M be any matching extracted from ). Then (i, j) isablocking pair for
M only if (i, j) isan obstructing pair. Furthermore, no blocking pair exists for two nodes
on a common cycle in J\.

Note that the definition of obstructing pair is independent of the matching extracted
from ).

Proor. Let (i, ) beablocking pair for the matching M. We prove the statement by
considering several cases.

Casel. Suppose the matching M contains (i, m(i)), (j, m(j)). By the definition of
ablocking pair, j > ; m(i) (theinterval x;; is on the left of x; ) for nodei, i.e., strictly
in (0, 3)), and by Lemma 3, for the arrangement by j, the subinterval spanned by x;; lies
gtrictly in (3, 1). Hence m(j) >; i (interval X ) on the left of x; for node j). This
contradicts the fact that (i, j) is a blocking pair.

Case 2. Suppose the matching contains (i, p(i)), (j, p(j)). Sincej >; p(i), and if
j =i m(i), wehavei =; p(j) by Lemma 3, contradicting the fact that (i, j) isablocking
pair. Hence we must have m(i) >; j >; p(i). By symmetry, we also have m(j) >; i
> p(j),i.e, (i,]) isan obstructing pair.

Case 3. Suppose the matching contains either (i, m(i)), (j, p(j)) or (i, p(i)), (j,

m(j)). Now j >; m(i) (or i >; m(j)) only if i <; p(j) (resp.j <i p(i)). Hence (i, j)
cannot be a blocking pair.

The above shows that (i, j) is a blocking pair of M (and hence an obstructing pair)
only if (i, p(i)), (j, p(j)) belongs to the matching M. Suppose now (i, j) isablocking
pair. If i, j are nodes on a common cycle C in ), say C = (ig, iy, ..., ic), with C odd,
then by the preceding argument, both i, j are matched by M to their respective predecessors
in the cycle. This implies that they are an even distance apart, and therefore both cycles
formed by the addition of the chord (i, j) are odd. That is, both cycles (iq, ..., p(i), i,
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i, m(j),...,ic)and (j,i, m(i), ..., p(j)) are odd. Consider the former cycle. Note
that by our assignment, _ 5, X, = 3. Furthermore, 2,_; X j = Zi_p(j) % = 3. Summing
over al the nodes in the odd cycle, we obtain an odd cyclic preference inequality that
violates (18).

The above argument yields the last statement in theclaim. O

Let G* = (V, E*) denote the graph defined on V with edge set consisting of J( and al
obstructing pairs, excluding those obstructing pairs occurring on nodes of common cycle
in . Note that the added set of edges contains all the blocking pairs in any matching
extracted from (.

Claim 3. G* is bipartite.

Proor. Suppose G* contains an odd cycle 9, consisting of aunion of copies of paths
from A and obstructing edges. Fix an orientation for 9. Denote the directed odd cycle
by 9. We use the following modification to obtain a new directed cycle 9’ from -

« For arc (i, j) in D which corresponds to an obstructing pair, insert an even directed
cycleC’ = (j, m(j),...,p(j))inD at thenodej. C’ isthe even cycle (oriented) in M
containing the node j.

« For a path in 9, say along the cycle € in JX, if the orientation of the arcs in 9 are
from j to m(j), do nothing. If the orientation is from j to p(j), replace the path by its
complement in C, with each node oriented from j to m(j).

In this way, we maintain the parity of the number of nodes in the directed cycle.
Furthermore, all the arcs that correspond to edges in &) are of the type (j, m(j)), i.e,
oriented from j to m(j). Every arc that corresponds to an obstructing pair is isolated in
the new directed cycle 9’. In this way, for every triplet (i, j, k) of consecutive nodesin
D', i <;kand (i, j, k) = 3. Thisgivesriseto an odd cyclic preference inequality, which
violates (18). O

Since G* ishipartite, let A, and B be the two partite sets of G*. This splitsthe nodes
of M into two parts each of equal size. Since blocking pair (i, j) exists only if (i,
p(i)) and (j, p(j)) belong in the matching, and since there are no obstructing pairs
(hence no blocking pair) for any two nodes both in A or in B, the assignments { (a,
m(a)) :a € A} and{ (a, p(a)) : a € A} are two stable matchings for the roommates
problem.

This concludes the proof for the theorem. O

Finally, we note the following interesting structural properties of the stable roommates
solutions (the proofs are straightforward and are left as exercises for the reader).

THEOREM 5. Let X, X5, ..., X bel distinct stable roommates solutions, and assume
| isodd. Each person has | possible roommates under these matchings. To each person,
assign the person whose rank is (I + 1)/2 among the | (possibly nondistinct) roommates.
This assignment gives rise to another stable roommates solution.

THEOREM 6. Let X;, X, ..., X bel distinct stable roommates solutions, and assume
| is even. Each person has| possible roommates under these matchings. Then thereisa
stable roommates solution in which each person is assigned to a person whoserankisl/2
or /2 + 1 among the | possible roommates.

5.1. Optimal stable roommates problem. In the rest of this paper, we address the
effectiveness of this LP approach to the minimum cost version of the stable roommates
problem. Suppose the cost function is of the type d;; = c(i, j) + c(j, i) for each edge
(i, j), where the cost function c(-, -) is assumed to be nonnegative. We show that the
stable roommates solution constructed from the optimal solution to (Ps) iswithin afactor



890 C. P. TEO AND J. SETHURAMAN

of 2 from the optimal LP solution, if the cost function c satisfies the following condition:
For each i, with preference list i, <; --- <; i, thereis anode i, such that

c(iyin) = - =c(i, i) =c(, i) = c(i, 1) = -~ = c(i, in).

We say the cost function c satisfies the U-shape condition in this case. Let x* denote an
optimal solution to

Zip= min{ > dijx;:xe€ (PSR)} .

{i.j} €E(G)

Let M be a matching constructed from x*, using the procedure described in the proof of
Theorem 4. Let d(M) denote the weight of the matching M under the function d.

THEOREM 7. d(M) = 27 ;.

Proor. Let (i, j) be an edge in M, and let i, denote the index with the least cost
among al c(i, k) ask varies.

Suppose m(i) = j. In the arrangement according to i, the interval corresponding to
X;'; spans (a, b] wherea < 3 and b = 3. Hence for the arrangement according to node
j, x'jspans (1 — b, 1 — a] (by Lemma3). If iy =; j, then since c satisfies the U-shape
condition,

c(i,j)><§sc(i,j)<(%—a)+ > xf.)sc(i,j)xi’fj—ir > c(i, )x.

(R [H=]

On the other hand, if i, >; j, then

c(i,j)X%gc(i,j)((b—%)—ir > xf,)sc(i,j)xi’fj—ir > c(i, )x.

l:l<ij lil<ij

Hence c(i, j) = 23, c(i, I)x,.
Similarly, c(j,i) =23, ¢(j,1)x;. Sowehaved(M) = 2Z and theresult follows. O

6. Concluding remarks. In this paper, we study stable matching problems by ex-
ploiting an interesting structural property of the fractional solutions. This property aso
alows us to express fractional solutions in the stable marriage polytope as convex com-
binations of integral solutions, in a completely geometric way. For the roommates prob-
lem, we propose a stronger formulation that can be used to address the question of whether
a stable roommates solution exists. This complements the purely combinatorial approach
used by Irving (1985) in his solution to the above problem. From a methodological
perspective, our rounding approach is an extension of the idea of randomized rounding
originating from Raghavan and Thompson (1987). By suitably exploiting the structural
properties of the fractional solution, we show how a stable matching can be constructed
from the fractional solution. The formulation studied here can also be used naturaly to
study the optimal stable roommates problem. A 2-approximation algorithm can be ob-
tained from our approach if the cost function satisfies a certain U-shape condition. In
addition, it is conceivable that by adding more classes of valid inequalities, the approxi-
mation guarantee obtained here can be improved further.



GEOMETRY OF FRACTIONAL STABLE MATHINGS 891

7. Acknowledgments. We thank Professor Dimitris Bertsimas, Professor Rakesh
Vohra, Viji Srinivasan and the referees for their extensive comments and for pointing out
errors and omissions in an earlier draft of this paper. We are especialy grateful to one of
the referees for filling a gap in the proofs of Claim 2 and Theorem 7.

References

Abeledo, H. G., Y. Blum. 1996. Stable matchings and linear programming. Linear Algebra Appl . 245 321-333.

, , U. G. Rothblum. 1996. Canonical monotone decompositions of fractional stable matchings.

Internat. J. Game Theory 25 161—-176.

, U. G. Rothblum. 1994. Stable matching and linear inequalities. Discrete Appl . Math. 54 1-27.

Feder, T. 1992. A new fixed point approach for stable networks and stable marriages. J. Comput. System Sci.
45 233-284.

Gale, D, L. S. Shapley. 1962. College admissions and the stability of marriage. Amer. Math. Monthly 69 9—
15.

Grotschel, M., L. Lovasz, A. Schrijver. 1988. Geometric Algorithms and Combinatorial Optimization, Springer-
Verlag, Berlin.

Gusfield, D., R. W. Irving. 1989. The Sable Marriage Problem: Structure and Algorithms, MIT Press, Mas-
sachusetts.

Irving, R. W. 1985. An efficient algorithm for the stable roommates problem. J. Algorithms 6 577—595.

, P. Leather, D. Gusfield. 1987. An efficient algorithm for the optimal stable marriage problem. J. ACM
34 532-543.

Karp, R. M., C. H. Papadimitriou. 1982. On linear characterizations of combinatorial optimization problems.
S AM J. Comput. 11 620—632.

Knuth, D. E. 1976. Marriages Stables, Les Presses de I’ Université de Montreal, Montreal.

Raghavan, P., C. Thompson. 1987. Randomized rounding: A technique for provably good agorithms and al-
gorithmic proofs. Combinatorica 7 365—374.

Roth, A. E. 1984. The evolution of the labor market for medical interns and residents: A case study in game
theory. J. Palitical Economy 92 991—-1016.

, U. G. Rothblum, J. H. Vande Vate. 1993. Stable matching, optimal assignmentsand linear programming.

Math. Oper . Res. 18 808—828.

, M. Sotomayor. 1991. Two-Sded Matching: A Sudy in Game-Theoretic Modeling and Analysis, Cam-
bridge University Press, Cambridge.

Rothblum, U. G. 1992. Characterization of stable matchings as extreme points of a polytope. Math. Programming
54 57-67.

Subramanian, A. 1994. A new approach to stable matching problems. S AM J. Comput. 23 671—-700.

Teo, C. P, J. Sethuraman. 1997. LP based approach to optimal stable matchings. Proceedings of the Eighth
Annual ACM-SIAM Symposium on Discrete Algorithms (New Orleans, LA) 710—719.

Vande Vate, J. H. 1989. Linear programming brings marital bliss. Oper. Res. Lett. 8 147-153.

Chung-Piaw Teo: Department of Decision Sciences, Faculty of Business Administration, National University
of Singapore; e-mail: fbateocp@nus.edu.sg
Jay Sethuraman: Operations Research Center, MIT, Cambridge, Massachusetts 02139; e-mail: jayc@mit.edu



