COL749: Computational Social Choice

| ecture 8

Fair Allocation of Indivisible Goods

Jan 30, 2025 Rohit Vaish

ul In
I 1
anh il

The Model

&> &> &>

The Model

The Model
A © © ©

The Model
A © © ©

The Model
A © © ©

The Model
A © © ©

Additive A{@C@} = A{} + A{@} + A{@)}

valuations = 0+1+1 =2

Envy- Free NEeSS [Gamow and Stern, 1958; Foley, 1967]

Envy- Free NEeSS [Gamow and Stern, 1958; Foley, 1967]

Each agent prefers its own bundle over that of any other agent.

Envy- Free NEeSS [Gamow and Stern, 1958; Foley, 1967]

Each agent prefers its own bundle over that of any other agent.

An B ©

2

Envy- Free NEeSS [Gamow and Stern, 1958; Foley, 1967]

Each agent prefers its own bundle over that of any other agent.

An B ©

2

Envy- Free NEeSS [Gamow and Stern, 1958; Foley, 1967]

Each agent prefers its own bundle over that of any other agent.

My bundle @ @
Is the best A 4 1 5

£\

Envy- Free NEeSS [Gamow and Stern, 1958; Foley, 1967]

Each agent prefers its own bundle over that of any other agent.

An B ©

My bundle
IS the best

Envy- Free NEeSS [Gamow and Stern, 1958; Foley, 1967]

Each agent prefers its own bundle over that of any other agent.

My bundle @ @

IS the best
2

My bundle
IS the best

Envy- Free NEeSS [Gamow and Stern, 1958; Foley, 1967]

Each agent prefers its own bundle over that of any other agent.

My bundle @ ©

is the best
Is the bes 4 ’ 5

My bundle

is the best A 1 1 5

Allocation A = (Aq, Ao, ..., A,) is EF if for every pair of agents 1, k,
we have v;(A;) > v;(Ag).

Envy- Free NEeSS [Gamow and Stern, 1958; Foley, 1967]

Each agent prefers its own bundle over that of any other agent.

My bundle @ ©

is the best
Is the bes 4 ’ 5

My bundle

is the best A 1 1 5

Allocation A = (Aq, Ao, ..., A,) is EF if for every pair of agents 1, k,
we have v;(A;) > v;(Ag).

@ Not guaranteed to exist (two agents, one good)

Envy- Free NEeSS [Gamow and Stern, 1958; Foley, 1967]

Each agent prefers its own bundle over that of any other agent.

My bundle @ ©

is the best
Is the bes 4 ’ 5

My bundle

is the best A 1 1 5

Allocation A = (Aq, Ao, ..., A,) is EF if for every pair of agents 1, k,
we have v;(A;) > v;(Ag).

@ Not guaranteed to exist (two agents, one good)

@ Checking whether an EF allocation exists is NP-complete

Envy-Freeness Up To One Good suisn, 2011

Envy-Freeness Up To One Good uwisn. 201

Envy can be eliminated by removing some good in the envied bundle.

Envy-Freeness Up To One Good uwisn. 201

Envy can be eliminated by removing some good in the envied bundle.

An B ©

Envy-Freeness Up To One Good uwisn. 201

Envy can be eliminated by removing some good in the envied bundle.

An B ©

Envy-Freeness Up To One Good uwisn. 201

Envy can be eliminated by removing some good in the envied bundle.

My bundle is better @ @

if (A)is removed
® 4 1 2

Envy-Freeness Up To One Good uwisn. 201

Envy can be eliminated by removing some good in the envied bundle.

» ® ©
£\

My bundle is better

if (C) is removed ﬁ

Envy-Freeness Up To One Good uwisn. 201

Envy can be eliminated by removing some good in the envied bundle.

My bundle is better @ @
if (A) is removed A , 1 ,

My bundle is better

if (C) is removed ﬁ

Envy-Freeness Up To One Good sudish 2011

Envy can be eliminated by removing some good in the envied bundle.

My bundle is better @ @
if (A) is removed A , 1 ,

My bundle is better

if (C) is removed ﬁ

Allocation A = (A4,...,A,) is EF1 if for every pair of agents i, k,
there exists a good j € Ay such that v;(A;) > v;(Ar \ {j}).

Envy-Freeness Up To One Good uwisn. 201

Envy can be eliminated by removing some good in the envied bundle.

My bundle is better @ @
if (A) is removed A , 1 ,

My bundle is better

if (C) is removed ﬁ

Allocation A = (A4,...,A,) is EF1 if for every pair of agents i, k,
there exists a good j € Ay such that v;(A;) > v;(Ar \ {j}).

@ Guaranteed to exist and efficiently computable

Coming Up

Algorithms for finding an EF1 allocation

P e o o .
Pl Additive valuations

(Round-robin algorithm)

Round-robin algorithm

Round-robin algorithm

 Fix an ordering of the agents, say a,, a,, as, ..., a,.

Round-robin algorithm

* Fix an ordering of the agents, say a4, a,, as, ..., a,.

» Agents take turns according to the ordering (a4, a,, ..., a,, @4, @y, ..., apn,-.-)
to pick their favorite item from the set of remaining items.

Round-robin algorithm

* Fix an ordering of the agents, say a4, a,, as, ..., a,.

» Agents take turns according to the ordering (a4, a,, ..., a,, @4, @y, ..., apn,-.-)
to pick their favorite item from the set of remaining items.

wn B © © ®

Round-robin algorithm

* Fix an ordering of the agents, say a4, a,, as, ..., a,.

» Agents take turns according to the ordering (a4, a,, ..., a,, @4, @y, ..., apn,-.-)
to pick their favorite item from the set of remaining items.

wn B © © ®

Round-robin algorithm

* Fix an ordering of the agents, say a4, a,, as, ..., a,.

» Agents take turns according to the ordering (a4, a,, ..., a,, @4, @y, ..., apn,-.-)
to pick their favorite item from the set of remaining items.

wn B © © ®

Round-robin algorithm

* Fix an ordering of the agents, say a4, a,, as, ..., a,.

» Agents take turns according to the ordering (a4, a,, ..., a,, @4, @y, ..., apn,-.-)
to pick their favorite item from the set of remaining items.

wn B © © ®

Round-robin algorithm

* Fix an ordering of the agents, say a4, a,, as, ..., a,.

» Agents take turns according to the ordering (a4, a,, ..., a,, @4, @y, ..., apn,-.-)
to pick their favorite item from the set of remaining items.

wn B © © ®

Round-robin algorithm

* Fix an ordering of the agents, say a4, a,, as, ..., a,.

» Agents take turns according to the ordering (a4, a,, ..., a,, @4, @y, ..., apn,-.-)
to pick their favorite item from the set of remaining items.

wn B © © ®

For additive valuations, the allocation computed by round-robin
algorithm satisfies EF1.

For additive valuations, the allocation computed by round-robin
algorithm satisfies EF1.

d1 dj

For additive valuations, the allocation computed by round-robin
algorithm satisfies EF1.

d1 dj

First round

For additive valuations, the allocation computed by round-robin
algorithm satisfies EF1.

d1 dj

Firstround @

For additive valuations, the allocation computed by round-robin
algorithm satisfies EF1.

d1 dj

Firstround @ O

For additive valuations, the allocation computed by round-robin
algorithm satisfies EF1.

d1 dj

Firstround @ © @

For additive valuations, the allocation computed by round-robin
algorithm satisfies EF1.

d1 dj

Firstround @ © @

For additive valuations, the allocation computed by round-robin
algorithm satisfies EF1.

d1 dj

Firstround @ © @

For additive valuations, the allocation computed by round-robin
algorithm satisfies EF1.

d1 dj
Firstround @ © @

Second round

For additive valuations, the allocation computed by round-robin
algorithm satisfies EF1.

d1 dj
Firstround @ © @

Second round @

For additive valuations, the allocation computed by round-robin
algorithm satisfies EF1.

d1 dj
Firstround @ © @
Secondround @ O

For additive valuations, the allocation computed by round-robin
algorithm satisfies EF1.

d1 dj
Firstround @ © @
Secondround @ © @

For additive valuations, the allocation computed by round-robin
algorithm satisfies EF1.

d1 dj
Firstround @ © @
Secondround @ © @

For additive valuations, the allocation computed by round-robin
algorithm satisfies EF1.

d1 dj
Firstround @ © @
Secondround @ © @

For additive valuations, the allocation computed by round-robin
algorithm satisfies EF1.

d1 dj
Firstround @ © @

Secondround @ © @
Thirdround @ © @

For additive valuations, the allocation computed by round-robin
algorithm satisfies EF1.

d1 dj
Firstround @ © @

Secondround @ © @
Thirdround @ © @

Last round

For additive valuations, the allocation computed by round-robin
algorithm satisfies EF1.

d+ d3
First round @)

Second round
Third round

Last round

For additive valuations, the allocation computed by round-robin
algorithm satisfies EF1.

d1
Firstround @

Second round
Third round

Last round

For additive valuations, the allocation computed by round-robin
algorithm satisfies EF1.

Fix a pair of agents (r,b). Analyze envy of r towards b.

For additive valuations, the allocation computed by round-robin
algorithm satisfies EF1.

Fix a pair of agents (r,b). Analyze envy of r towards b.
r b

First round

@,
Second round - - - s @
Third round O

Last round

For additive valuations, the allocation computed by round-robin
algorithm satisfies EF1.

Fix a pair of agents (r,b). Analyze envy of r towards b.

.

First round

Second round
Third round

Last round

For additive valuations, the allocation computed by round-robin
algorithm satisfies EF1.

Fix a pair of agents (r,b). Analyze envy of r towards b.

.

First round

Second round
Third round

Last round O

If r precedes b: Then, by additivity, v.(A;) 2 V.(A,).

For additive valuations, the allocation computed by round-robin
algorithm satisfies EF1.

Fix a pair of agents (r,b). Analyze envy of r towards b.

For additive valuations, the allocation computed by round-robin
algorithm satisfies EF1.

Fix a pair of agents (r,b). Analyze envy of r towards b.
b r

First round

O
Secondround - - - @
Third round O

Last round

For additive valuations, the allocation computed by round-robin
algorithm satisfies EF1.

Fix a pair of agents (r,b). Analyze envy of r towards b.

r

First round

Second round
Third round

Last round

For additive valuations, the allocation computed by round-robin
algorithm satisfies EF1.

Fix a pair of agents (r,b). Analyze envy of r towards b.

First round

b r
g
Second round - - - / L.
Third round - - - /o L

Last round

For additive valuations, the allocation computed by round-robin
algorithm satisfies EF1.

Fix a pair of agents (r,b). Analyze envy of r towards b.

First round

Second round ?
Third round /

Last round

If b precedes r: Again, by additivity, v.(A,) 2 v.(A,\{g}).

For additive valuations, the allocation computed by round-robin
algorithm satisfies EF1.

Fix a pair of agents (r,b). Analyze envy of r towards b.

First round

Second round ?
Third round /

Last round

If b precedes r: Again, by additivity, v.(A,) 2 v.(A,\{g}).

Algorithms for EF1

Additive valuations
(Round-robin algorithm)

Envy graph of an allocation

Envy graph of an allocation

* Vertices = agents
« Edge from vertex i to vertex k if agent i envies agent k in the given allocation.

Envy graph of an allocation

* Vertices = agents
« Edge from vertex i to vertex k if agent i envies agent k in the given allocation.

A ® © @O ©®

Envy graph of an allocation

* Vertices = agents
« Edge from vertex i to vertex k if agent i envies agent k in the given allocation.

A ® © @O ©®

Envy graph of an allocation

* Vertices = agents
« Edge from vertex i to vertex k if agent i envies agent k in the given allocation.

A ® © @O ©®

Envy graph of an allocation

* Vertices = agents
« Edge from vertex i to vertex k if agent i envies agent k in the given allocation.

A ® © @O ©®

Envy graph of an allocation

* Vertices = agents
« Edge from vertex i to vertex k if agent i envies agent k in the given allocation.

A ® © @O ©®

N

Envy graph of an allocation

* Vertices = agents
« Edge from vertex i to vertex k if agent i envies agent k in the given allocation.

n ® © @O ®

Envy cycle
1
‘.__//

Envy-cycle elimination algorithm

[Lipton, Markakis, Mossel, and Saberi, EC 2004]

Envy-cycle elimination algorithm

[Lipton, Markakis, Mossel, and Saberi, EC 2004]

While there is an unallocated good

Envy-cycle elimination algorithm

[Lipton, Markakis, Mossel, and Saberi, EC 2004]

While there is an unallocated good
« If the envy graph has a source vertex, assign the good to that agent.

Envy-cycle elimination algorithm

[Lipton, Markakis, Mossel, and Saberi, EC 2004]

While there is an unallocated good
« If the envy graph has a source vertex, assign the good to that agent.

» Otherwise, resolve envy cycles until a source vertex shows up, and then
assign the good to it.

Envy-cycle elimination algorithm

[Lipton, Markakis, Mossel, and Saberi, EC 2004]

While there is an unallocated good
« If the envy graph has a source vertex, assign the good to that agent.
» Otherwise, resolve envy cycles until a source vertex shows up, and then

assign the good to it. \

each agent in the cycle gets the bundle
that it Is pointing to

Envy-cycle elimination algorithm

[Lipton, Markakis, Mossel, and Saberi, EC 2004]

While there is an unallocated good
« If the envy graph has a source vertex, assign the good to that agent.

» Otherwise, resolve envy cycles until a source vertex shows up, and then
assign the good to it.

A ® © ©

0 1

Envy-cycle elimination algorithm

[Lipton, Markakis, Mossel, and Saberi, EC 2004]

While there is an unallocated good
« If the envy graph has a source vertex, assign the good to that agent.

» Otherwise, resolve envy cycles until a source vertex shows up, and then
assign the good to it.

A ® © © A)

0 1

Envy-cycle elimination algorithm

[Lipton, Markakis, Mossel, and Saberi, EC 2004]

While there is an unallocated good
« If the envy graph has a source vertex, assign the good to that agent.

» Otherwise, resolve envy cycles until a source vertex shows up, and then
assign the good to it.

A ® © ©

A

Envy-cycle elimination algorithm

[Lipton, Markakis, Mossel, and Saberi, EC 2004]

While there is an unallocated good
« If the envy graph has a source vertex, assign the good to that agent.

» Otherwise, resolve envy cycles until a source vertex shows up, and then
assign the good to it.

A ® © ©

A

Envy-cycle elimination algorithm

[Lipton, Markakis, Mossel, and Saberi, EC 2004]

While there is an unallocated good
« If the envy graph has a source vertex, assign the good to that agent.

» Otherwise, resolve envy cycles until a source vertex shows up, and then
assign the good to it.

A ® © © A)

0 1

Envy-cycle elimination algorithm

[Lipton, Markakis, Mossel, and Saberi, EC 2004]

While there is an unallocated good
« If the envy graph has a source vertex, assign the good to that agent.

» Otherwise, resolve envy cycles until a source vertex shows up, and then
assign the good to it.

A ® © ©

0 1

Envy-cycle elimination algorithm

[Lipton, Markakis, Mossel, and Saberi, EC 2004]

While there is an unallocated good
« If the envy graph has a source vertex, assign the good to that agent.

» Otherwise, resolve envy cycles until a source vertex shows up, and then
assign the good to it.

A ® © ©

0 1

Envy-cycle elimination algorithm

[Lipton, Markakis, Mossel, and Saberi, EC 2004]

While there is an unallocated good
« If the envy graph has a source vertex, assign the good to that agent.

» Otherwise, resolve envy cycles until a source vertex shows up, and then
assign the good to it.

A ® © © A) D)

0 1

Envy-cycle elimination algorithm

[Lipton, Markakis, Mossel, and Saberi, EC 2004]

While there is an unallocated good
« If the envy graph has a source vertex, assign the good to that agent.
» Otherwise, resolve envy cycles until a source vertex shows up, and then

assign the good to it.
e
)
~— ©

A ® © ©

Envy-cycle elimination algorithm

[Lipton, Markakis, Mossel, and Saberi, EC 2004]

While there is an unallocated good
« If the envy graph has a source vertex, assign the good to that agent.

» Otherwise, resolve envy cycles until a source vertex shows up, and then
assign the good to it.

A ® © ©

No source

Envy-cycle elimination algorithm

[Lipton, Markakis, Mossel, and Saberi, EC 2004]

While there is an unallocated good
« If the envy graph has a source vertex, assign the good to that agent.

» Otherwise, resolve envy cycles until a source vertex shows up, and then
assign the good to it.

wn ® © © ®

No source

Envy-cycle elimination algorithm

[Lipton, Markakis, Mossel, and Saberi, EC 2004]

While there is an unallocated good
« If the envy graph has a source vertex, assign the good to that agent.

» Otherwise, resolve envy cycles until a source vertex shows up, and then
assign the good to it.

wn ® © © ®

1 /J\

.v@

No source

Envy-cycle elimination algorithm

[Lipton, Markakis, Mossel, and Saberi, EC 2004]

While there is an unallocated good
« If the envy graph has a source vertex, assign the good to that agent.

» Otherwise, resolve envy cycles until a source vertex shows up, and then
assign the good to it.

wn ® © © ®

A

Envy-cycle elimination algorithm

[Lipton, Markakis, Mossel, and Saberi, EC 2004]

While there is an unallocated good
« If the envy graph has a source vertex, assign the good to that agent.
» Otherwise, resolve envy cycles until a source vertex shows up, and then

assign the good to it.
)

©®

wn ® © © ®

Envy-cycle elimination algorithm

[Lipton, Markakis, Mossel, and Saberi, EC 2004]

1 Does the algorithm terminate?

2 Does the algorithm terminate in polynomial time?

3 Does the allocation returned by the algorithm satisfy EF17?

Envy-cycle elimination algorithm

[Lipton, Markakis, Mossel, and Saberi, EC 2004]

1 Does the algorithm terminate?

2 Does the algorithm terminate in polynomial time?

3 Does the allocation returned by the algorithm satisfy EF17?

Does envy-cycle elimination algorithm terminate?

Does envy-cycle elimination algorithm terminate?

The algorithm performs one of these two operations at each step:
* Give a good to the source vertex

* Resolve an envy cycle

Does envy-cycle elimination algorithm terminate?

The algorithm performs one of these two operations at each step:
 Give a good to the source vertex —— at most #goods rounds

* Resolve an envy cycle

Does envy-cycle elimination algorithm terminate?

The algorithm performs one of these two operations at each step:
 Give a good to the source vertex —— at most #goods rounds

* Resolve an envy cycle

We will show that:

After resolving any envy cycle, the total number of edges
In the envy graph strictly decreases.

Does envy-cycle elimination algorithm terminate?

The algorithm performs one of these two operations at each step:
 Give a good to the source vertex —— at most #goods rounds

* Resolve an envy cycle

We will show that:

After resolving any envy cycle, the total number of edges
In the envy graph strictly decreases.

» With n agents, at most O(n?) cycle resolutions required to create a source.

* Polynomial running time!

Does envy-cycle elimination algorithm terminate?

After resolving any envy cycle, the total number of edges
In the envy graph strictly decreases.

Does envy-cycle elimination algorithm terminate?

After resolving any envy cycle, the total number of edges
In the envy graph strictly decreases.

Does envy-cycle elimination algorithm terminate?

After resolving any envy cycle, the total number of edges
in the envy graph strictly decreases.

Does envy-cycle elimination algorithm terminate?

After resolving any envy cycle, the total number of edges
in the envy graph strictly decreases.

Does envy-cycle elimination algorithm terminate?

After resolving any envy cycle, the total number of edges
In the envy graph strictly decreases.

Does envy-cycle elimination algorithm terminate?

After resolving any envy cycle, the total number of edges
In the envy graph strictly decreases.

these edges
are unaffected

Does envy-cycle elimination algorithm terminate?

After resolving any envy cycle, the total number of edges
in the envy graph strictly decreases.

Does envy-cycle elimination algorithm terminate?

After resolving any envy cycle, the total number of edges
in the envy graph strictly decreases.

Does envy-cycle elimination algorithm terminate?

After resolving any envy cycle, the total number of edges
In the envy graph strictly decreases.

Does envy-cycle elimination algorithm terminate?

After resolving any envy cycle, the total number of edges
In the envy graph strictly decreases.

F
\\ ‘-- --'ﬂ
LT T L

these edges are shifted

Does envy-cycle elimination algorithm terminate?

After resolving any envy cycle, the total number of edges
in the envy graph strictly decreases.

__

these edges are shifted

Does envy-cycle elimination algorithm terminate?

After resolving any envy cycle, the total number of edges
in the envy graph strictly decreases.

Does envy-cycle elimination algorithm terminate?

After resolving any envy cycle, the total number of edges
In the envy graph strictly decreases.

Does envy-cycle elimination algorithm terminate?

After resolving any envy cycle, the total number of edges
In the envy graph strictly decreases.

—

Does envy-cycle elimination algorithm terminate?

After resolving any envy cycle, the total number of edges
In the envy graph strictly decreases.

—

these edges can either stay or disappear (no new such edges are added)

Does envy-cycle elimination algorithm terminate?

After resolving any envy cycle, the total number of edges
In the envy graph strictly decreases.

Does envy-cycle elimination algorithm terminate?

After resolving any envy cycle, the total number of edges
in the envy graph strictly decreases.

Does envy-cycle elimination algorithm terminate?

After resolving any envy cycle, the total number of edges
In the envy graph strictly decreases.

Does envy-cycle elimination algorithm terminate?

After resolving any envy cycle, the total number of edges
In the envy graph strictly decreases.

For any agent in the envy cycle, its envy edge to its neighbor must disappear
and any other envy edges can either get shifted or should disappear.

Does envy-cycle elimination algorithm terminate?

After resolving any envy cycle, the total number of edges
In the envy graph strictly decreases.

For any agent in the envy cycle, its envy edge to its neighbor must disappear
and any other envy edges can either get shifted or should disappear.

Does envy-cycle elimination algorithm terminate?

After resolving any envy cycle, the total number of edges
in the envy graph strictly decreases.

For any agent in the envy cycle, its envy edge to its neighbor must disappear
and any other envy edges can either get shifted or should disappear.

Does envy-cycle elimination algorithm terminate?

After resolving any envy cycle, the total number of edges
in the envy graph strictly decreases.

For any agent in the envy cycle, its envy edge to its neighbor must disappear
and any other envy edges can either get shifted or should disappear.

Envy-cycle elimination algorithm

[Lipton, Markakis, Mossel, and Saberi, EC 2004]

1 Does the algorithm terminate?

2 Does the algorithm terminate in polynomial time?

3 Does the allocation returned by the algorithm satisfy EF17?

Envy-cycle elimination algorithm

[Lipton, Markakis, Mossel, and Saberi, EC 2004]

1 Does the algorithm terminate?

2 Does the algorithm terminate in polynomial time?

3 Does the allocation returned by the algorithm satisfy EF17?

Envy-cycle elimination algorithm

[Lipton, Markakis, Mossel, and Saberi, EC 2004]

1 Does the algorithm terminate?

2 Does the algorithm terminate in polynomial time?

3 Does the allocation returned by the algorithm satisfy EF17?

Does envy-cycle elimination algorithm return an EF1 allocation?

Does envy-cycle elimination algorithm return an EF1 allocation?

Allocation A is EF'1 if for every pair of agents 7, k, there exists

a good j € Ay such that v;(A;) > v;(Ax \ {j})-

Does envy-cycle elimination algorithm return an EF1 allocation?

We will argue that each iteration of the algorithm "preserves” EF1.

Does envy-cycle elimination algorithm return an EF1 allocation?

We will argue that each iteration of the algorithm "preserves” EF1.

If the partial allocation at the beginning of an iteration is EF1,
then the partial allocation at the end of that iteration is also EF1.

Does envy-cycle elimination algorithm return an EF1 allocation?

We will argue that each iteration of the algorithm "preserves” EF1.

While there is an unallocated good
* If the envy graph has a source vertex, assign the good to that agent.

» Otherwise, resolve envy cycles until a source vertex shows up, and then
assign the good to it.

Does envy-cycle elimination algorithm return an EF1 allocation?

We will argue that each iteration of the algorithm "preserves” EF1.

* If the envy graph has a source vertex, assign the good to that agent.

Does envy-cycle elimination algorithm return an EF1 allocation?

We will argue that each iteration of the algorithm "preserves” EF1.

* If the envy graph has a source vertex, assign the good to that agent.

The source (say, agent s) is not envied by anyone at the start of the iteration.

for any agent i, v;(A4;) > v;(As)

Does envy-cycle elimination algorithm return an EF1 allocation?

We will argue that each iteration of the algorithm "preserves” EF1.

* If the envy graph has a source vertex, assign the good to that agent.

The source (say, agent s) is not envied by anyone at the start of the iteration.
for any agent ¢, v;(A4;) > v;(As)
Suppose good g is assigned to the source agent s. Then,

vi(Ai) =2 vi(As U{g} \ {9})
which means that EF1 is preserved.

Does envy-cycle elimination algorithm return an EF1 allocation?

We will argue that each iteration of the algorithm "preserves” EF1.

* If the envy graph has a source vertex, assign the good to that agent.

Does envy-cycle elimination algorithm return an EF1 allocation?

We will argue that each iteration of the algorithm "preserves” EF1.

* Otherwise, resolve envy cycles until a source vertex shows up, and then
assign the good to it.

Does envy-cycle elimination algorithm return an EF1 allocation?

We will argue that each iteration of the algorithm "preserves” EF1.

* Otherwise, resolve envy cycles until a source vertex shows up, and then
assign the good to it.

—

Does envy-cycle elimination algorithm return an EF1 allocation?

We will argue that each iteration of the algorithm "preserves” EF1.

» Otherwise, resolve envy cycles until a source vertex shows up, and then
assign the good to it.

Does envy-cycle elimination algorithm return an EF1 allocation?

We will argue that each iteration of the algorithm "preserves” EF1.

» Otherwise, resolve envy cycles until a source vertex shows up, and then
assign the good to it.

From their perspective,
the bundles in the cycle
are only shifted around.
So, EF1 relations are
the same as before.

Does envy-cycle elimination algorithm return an EF1 allocation?

We will argue that each iteration of the algorithm "preserves” EF1.

» Otherwise, resolve envy cycles until a source vertex shows up, and then
assign the good to it.

Does envy-cycle elimination algorithm return an EF1 allocation?

We will argue that each iteration of the algorithm "preserves” EF1.

» Otherwise, resolve envy cycles until a source vertex shows up, and then
assign the good to it.

These agents are strictly
better off, and any envied
bundles are only shifted
around. So, again, EF1

IS maintained.

The analysis of envy-cycle elimination algorithm did not use additivity.

he analysis of envy-cycle elimination algorithm did not use additivity.

For monotone valuations, the allocation computed by the
envy-cycle elimination algorithm satisfies EF1.

ne analysis of envy-cycle elimination algorithm did not use additivity.

For monotone valuations, the allocation computed by the
envy-cycle elimination algorithm satisfies EF1.

Additive: v;(S) = ZjES vi({7})

Monotone: S CT = v;(S) < v;(T)

Next Time

Fairness and Efficiency

Quiz

Quiz

Prove or disprove:

For two agents, the round robin allocation is Pareto optimal.

An allocation A is Pareto optimal if there is no other allocation B such that:
- every agent is weakly better off under B, and
« some agent is strictly better off under B.

References

* Envy-cycle elimination algorithm

Richard Lipton, Evangelos Markakis, Elchanan Mossel, and Amin Saberi
“On Approximately Fair Allocations of Indivisible Goods”

EC 2004, pg 125-131

https://dl.acm.org/doi/10.1145/988772.988792

https://dl.acm.org/doi/10.1145/988772.988792

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Slide 92
	Slide 93
	Slide 94
	Slide 95
	Slide 96
	Slide 97
	Slide 98
	Slide 99
	Slide 100
	Slide 101
	Slide 102
	Slide 103
	Slide 104
	Slide 105
	Slide 106
	Slide 107
	Slide 108
	Slide 109
	Slide 110
	Slide 111
	Slide 112
	Slide 113
	Slide 114
	Slide 115
	Slide 116
	Slide 117
	Slide 118
	Slide 119
	Slide 120
	Slide 121
	Slide 122
	Slide 123
	Slide 124
	Slide 125
	Slide 126
	Slide 127
	Slide 128
	Slide 129
	Slide 130
	Slide 131
	Slide 132
	Slide 133
	Slide 134
	Slide 135
	Slide 136
	Slide 137
	Slide 138
	Slide 139
	Slide 140
	Slide 141
	Slide 142
	Slide 143
	Slide 144
	Slide 145
	Slide 146
	Slide 147
	Slide 148

