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SAT solvers

• Boolean formulas  -> SAT Solvers  

If formula is SAT, gives an satisfying 

 assignment

Otherwise, UNSAT
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Graph coloring 
Vertex cover
Does there exists an 
envy free allocation? 

Does there exists a fair committee?

SAT problem SAT Solvers A satisfying 
assignment

A solution to 
original problem

Encoding

decoding

Problems in NP!

….
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S(I,O)

SatisfiesSystem Properties

P(I,O)

Boolean satisfiability (SAT)

Is the always the case that S 
satisfies Property P? 

How often S satisfies P? Why S doesn’t satisfy P?

In Formal Verification
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Sudoku Graph Coloring Neural Networks

Outline

• How does SAT solver works? What makes them fast? 

• Basic of propositional logic, and constraints encoding !

7

If time permits



Propositional Logic

(

)
¬
∧
∨
→
↔
P1

P2

Pn

Left parenthesis

Right parenthesis
Negation
Or
And

Condition
Bi-Condition

Propositional variables 

}
}

Logical Symbols: The meaning of logical symbols is always  
the same.

Non logical Symbols/Propositional Symbols:  
The meaning of nonlogical symbols  
depends on the context.
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¬FirstSucceed → TryAgain

IsWinter ∧ IsSnow

TakeML ∨ TakeFM
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Conjunction Normal Form (CNF)
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Equisatisfiable Formulas

Boolean formulas F and G are equisatisfiable if the following holds: 

 

• Every satisfying assignment of G can be extended to the satisfying assignment of F. 

• For every there is a  such that  extends  to  and  

• Every satisfying assignment of F can be projected on  to get the satisfying 
 assignment of G. 

• For every , there is a  such that  and  

Vars(G) ⊆ Vars(F)

τ ⊧ G, τ′￼ τ′￼ τ Vars(F/G), τ′￼ ⊧ F

Vars(G)

τ′￼ ⊧ F τ τ = τ′￼↓Vars(G) τ ⊧ G



Equisatisfiable Formulas

     and    F = (p ∨ α) ∧ (¬p ∨ β) G = (α ∨ β)

Models(F) := {(p ↦ 1,α ↦ 0,β ↦ 1), (p ↦ 1,α ↦ 1,β ↦ 1), (p ↦ 0,α ↦ 1,β ↦ 0), (p ↦ 0,α ↦ 1,β ↦ 1)}

Models(F)↓Vars(G) := {(α ↦ 0,β ↦ 1), (α ↦ 1,β ↦ 1), (α ↦ 1,β ↦ 0)}

Models(F)↓Vars(G) := Models(G)

For every there is a  such that  extends  to  and  

For every , there is a  such that  and  

τ ⊧ G, τ′￼ τ′￼ τ Vars(F/G), τ′￼ ⊧ F

τ′￼ ⊧ F τ τ = τ′￼↓Vars(G) τ ⊧ G



Equisatisfiable Formulas

G = p ∨ (q ∧ r)

F = (p ∨ t) ∧ (t ↔ q ∧ r)

F′￼ = (p ∨ t) ∧ (t → q ∧ r)

Is F and G equisatisfiable?

Is  and G equisatisfiable?F′￼
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Every Boolean formula  can be converted into a CNF formula  of polynomial size, 
such that  is satisfiable if and only if  is satisfiable

F FCNF
F FCNF

18



K-SAT

CNF:    

where  

where   

Where p is propositional variable

F = C1 ∧ C2 ∧ C3… ∧ Cm

Ci = (l1 ∨ l2 ∨ … ∨ lk)

lj = p; lj = ¬p

19



K-SAT

CNF:    

where  

where   

Where p is propositional variable

F = C1 ∧ C2 ∧ C3… ∧ Cm

Ci = (l1 ∨ l2 ∨ … ∨ lk)

lj = p; lj = ¬p

19

  if every clause in  
has exactly  literals.
K − SAT F

K



K-SAT

CNF:    

where  

where   

Where p is propositional variable

F = C1 ∧ C2 ∧ C3… ∧ Cm

Ci = (l1 ∨ l2 ∨ … ∨ lk)

lj = p; lj = ¬p

If , K = 2 F = (x1 ∨ ¬x2) ∧ (x3 ∨ x4)

19

  if every clause in  
has exactly  literals.
K − SAT F

K



K-SAT

CNF:    

where  

where   

Where p is propositional variable

F = C1 ∧ C2 ∧ C3… ∧ Cm
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Can you convert given  formula into an equisatisfiable  formula?4 − SAT 3 − SAT
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Can you convert given  formula into an equisatisfiable  formula?3 − SAT 2 − SAT



Constraint Encoding



Encoding of Graph Coloring to SAT

• Proper coloring:  An assignment of colors to the vertices of a graph such that no 
two adjacent vertices have same color.  

• K-color: A proper coloring involving a total of K colors.  

• Is the following graphs 2-colorable? 
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Encoding of Graph Coloring to SAT

• Proper coloring:  An assignment of colors to the vertices of a graph such that no 
two adjacent vertices have same color.  

• K-color: A proper coloring involving a total of K colors.  

• Is the following graphs 2-colorable? 

V1 V2 V1 V2 V1 V2

V1 V2
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Encoding of Graph Coloring to SAT

• Proper coloring:  An assignment of colors to the vertices of a graph such that no 
two adjacent vertices have same color.  

• K-color: A proper coloring involving a total of K colors.  

• Is the following graphs 2-colorable? 

V1 V2 V1 V2 V1 V2

V1 V2

V3

V1 V2

V3

V1 V2

V322



Encoding of Graph Coloring to SAT

Given a graph G(V,E) with V as a set of vertices and E as a set of edges, and an integer 
K (representing the number of colors),  can we encode the proper graph coloring into 
a CNF formula such that the formula is satisfiable (SAT) if and only if the graph is K-
colorable. 

V1 V2

V3

23

We want to encode that: 
• No two adjacent vertices share the same color. 
•  Each vertex has exactly one color.



Step 1: Propositional  Variables

• Use propositional variables  

•   is True, if and only if, vertex  is assigned  color.

vi,g , where i ∈ {1,2,3}, g ∈ {R, G, B}

vi,g i g

V1 V2

V3

v1,G, v1,R, v1,B v2,G, v2,R, v2,B v3,G, v3,R, v3,B

24



Step 2: Encoding Constraints

• Each vertex must have exactly one color. 

• Each vertex must have at least one color, and each vertex must have at most 
one color
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Step 2: Encoding Constraints

• No two adjacent vertex have the same color.

For : 

 

 

V1 and V2

(¬v1,R ∨ ¬v2,R) ∧

(¬v1,G ∨ ¬v2,G) ∧

(¬v1,B ∨ ¬v2,B) ∧

For : 

 

 

V1 and V3

(¬v1,R ∨ ¬v3,R) ∧

(¬v1,G ∨ ¬v3,G) ∧

(¬v1,B ∨ ¬v3,B) ∧

For : 

 

 

V2 and V3

(¬v2,R ∨ ¬v3,R) ∧

(¬v2,G ∨ ¬v3,G) ∧

(¬v2,B ∨ ¬v3,B)
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Proper Coloring to SAT

V1 V2

V3

 

 

 

  

  

  

(v1,G ∨ v1,R ∨ v1,B) ∧ (v2,G ∨ v2,R ∨ v2,B) ∧ (v3,G ∨ v3,R ∨ v3,B) ∧

(¬v1,G ∨ ¬v1,R) ∧ (¬v1,G ∨ ¬v1,B) ∧ (¬v1,R ∨ ¬v1,B) ∧

(¬v2,G ∨ ¬v2,R) ∧ (¬v2,G ∨ ¬v2,B) ∧ (¬v2,R ∨ ¬v2,B) ∧

(¬v3,G ∨ ¬v3,R) ∧ (¬v3,R ∨ ¬v3,B) ∧ (¬v3,R ∨ ¬v3,B) ∧

(¬v1,R ∨ ¬v2,R) ∧ (¬v1,G ∨ ¬v2,G) ∧ (¬v1,B ∨ ¬v2,B) ∧
(¬v1,R ∨ ¬v3,R) ∧ (¬v1,G ∨ ¬v3,G) ∧ (¬v1,B ∨ ¬v3,B) ∧
(¬v2,R ∨ ¬v3,R) ∧ (¬v2,G ∨ ¬v3,G) ∧ (¬v2,B ∨ ¬v3,B)

FCNF =
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Boolean Satisfiability (SAT) Simple to State, Rich in Structure

Despite its simplicity, it captures a vast range of real-world problems. 

Different 
Problems 

Scheduling 
Planning 

Graph coloring 
Vertex cover
Does there exists an 
envy free allocation? 

Does there exists a fair committee?

SAT problem SAT Solvers A satisfying 
assignment

A solution to 
original problem

Encoding

decoding

Problems in NP!

….



SAT solvers

• Boolean formulas  -> SAT Solvers  

If formula is SAT, gives an satisfying 

 assignment

Otherwise, UNSAT



DPLL algorithm (Davis -Putnam-Logemann-Loveland 1960) 

1. Maintains a partial model, initially  

2. Assign unassigned variables either  or  

1. (Randomly one after the other) 

3. Sometime forced to make a decision due to unit clause

∅

0 1



DPLL

F = (¬x1 ∨ ¬x2 ∨ ¬x3) ∧ (¬x3 ∨ x2) ∧ (¬x3 ∨ x1)



DPLL

F = (¬x1 ∨ ¬x2 ∨ ¬x3) ∧ (¬x3 ∨ x2) ∧ (¬x3 ∨ x1)

x3 decision variable

1
Pick a variable, say , and assign it a Boolean value, say 1.   
Partial model 

x3
m = {x3 ↦ 1}



DPLL

F = (¬x1 ∨ ¬x2 ∨ ¬x3) ∧ (¬x3 ∨ x2) ∧ (¬x3 ∨ x1)

x3 decision variable

1
Pick a variable, say , and assign it a Boolean value, say 1.   
Partial model 

x3
m = {x3 ↦ 1}

 — unit clauses(¬x3 ∨ x2) ∧ (¬x3 ∨ x1)
x2 Propagated 

variables
1,C2

x1
0,C1

Conflict,  FalseC3



DPLL

F = (¬x1 ∨ ¬x2 ∨ ¬x3) ∧ (¬x3 ∨ x2) ∧ (¬x3 ∨ x1)

x3 decision variable

1
Pick a variable, say , and assign it a Boolean value, say 1.   
Partial model 

x3
m = {x3 ↦ 1}

 — unit clauses(¬x3 ∨ x2) ∧ (¬x3 ∨ x1)
x2 Propagated 

variables
1,C2

x1
0,C1

Conflict,  FalseC3

What to do if  is False under partial model m?F



DPLL Backtracking

F = (¬x1 ∨ ¬x2 ∨ ¬x3) ∧ (¬x3 ∨ x2) ∧ (¬x3 ∨ x1)

x3 decision variable

1
Pick a variable, say , and assign it a Boolean value, say 1.   
Partial model 

x3
m = {x3 ↦ 1}

 — unit clauses(¬x3 ∨ x2) ∧ (¬x3 ∨ x1)
x2 Propagated 

variables
1,C2

x1
0,C1

Conflict,  FalseC3

Backtrack



F = (¬x1 ∨ ¬x2 ∨ ¬x3) ∧ (¬x3 ∨ x2) ∧ (¬x3 ∨ x1)

0

True

DPLL Backtracking



F = (¬x1 ∨ ¬x2 ∨ ¬x3) ∧ (¬x3 ∨ x2) ∧ (¬x3 ∨ x1)

x3 decision variable
0

True

DPLL Backtracking



F = (¬x1 ∨ ¬x2 ∨ ¬x3) ∧ (¬x3 ∨ x2) ∧ (¬x3 ∨ x1)

x3 decision variable
0Backtrack to last decision, and change the polarity.   

Partial model m = {x3 ↦ 0}
True

DPLL Backtracking



F = (¬x1 ∨ ¬x2 ∨ ¬x3) ∧ (¬x3 ∨ x2) ∧ (¬x3 ∨ x1)

x3 decision variable
0Backtrack to last decision, and change the polarity.   

Partial model m = {x3 ↦ 0}
True

All clauses are True, hence F is True

DPLL Backtracking



DPLL algorithm (Davis -Putnam-Logemann-Loveland 1960) 

1. Maintains a partial model, initially  

2. Assign unassigned variables either  or  

1. (Randomly one after the other) 

3. Sometime forced to make a decision due to unit clause

∅

0 1

DPLL run consists of  

• Decision 

• Unit propagation 

• Backtracking



 
 

 
 

 
 

 

C1 = (¬p1 ∨ p2)
C2 = (¬p1 ∨ p3 ∨ p5)
C3 = (¬p2 ∨ p4)
C4 = (¬p3 ∨ ¬p4)
C5 = (p1 ∨ p5 ∨ ¬p2)
C6 = (p2 ∨ p3)
C7 = (p2 ∨ ¬p3 ∨ p7)
C8 = (p6 ∨ ¬p5)

decision variable

propagated 
variables
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Backtrack 1



Complete and Sound algorithm.

Still the basis of SAT solver

zChaff Solver — efficient implementation of DPLL (2001) 

     Won test of time award at CAV. 

DPLL



An optimization of DPLL:
As we decide and propagate, we can observe the run, and  
avoid unnecessary backtracking. 

Complete and Sound algorithm.

Still the basis of SAT solver

zChaff Solver — efficient implementation of DPLL (2001) 

     Won test of time award at CAV. 

DPLL



An optimization of DPLL:
As we decide and propagate, we can observe the run, and  
avoid unnecessary backtracking. 

CDCL— Construct a data structure to avoid unnecessary backtracking. 

Heuristics: which variables to pick, what value to assign?

Complete and Sound algorithm.

Still the basis of SAT solver

zChaff Solver — efficient implementation of DPLL (2001) 

     Won test of time award at CAV. 

DPLL



Taken from Alex’s (SAT+SMT Indian School)  slides.






