SAT Solving : Introduction

Priyanka Golia

pgolia@cse.iitd.ac.in

SAT solvers

Boolean Satisfiability (SAT) Simple to State, Rich in Structure

Despite its simplicity, it captures a vast range of real-world problems.

Fair Division

Goal: Divide items among agents fairly

Setup: *n* agents, *m* indivisible goods. Each agent has a utility function over goods (usually additive).

Outcome: Allocation of goods

Fairness notion:

EF (Envy-Free): No agent strictly prefers another agent's bundle over their own.

EF-1 (Envy-Free up to one good): Envy is removed by taking away one good from the envied bundle.

EFX (Envy-Free up to any good): Envy is removed by removing any good from the envied bundle

Input:

Set of agents $\mathscr{A} = \{a_1, a_2, ..., a_n\}$ and a set of goods $\mathscr{G} = \{g_1, g_2, ..., g_m\}$ Valuation Matrix $V \in \mathbb{N}^{n \times m}$, such that V[i][j] denotes the value of good g_j for agent a_i

We know,

Utility function, for any bundle $S \subseteq \mathcal{G}$, the additive utility of agent a_i is:

$$u_i(S) = \sum_{g_j \in S} V[i][j]$$

Encode to SAT problem such that the satisfying assignment leads to an allocation $A = (A_1, A_2, ..., A_n)$ of items to agents such that it is envy-free.

 $\forall i,k \in [n], u_i(A_i) \geq u_i(A_k) \quad A_i \subseteq \mathscr{G} \text{ the set of goods assigned to agent } a_i$

Propositional variables:

 $x_{i,j}$ is True if good g_j is assigned to agent a_i

Item assignment constraints:

Each good is assigned to exactly one agent.

$$\bigwedge_{j=1}^{m} ExactlyOne(x_{1,j}, x_{2,j}, \dots, x_{n,j})$$

$$\bigwedge_{j=1}^{m} AtLeastOne(x_{1,j}, x_{2,j}, \dots, x_{n,j}) \wedge AtMostOne(x_{1,j}, x_{2,j}, \dots, x_{n,j})$$

$$\bigwedge_{j=1}^{m} ((x_{1,j} \lor x_{2,j} \lor \dots \lor x_{n,j}) \wedge \bigwedge_{1 \le i < k \le n} (\neg x_{i,j} \lor \neg x_{k,j}))$$

Propositional variables:

 $x_{i,j}$ is True if good g_j is assigned to agent a_i

EF constraints:

```
agent a_i not envying agent a_k is
```

$$\sum_{j=1}^{m} V[i][j] \cdot x_{i,j} \ge \sum_{j=1}^{m} V[i][j] \cdot x_{k,j}$$

For all pairs of agents:

$$\bigwedge_{1 \le i < k \le n} \left(\sum_{j=1}^{m} V[i][j] \cdot x_{i,j} \ge \sum_{j=1}^{m} V[i][j] \cdot x_{k,j} \right)$$

V[i][j]s are positive interger

Step Aside: Handling Sum-Based Constraints in SAT

Pseudo Boolean Constraints : linear inequality over Boolean variables.

$$\Sigma_i a_i x_i \ge b$$
 x_i 's are Boolean variables a_i 's are integer.

How do we convert Pseudo Boolean Constraints to CNF form?

Adder Circuit Encoding.

Sequential Counter Encoding.

Binary Decision Diagram Encoding.

Totalizer Encoding. Sorting Network based Encoding.

Scan me!

https://pysathq.github.io/docs/html/api/pb.html

Pseudo Boolean Constraints Binary Decision Diagram Encoding.

 $2x_1 + 3x_2 + x_3 \le 3 \qquad x_i \in \{0, 1\}$

Pseudo Boolean Constraints Binary Decision Diagram Encoding.

 $2x_1 + 3x_2 + x_3 \le 3 \qquad x_i \in \{0, 1\}$

lead to a contradiction.

$$\begin{split} F &= (\neg x_1 \land \neg x_2) \lor (x_1 \land \neg x_2) \lor (\neg x_1 \land x_2 \land \neg x_3) \\ F_{CNF} &= (\neg t_1 \lor \neg x_1) \land (\neg t_1 \lor \neg x_2) \land (x_1 \lor x_2 \lor t_1) \\ \land (\neg t_2 \lor x_1) \land (\neg t_2 \lor \neg x_2) \land (\neg x_1 \lor x_2 \lor t_2) \\ \land (\neg t_3 \lor \neg x_1) \land (\neg t_3 \lor x_2) \land (\neg t_3 \lor \neg x_3) \\ \land (x_1 \lor \neg x_2 \lor x_3 \lor t_3) \land (t_1 \lor t_2 \lor t_3) \end{split}$$

Pseudo Boolean Constraints Binary Decision Diagram Encoding.

$$2x_{1} + 3x_{2} + x_{3} \leq 3 \qquad x_{i} \in \{0,1\}$$

$$F = (\neg x_{2}) \lor (x_{2} \land \neg x_{1} \land \neg x_{3})$$

$$F = (\neg x_{2}) \lor (x_{2} \land \neg x_{1} \land \neg x_{3})$$

$$F_{CNF} = (\neg t_{1} \lor x_{2}) \land (\neg t_{1} \lor \neg x_{1}) \land (\neg t_{1} \land \neg x_{3}) \land (\neg x_{2} \lor x_{1} \lor x_{3} \lor t_{1}) \land (t_{1} \lor \neg x_{2})$$

$$T$$

BDD based encoding is variable order sensitive.

Finding the optimal variable ordering for BDDs remains an open problem. However, several heuristics exist to obtain a 'good' ordering.

Propositional variables:

 $x_{i,j}$ is True if good g_j is assigned to agent a_i

EF constraints:

```
agent a_i not envying agent a_k is
```

$$\sum_{j=1}^{m} V[i][j] \cdot x_{i,j} \ge \sum_{j=1}^{m} V[i][j] \cdot x_{k,j}$$

For all pairs of agents:

$$\bigwedge_{1 \le i < k \le n} \left(\sum_{j=1}^{m} V[i][j] \cdot x_{i,j} \ge \sum_{j=1}^{m} V[i][j] \cdot x_{k,j} \right)$$
$$V[i][j]s \text{ are positive interger}$$

Set of agents
$$\mathscr{A} = \{a_1, a_2\}$$

Set of goods $\mathscr{G} = \{g_1, g_2\}$
 $V = \begin{bmatrix} 3 & 1 \end{bmatrix}$
 $\begin{bmatrix} 2 & 4 \end{bmatrix}$
 $V = \begin{bmatrix} 10 & 0 \end{bmatrix}$
 $\begin{bmatrix} 10 & 0 \end{bmatrix}$

Does there exists an envy-free allocation?

 $A_1 = \{o_1\}$ $A_2 = \{o_2\}$

Input:

Set of agents $\mathscr{A} = \{a_1, a_2, ..., a_n\}$ and a set of goods $\mathscr{G} = \{g_1, g_2, ..., g_m\}$ Valuation Matrix $V \in \mathbb{N}^{n \times m}$, such that V[i][j] denotes the value of good g_j for agent a_i

We know,

Utility function, for any bundle $S \subseteq \mathcal{G}$, the additive utility of agent a_i is:

$$u_i(S) = \sum_{g_j \in S} V[i][j]$$

Encode to SAT problem such that the satisfying assignment leads to an allocation $A = (A_1, A_2, ..., A_n)$ of items to agents such that it is **envy-free up to any good** $\forall i, k \in [n] \land i \neq k , \forall g \in A_k : u_i(A_i) \ge u_i(A_k \setminus \{g\})$

 $A_i \subseteq (G)$ the set of goods assigned to agent a_i

Propositional variables:

 $x_{i,j}$ is True if good g_j is assigned to agent a_i

Item assignment constraints:

Each good is assigned to exactly one agent.

$$\bigwedge_{j=1}^{m} ExacltyOne(x_{1,j}, x_{2,j}, \dots, x_{n,j})$$

$$\bigwedge_{j=1}^{m} AtLeastOne(x_{1,j}, x_{2,j}, \dots, x_{n,j}) \land AtMostOne(x_{1,j}, x_{2,j}, \dots, x_{n,j})$$

$$\bigwedge_{j=1}^{m} ((x_{1,j} \lor x_{2,j} \lor \dots \lor x_{n,j}) \land \bigwedge_{1 \le i < k \le n} (\neg x_{i,j} \lor \neg x_{k,j}))$$

Propositional variables:

```
x_{i,j} is True if good g_j is assigned to agent a_i
```

EFX constraints:

agent a_i not envying agent a_k up to any good is:

$$\sum_{j=1}^{m} V[i][j] \cdot x_{i,j} \ge \sum_{j=1}^{m} V[i][j] \cdot x_{k,j}$$
$$\bigwedge_{l=1}^{m} (x_{k,l} \to (\sum_{j=1}^{m} V[i][j] \cdot x_{i,j} \ge (\sum_{j=1}^{m} V[i][j] \cdot x_{k,j} - V[i][l])))$$

For all pairs of agents:

$$\bigwedge_{1 \le i < k \le n} \bigwedge_{l=1}^{m} (x_{k,l} \to (\sum_{j=1}^{m} V[i][j] \cdot x_{i,j} \ge (\sum_{j=1}^{m} V[i][j] \cdot x_{k,j} - V[i][l])))$$

Propositional variables:

```
x_{i,j} is True if good g_j is assigned to agent a_i
```

EFX constraints:

agent a_i not envying agent a_k up to any good is:

$$\sum_{j=1}^{m} V[i][j] \cdot x_{i,j} \ge \sum_{j=1}^{m} V[i][j] \cdot x_{k,j}$$
$$\bigwedge_{l=1}^{m} (x_{k,l} \to (\sum_{j=1}^{m} V[i][j] \cdot x_{i,j} \ge (\sum_{j=1}^{m} V[i][j] \cdot x_{k,j} - V[i][l])))$$

For all pairs of agents:

$$\bigwedge_{1 \le i < k \le n} \bigwedge_{l=1}^{m} (x_{k,l} \to (\sum_{j=1}^{m} V[i][j] \cdot x_{i,j} \ge (\sum_{j=1}^{m} V[i][j] \cdot x_{k,j} - V[i][l])))$$

Set of agents $\mathscr{A} = \{a_1, a_2\}$ Set of goods $\mathscr{G} = \{g_1, g_2\}$ $V = \begin{bmatrix} 3 & 1 \end{bmatrix}$ $\begin{bmatrix} 2 & 4 \end{bmatrix}$ Variables $x_{11}, x_{12}, x_{21}, x_{22}$ Each good is assigned to at least one agent $x_{11} \lor x_{21}$ $x_{12} \lor x_{22}$

Each good is assigned to at most one agent

 $\neg x_{11} \lor \neg x_{21} \quad \neg x_{12} \lor \neg x_{22}$

EFX constraints:

agent a_1 not envying agent a_2 up to any good is:

 $x_{21} \to (3x_{11} + x_{12} \ge (3x_{21} + x_{22} - 3))$ $x_{22} \to (3x_{11} + x_{12} \ge (3x_{21} + x_{22} - 1))$

agent a_2 not envying agent a_1 up to any good is:

$$x_{11} \rightarrow (2x_{21} + 4x_{22} \ge (2x_{11} + 4x_{12} - 2))$$
$$x_{12} \rightarrow (2x_{21} + 4x_{22} \ge (2x_{11} + 4x_{12} - 4))$$

Thanks to Sharayu Deshmukh!

EFX to SAT How many allocations exists?

```
\begin{aligned} ModelCounter(F, count) \{ \\ Result, \sigma &= CheckSAT(F) \\ if (Result = = SAT) \{ \\ count + + \} \\ else \ Return \ count \\ ModelCounter(F \land \neg \sigma, \ count) \} \end{aligned}
```

EFX to SAT How many allocations exists?

ModelCounter(*F*){

EFX to SAT How many allocations exists?

$$F = x_1 \lor x_2$$

In OBDD, Model count is Sum of leaf nodes.

ROBDD – Reduced Ordered Binary Decision Diagrams

 $F = (x \land y) \lor (\neg y \land z)$

 $F = (x \land y) \lor (\neg y \land z)$

Key Observation: We are fixing a variable as we move from the child to the parent node.

Key Observation: We are fixing a variable as we move from the child to the parent node.

Model Counting in ROBDD?

|Models(F)| = 4

ROBDD vs CNF

	CNF	ROBDD
SAT	NP-Hard	$O(F_{ROBDD})$
Model Count	#P	$O(F_{ROBDD})$
UNSAT	Co-NP	<i>O</i> (1)

Model Counting in d-DNNF

(Deterministic Decomposable Normal Negation Form)

CNF/Boolean Formula d-DNNF formula

Tools like d4, c2d, DSharp for conversion

Just like ROBDD, may result in exponential size formula, but model counting is linear in the size of the formula

Efficient model counter, GANAK

By Shubham Sharma, a dual-degree student from IITK as his MTP project

Is the always the case that S How often S satisfies P? Why S doesn't satisfy P? satisfies Property P?

Do two individuals with different skin colors but the same income, education, etc., receive the same prediction? Can you reason about it?

When is a model not secure? Can you reason about it?

