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Additive A{@C@} = A{} + A{@} + A{@)}

valuations = 0+1+1 =2
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Each agent prefers its own bundle over that of any other agent.
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My bundle

is the best A 1 1 5

Allocation A = (Aq, Ao, ..., A,) is EF if for every pair of agents 1, k,
we have v;(A;) > v;(Ag).

@ Not guaranteed to exist (two agents, one good)

@ Checking whether an EF allocation exists is NP-complete
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Envy-Freeness Up To One Good uwisn. 201

Envy can be eliminated by removing some good in the envied bundle.

My bundle is better @ @
if (A) is removed A , 1 ,

My bundle is better

if (C) is removed ﬁ

Allocation A = (A4,...,A,) is EF1 if for every pair of agents i, k,
there exists a good j € Ay such that v;(A;) > v;(Ar \ {j}).

@ Guaranteed to exist and efficiently computable
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The algorithm performs one of these two operations at each step:
 Give a good to the source vertex —— at most #goods rounds

* Resolve an envy cycle

We will show that:

After resolving any envy cycle, the total number of edges
In the envy graph strictly decreases.

» With n agents, at most O(n?) cycle resolutions required to create a source.

* Polynomial running time!
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* If the envy graph has a source vertex, assign the good to that agent.

The source (say, agent s) is not envied by anyone at the start of the iteration.
for any agent ¢, v;(A4;) > v;(As)
Suppose good g is assigned to the source agent s. Then,

vi(Ai) =2 vi(As U{g} \ {9})
which means that EF1 is preserved.




Does envy-cycle elimination algorithm return an EF1 allocation?

We will argue that each iteration of the algorithm "preserves” EF1.

* If the envy graph has a source vertex, assign the good to that agent.




Does envy-cycle elimination algorithm return an EF1 allocation?

We will argue that each iteration of the algorithm "preserves” EF1.

* Otherwise, resolve envy cycles until a source vertex shows up, and then
assign the good to it.




Does envy-cycle elimination algorithm return an EF1 allocation?

We will argue that each iteration of the algorithm "preserves” EF1.

* Otherwise, resolve envy cycles until a source vertex shows up, and then
assign the good to it.

—




Does envy-cycle elimination algorithm return an EF1 allocation?

We will argue that each iteration of the algorithm "preserves” EF1.

» Otherwise, resolve envy cycles until a source vertex shows up, and then
assign the good to it.




Does envy-cycle elimination algorithm return an EF1 allocation?

We will argue that each iteration of the algorithm "preserves” EF1.

» Otherwise, resolve envy cycles until a source vertex shows up, and then
assign the good to it.

From their perspective,
the bundles in the cycle
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So, EF1 relations are
the same as before.
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We will argue that each iteration of the algorithm "preserves” EF1.

» Otherwise, resolve envy cycles until a source vertex shows up, and then
assign the good to it.

These agents are strictly
better off, and any envied
bundles are only shifted
around. So, again, EF1

IS maintained.
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For monotone valuations, the allocation computed by the
envy-cycle elimination algorithm satisfies EF1.

Additive: v;(S) = ZjES vi({7})

Monotone: S CT = v;(S) < v;(T)
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Quiz

Prove or disprove:

For two agents, the round robin allocation is Pareto optimal.

An allocation A is Pareto optimal if there is no other allocation B such that:
- every agent is weakly better off under B, and
« some agent is strictly better off under B.
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