
 Priyanka Golia

SAT Solving: Introduction

pgolia@cse.iitd.ac.in

Satisfiability

Boolean Satisfiability: Given a Boolean formula, is there a solution? Assignment of ’s
and ’s to the variables that makes the formula equal .

Is it satisfiable?

0
1 1

F(x1, x2, x3) : x1 ∨ x2 ∨ x3

Satisfiability

Boolean Satisfiability: Given a Boolean formula, is there a solution? Assignment of ’s
and ’s to the variables that makes the formula equal .

Is it satisfiable?

0
1 1

F(x1, x2, x3) : x1 ∨ x2 ∨ x3

Yes:

 : is called a satisfying assignment.

σ = < x1 = 0,x2 = 0,x3 = 1 >

σ ⊧ F(x1, x2, x3)

 F(X) = (x1 ∨ x2) ∧ (¬x1 ∨ x2) ∧ (x1 ∨ ¬x2) ∧ (¬x1 ∨ ¬x2)

Satisfiability

 F(X) = (x1 ∨ x2) ∧ (¬x1 ∨ x2) ∧ (x1 ∨ ¬x2) ∧ (¬x1 ∨ ¬x2)

Is it satisfiable?

Satisfiability

 F(X) = (x1 ∨ x2) ∧ (¬x1 ∨ x2) ∧ (x1 ∨ ¬x2) ∧ (¬x1 ∨ ¬x2)

Is it satisfiable?

No, F(X) is UNSAT

Satisfiability

 F(X) = (x1 ∨ x2) ∧ (¬x1 ∨ x2) ∧ (x1 ∨ ¬x2) ∧ (¬x1 ∨ ¬x2)

Is it satisfiable?

No, F(X) is UNSAT

F(X) = (x1 ∨ x2 ∨ x3) ∧ (¬x1 ∨ x2 ∨ x3) ∧ (x1 ∨ ¬x2 ∨ x3) ∧ (x1 ∨ x2 ∨ ¬x3)

Satisfiability

 F(X) = (x1 ∨ x2) ∧ (¬x1 ∨ x2) ∧ (x1 ∨ ¬x2) ∧ (¬x1 ∨ ¬x2)

Is it satisfiable?

No, F(X) is UNSAT

F(X) = (x1 ∨ x2 ∨ x3) ∧ (¬x1 ∨ x2 ∨ x3) ∧ (x1 ∨ ¬x2 ∨ x3) ∧ (x1 ∨ x2 ∨ ¬x3)

Is it satisfiable?

Satisfiability

 F(X) = (x1 ∨ x2) ∧ (¬x1 ∨ x2) ∧ (x1 ∨ ¬x2) ∧ (¬x1 ∨ ¬x2)

Is it satisfiable?

No, F(X) is UNSAT

F(X) = (x1 ∨ x2 ∨ x3) ∧ (¬x1 ∨ x2 ∨ x3) ∧ (x1 ∨ ¬x2 ∨ x3) ∧ (x1 ∨ x2 ∨ ¬x3)

Is it satisfiable?

Yes, F(X) is SAT, σ = < x1 = 0,x2 = 1,x3 = 1 >

Satisfiability

SAT solvers

• Boolean formulas -> SAT Solvers

If formula is SAT, gives an satisfying

 assignment

Otherwise, UNSAT

Boolean Satisfiability (SAT) Simple to State, Rich in Structure

Despite its simplicity, it captures a vast range of real-world problems.

Boolean Satisfiability (SAT) Simple to State, Rich in Structure

Despite its simplicity, it captures a vast range of real-world problems.

Different
Problems

Boolean Satisfiability (SAT) Simple to State, Rich in Structure

Despite its simplicity, it captures a vast range of real-world problems.

Different
Problems

Scheduling
Planning

Boolean Satisfiability (SAT) Simple to State, Rich in Structure

Despite its simplicity, it captures a vast range of real-world problems.

Different
Problems

Scheduling
Planning

Graph coloring
Vertex cover

Boolean Satisfiability (SAT) Simple to State, Rich in Structure

Despite its simplicity, it captures a vast range of real-world problems.

Different
Problems

Scheduling
Planning

Graph coloring
Vertex cover
Does there exists an
envy free allocation?

Does there exists a fair committee?
….

Boolean Satisfiability (SAT) Simple to State, Rich in Structure

Despite its simplicity, it captures a vast range of real-world problems.

Different
Problems

Scheduling
Planning

Graph coloring
Vertex cover
Does there exists an
envy free allocation?

Does there exists a fair committee?

SAT problem SAT Solvers A satisfying
assignment

A solution to
original problem

Encoding

decoding

….

Boolean Satisfiability (SAT) Simple to State, Rich in Structure

Despite its simplicity, it captures a vast range of real-world problems.

Different
Problems

Scheduling
Planning

Graph coloring
Vertex cover
Does there exists an
envy free allocation?

Does there exists a fair committee?

SAT problem SAT Solvers A satisfying
assignment

A solution to
original problem

Encoding

decoding

Problems in NP!

….

S(I,O)

SatisfiesSystem Properties

P(I,O)

Boolean satisfiability (SAT) In Formal Verification

S(I,O)

SatisfiesSystem Properties

P(I,O)

Boolean satisfiability (SAT)

Is the always the case that S
satisfies Property P?

In Formal Verification

S(I,O)

SatisfiesSystem Properties

P(I,O)

Boolean satisfiability (SAT)

Is the always the case that S
satisfies Property P?

How often S satisfies P?

In Formal Verification

S(I,O)

SatisfiesSystem Properties

P(I,O)

Boolean satisfiability (SAT)

Is the always the case that S
satisfies Property P?

How often S satisfies P? Why S doesn’t satisfy P?

In Formal Verification

Sudoku Graph Coloring Neural Networks

Outline

• Basic of propositional logic, and constraints encoding !

7

If time permits

Sudoku Graph Coloring Neural Networks

Outline

• How does SAT solver works? What makes them fast?

• Basic of propositional logic, and constraints encoding !

7

If time permits

Propositional Logic

(

)
¬
∧
∨
→
↔
P1

P2

Pn

Left parenthesis

Right parenthesis
Negation
Or
And

Condition
Bi-Condition

Propositional variables

}
}

Logical Symbols: The meaning of logical symbols is always
the same.

Non logical Symbols/Propositional Symbols:
The meaning of nonlogical symbols
depends on the context.

8

Propositional Logic

(

)
¬
∧
∨
→
↔
P1

P2

Pn

Left parenthesis

Right parenthesis
Negation
Or
And

Condition
Bi-Condition

Propositional variables

}
}

Logical Symbols: The meaning of logical symbols is always
the same.

Non logical Symbols/Propositional Symbols:
The meaning of nonlogical symbols
depends on the context.

8

¬FirstSucceed → TryAgain

IsWinter ∧ IsSnow

TakeML ∨ TakeFM

• is a function that maps proposition variables of a propositional formula to {0,1}. τ
F = ((p ∨ q) ∨ r)

τ : {p ↦ 1, q ↦ 0, r ↦ 1}

9

We call a truth assignment.τ

Propositional Logic: Semantics

• is a function that maps proposition variables of a propositional formula to {0,1}. τ
F = ((p ∨ q) ∨ r)

τ : {p ↦ 1, q ↦ 0, r ↦ 1}

• How many such (truth assignments) can exists ?τ

9

We call a truth assignment.τ

Propositional Logic: Semantics

• is a function that maps proposition variables of a propositional formula to {0,1}. τ
F = ((p ∨ q) ∨ r)

τ : {p ↦ 1, q ↦ 0, r ↦ 1}

• How many such (truth assignments) can exists ?τ p q r
0 0 0
0 0 1
0 1 0
0 1 1
1 0 0
1 0 1
1 1 0
1 1 1

9

We call a truth assignment.τ

Propositional Logic: Semantics

• is a function that maps proposition variables of a propositional formula to {0,1}. τ
F = ((p ∨ q) ∨ r)

τ : {p ↦ 1, q ↦ 0, r ↦ 1}

• How many such (truth assignments) can exists ?τ 2variables(F) p q r
0 0 0
0 0 1
0 1 0
0 1 1
1 0 0
1 0 1
1 1 0
1 1 1

9

We call a truth assignment.τ

Propositional Logic: Semantics

• is a function that maps proposition variables of a propositional formula to {0,1}. τ
F = ((p ∨ q) ∨ r)

τ : {p ↦ 1, q ↦ 0, r ↦ 1}

• How many such (truth assignments) can exists ?τ

• satisfies formula F if and only if is 1,
such a is called satisfying assignment
τ F(τ)

τ

2variables(F) p q r
0 0 0
0 0 1
0 1 0
0 1 1
1 0 0
1 0 1
1 1 0
1 1 1

9

We call a truth assignment.τ

Propositional Logic: Semantics

• is a function that maps proposition variables of a propositional formula to {0,1}. τ
F = ((p ∨ q) ∨ r)

τ : {p ↦ 1, q ↦ 0, r ↦ 1}

• How many such (truth assignments) can exists ?τ

• satisfies formula F if and only if is 1,
such a is called satisfying assignment
τ F(τ)

τ

2variables(F) p q r
0 0 0
0 0 1
0 1 0
0 1 1
1 0 0
1 0 1
1 1 0
1 1 1

F(τ) : ((1 ∨ 0) ∨ 1) = 1

9

We call a truth assignment.τ

Propositional Logic: Semantics

• is a function that maps proposition variables of a propositional formula to {0,1}. τ
F = ((p ∨ q) ∨ r)

τ : {p ↦ 1, q ↦ 0, r ↦ 1}

• How many such (truth assignments) can exists ?τ

• We use to represent.τ ⊧ F

• satisfies formula F if and only if is 1,
such a is called satisfying assignment
τ F(τ)

τ

2variables(F) p q r
0 0 0
0 0 1
0 1 0
0 1 1
1 0 0
1 0 1
1 1 0
1 1 1

F(τ) : ((1 ∨ 0) ∨ 1) = 1

9

We call a truth assignment.τ

Propositional Logic: Semantics

F = ((p ∨ q) ∨ r) τ : {p ↦ 1, q ↦ 0, r ↦ 1}

• If there exists a such that , we say that F is satisfiable.τ τ ⊧ F

F is satisfiable

10

Propositional Logic: Semantics

F = ((p ∨ q) ∨ r) τ : {p ↦ 1, q ↦ 0, r ↦ 1}

• If for all in , is 1, then F is valid. τ 2variables(F) F(τ)

• If there exists a such that , we say that F is satisfiable.τ τ ⊧ F

F is satisfiable

10

Propositional Logic: Semantics

F = ((p ∨ q) ∨ r) τ : {p ↦ 1, q ↦ 0, r ↦ 1}

• If for all in , is 1, then F is valid. τ 2variables(F) F(τ)

• If there exists a such that , we say that F is satisfiable.τ τ ⊧ F

F is satisfiable

Is is valid ? F = ((p ∨ q) ∨ r)

10

Propositional Logic: Semantics

F = ((p ∨ q) ∨ r) τ : {p ↦ 1, q ↦ 0, r ↦ 1}

• If for all in , is 1, then F is valid. τ 2variables(F) F(τ)

• If there exists a such that , we say that F is satisfiable.τ τ ⊧ F

F is satisfiable

Is is valid ? F = ((p ∨ q) ∨ r) Is is valid ? F = (p ∨ ¬p)

10

Propositional Logic: Semantics

F = ((p ∨ q) ∨ r) τ : {p ↦ 1, q ↦ 0, r ↦ 1}

• If for all in , is 1, then F is valid. τ 2variables(F) F(τ)

• If there exists a such that , we say that F is satisfiable.τ τ ⊧ F

F is satisfiable

Is is valid ? F = ((p ∨ q) ∨ r) Is is valid ? F = (p ∨ ¬p)

• If there does not exists a in such that is 1, then F is unsatisfiable. τ 2variables(F) F(τ)

10

Propositional Logic: Semantics

F = ((p ∨ q) ∨ r) τ : {p ↦ 1, q ↦ 0, r ↦ 1}

• If for all in , is 1, then F is valid. τ 2variables(F) F(τ)

• If there exists a such that , we say that F is satisfiable.τ τ ⊧ F

F is satisfiable

Is is valid ? F = ((p ∨ q) ∨ r) Is is valid ? F = (p ∨ ¬p)

• If there does not exists a in such that is 1, then F is unsatisfiable. τ 2variables(F) F(τ)

Is is unsatisfiable? F = ((p ∨ q) ∨ r)

10

Propositional Logic: Semantics

F = ((p ∨ q) ∨ r) τ : {p ↦ 1, q ↦ 0, r ↦ 1}

• If for all in , is 1, then F is valid. τ 2variables(F) F(τ)

• If there exists a such that , we say that F is satisfiable.τ τ ⊧ F

F is satisfiable

Is is valid ? F = ((p ∨ q) ∨ r) Is is valid ? F = (p ∨ ¬p)

• If there does not exists a in such that is 1, then F is unsatisfiable. τ 2variables(F) F(τ)

Is is unsatisfiable? F = ((p ∨ q) ∨ r) Is is unsatisfiable ? F = (p ∧ ¬p)

10

Propositional Logic: Semantics

Conjunction Normal Form (CNF)

• F = (x1 ∨ x2) ∧ (¬x1 ∨ x3)

Clauses Literals : x1, ¬x1, x2, ¬x2, x3, ¬x3

CNF:

where

where

Where p is propositional variable

F = C1 ∧ C2 ∧ C3… ∧ Cm

Ci = (l1 ∨ l2 ∨ … ∨ lk)

lj = p; lj = ¬p

11

Conjunction Normal Form (CNF)

• F = (x1 ∨ x2) ∧ (¬x1 ∨ x3)

Clauses Literals : x1, ¬x1, x2, ¬x2, x3, ¬x3

CNF:

where

where

Where p is propositional variable

F = C1 ∧ C2 ∧ C3… ∧ Cm

Ci = (l1 ∨ l2 ∨ … ∨ lk)

lj = p; lj = ¬p

SAT solvers takes

CNF formulas as input.

11

Is every Boolean formula expressible in conjunctive normal form (CNF)?F

12

13

Is every Boolean formula expressible in conjunctive normal form (CNF)?F

Yes, every F can be represented in , such that FCNF F = FCNF

13

Is every Boolean formula expressible in conjunctive normal form (CNF)?F

Same set of
satisfying

assignments

Yes, every F can be represented in , such that FCNF F = FCNF

F = ((x1 ∧ ¬x2) ∨ (x3 ∧ x4)) Can you convert F into ?FCNF

13

Is every Boolean formula expressible in conjunctive normal form (CNF)?F

Same set of
satisfying

assignments

Yes, every F can be represented in , such that FCNF F = FCNF

F = ((x1 ∧ ¬x2) ∨ (x3 ∧ x4)) Can you convert F into ?FCNF

FCNF = (x1 ∨ x3) ∧ (x1 ∨ x4) ∧ (¬x2 ∨ x3) ∧ (¬x2 ∨ x4)

13

Is every Boolean formula expressible in conjunctive normal form (CNF)?F

Same set of
satisfying

assignments

Yes, every F can be represented in , such that FCNF F = FCNF

F = ((x1 ∧ ¬x2) ∨ (x3 ∧ x4)) Can you convert F into ?FCNF

FCNF = (x1 ∨ x3) ∧ (x1 ∨ x4) ∧ (¬x2 ∨ x3) ∧ (¬x2 ∨ x4)

F = (x1 ∧ y1) ∨ … ∨ (xn ∧ yn)

13

Is every Boolean formula expressible in conjunctive normal form (CNF)?F

Same set of
satisfying

assignments

How many clauses are there in the FCNF

Yes, every F can be represented in , such that FCNF F = FCNF

F = ((x1 ∧ ¬x2) ∨ (x3 ∧ x4)) Can you convert F into ?FCNF

FCNF = (x1 ∨ x3) ∧ (x1 ∨ x4) ∧ (¬x2 ∨ x3) ∧ (¬x2 ∨ x4)

2n

F = (x1 ∧ y1) ∨ … ∨ (xn ∧ yn)

13

Is every Boolean formula expressible in conjunctive normal form (CNF)?F

Same set of
satisfying

assignments

How many clauses are there in the FCNF

Yes, every F can be represented in , such that FCNF F = FCNF

F = ((x1 ∧ ¬x2) ∨ (x3 ∧ x4)) Can you convert F into ?FCNF

FCNF = (x1 ∨ x3) ∧ (x1 ∨ x4) ∧ (¬x2 ∨ x3) ∧ (¬x2 ∨ x4)

Can we do better?2n

F = (x1 ∧ y1) ∨ … ∨ (xn ∧ yn)

13

Is every Boolean formula expressible in conjunctive normal form (CNF)?F

Same set of
satisfying

assignments

How many clauses are there in the FCNF

Equisatisfiable Formulas

Boolean formulas F and G are equisatisfiable if the following holds:

• Every satisfying assignment of G can be extended to the satisfying assignment of F.

• For every there is a such that extends to and

• Every satisfying assignment of F can be projected on to get the satisfying
 assignment of G.

• For every , there is a such that and

Vars(G) ⊆ Vars(F)

τ ⊧ G, τ′ τ′ τ Vars(F/G), τ′ ⊧ F

Vars(G)

τ′ ⊧ F τ τ = τ′ ↓Vars(G) τ ⊧ G

Equisatisfiable Formulas

 and F = (p ∨ α) ∧ (¬p ∨ β) G = (α ∨ β)

Models(F) := {(p ↦ 1,α ↦ 0,β ↦ 1), (p ↦ 1,α ↦ 1,β ↦ 1), (p ↦ 0,α ↦ 1,β ↦ 0), (p ↦ 0,α ↦ 1,β ↦ 1)}

Models(F)↓Vars(G) := {(α ↦ 0,β ↦ 1), (α ↦ 1,β ↦ 1), (α ↦ 1,β ↦ 0)}

Models(F)↓Vars(G) := Models(G)

For every there is a such that extends to and

For every , there is a such that and

τ ⊧ G, τ′ τ′ τ Vars(F/G), τ′ ⊧ F

τ′ ⊧ F τ τ = τ′ ↓Vars(G) τ ⊧ G

Equisatisfiable Formulas

G = p ∨ (q ∧ r)

F = (p ∨ t) ∧ (t ↔ q ∧ r)

F′ = (p ∨ t) ∧ (t → q ∧ r)

Is F and G equisatisfiable?

Is and G equisatisfiable?F′

Equisatisfiable Formulas

17

Equisatisfiable Formulas

F = ((x1 ∧ ¬x2) ∨ (x3 ∧ x4))

17

Equisatisfiable Formulas

F = ((x1 ∧ ¬x2) ∨ (x3 ∧ x4)) Can you convert F into equisatisfiable ?FCNF

17

Equisatisfiable Formulas

F = ((x1 ∧ ¬x2) ∨ (x3 ∧ x4)) Can you convert F into equisatisfiable ?FCNF

≡ (t1 ↔ (x1 ∧ ¬x2)) ∧ (t2 ↔ (x3 ∨ x4)) ∧ (t1 ∨ t2)

17

Equisatisfiable Formulas

F = ((x1 ∧ ¬x2) ∨ (x3 ∧ x4)) Can you convert F into equisatisfiable ?FCNF

≡ (t1 ↔ (x1 ∧ ¬x2)) ∧ (t2 ↔ (x3 ∨ x4)) ∧ (t1 ∨ t2)

≡ (¬t1 ∨ x1) ∧ (¬t1 ∨ ¬x2) ∧ (¬x1 ∨ x2 ∨ t1) ∧ (¬t2 ∨ x3) ∧ (¬t2 ∨ x4) ∧ (¬x3 ∨ ¬x4 ∨ t2) ∧ (t1 ∨ t2)

17

Equisatisfiable Formulas

F = ((x1 ∧ ¬x2) ∨ (x3 ∧ x4)) Can you convert F into equisatisfiable ?FCNF

≡ (t1 ↔ (x1 ∧ ¬x2)) ∧ (t2 ↔ (x3 ∨ x4)) ∧ (t1 ∨ t2)

≡ (¬t1 ∨ (x1 ∧ ¬x2)) ∧ (¬x1 ∨ x2 ∨ t1) ∧ (¬t2 ∨ (x3 ∧ x4)) ∧ (¬x3 ∨ ¬x4 ∨ t2) ∧ (t1 ∨ t2)

≡ (¬t1 ∨ x1) ∧ (¬t1 ∨ ¬x2) ∧ (¬x1 ∨ x2 ∨ t1) ∧ (¬t2 ∨ x3) ∧ (¬t2 ∨ x4) ∧ (¬x3 ∨ ¬x4 ∨ t2) ∧ (t1 ∨ t2)

17

Equisatisfiable Formulas

F = ((x1 ∧ ¬x2) ∨ (x3 ∧ x4)) Can you convert F into equisatisfiable ?FCNF

≡ (t1 ↔ (x1 ∧ ¬x2)) ∧ (t2 ↔ (x3 ∨ x4)) ∧ (t1 ∨ t2)

≡ (¬t1 ∨ (x1 ∧ ¬x2)) ∧ (¬x1 ∨ x2 ∨ t1) ∧ (¬t2 ∨ (x3 ∧ x4)) ∧ (¬x3 ∨ ¬x4 ∨ t2) ∧ (t1 ∨ t2)

≡ (¬t1 ∨ x1) ∧ (¬t1 ∨ ¬x2) ∧ (¬x1 ∨ x2 ∨ t1) ∧ (¬t2 ∨ x3) ∧ (¬t2 ∨ x4) ∧ (¬x3 ∨ ¬x4 ∨ t2) ∧ (t1 ∨ t2)

≡ FCNF

17

Equisatisfiable Formulas

F = ((x1 ∧ ¬x2) ∨ (x3 ∧ x4)) Can you convert F into equisatisfiable ?FCNF

≡ (t1 ↔ (x1 ∧ ¬x2)) ∧ (t2 ↔ (x3 ∨ x4)) ∧ (t1 ∨ t2)

≡ (¬t1 ∨ (x1 ∧ ¬x2)) ∧ (¬x1 ∨ x2 ∨ t1) ∧ (¬t2 ∨ (x3 ∧ x4)) ∧ (¬x3 ∨ ¬x4 ∨ t2) ∧ (t1 ∨ t2)

≡ (¬t1 ∨ x1) ∧ (¬t1 ∨ ¬x2) ∧ (¬x1 ∨ x2 ∨ t1) ∧ (¬t2 ∨ x3) ∧ (¬t2 ∨ x4) ∧ (¬x3 ∨ ¬x4 ∨ t2) ∧ (t1 ∨ t2)

≡ FCNF

17

Tseitin transformation

Equisatisfiable Formulas

F = ((x1 ∧ ¬x2) ∨ (x3 ∧ x4)) Can you convert F into equisatisfiable ?FCNF

≡ (t1 ↔ (x1 ∧ ¬x2)) ∧ (t2 ↔ (x3 ∨ x4)) ∧ (t1 ∨ t2)

≡ (¬t1 ∨ (x1 ∧ ¬x2)) ∧ (¬x1 ∨ x2 ∨ t1) ∧ (¬t2 ∨ (x3 ∧ x4)) ∧ (¬x3 ∨ ¬x4 ∨ t2) ∧ (t1 ∨ t2)

≡ (¬t1 ∨ x1) ∧ (¬t1 ∨ ¬x2) ∧ (¬x1 ∨ x2 ∨ t1) ∧ (¬t2 ∨ x3) ∧ (¬t2 ∨ x4) ∧ (¬x3 ∨ ¬x4 ∨ t2) ∧ (t1 ∨ t2)

≡ FCNF

17

F = (x1 ∧ y1) ∨ … ∨ (xn ∧ yn)

How many clauses are there in equisatisfiable FCNF

Tseitin transformation

Equisatisfiable Formulas

F = ((x1 ∧ ¬x2) ∨ (x3 ∧ x4)) Can you convert F into equisatisfiable ?FCNF

≡ (t1 ↔ (x1 ∧ ¬x2)) ∧ (t2 ↔ (x3 ∨ x4)) ∧ (t1 ∨ t2)

≡ (¬t1 ∨ (x1 ∧ ¬x2)) ∧ (¬x1 ∨ x2 ∨ t1) ∧ (¬t2 ∨ (x3 ∧ x4)) ∧ (¬x3 ∨ ¬x4 ∨ t2) ∧ (t1 ∨ t2)

≡ (¬t1 ∨ x1) ∧ (¬t1 ∨ ¬x2) ∧ (¬x1 ∨ x2 ∨ t1) ∧ (¬t2 ∨ x3) ∧ (¬t2 ∨ x4) ∧ (¬x3 ∨ ¬x4 ∨ t2) ∧ (t1 ∨ t2)

≡ FCNF

2n + n + 1

17

F = (x1 ∧ y1) ∨ … ∨ (xn ∧ yn)

How many clauses are there in equisatisfiable FCNF

Tseitin transformation

Every Boolean formula can be converted into a CNF formula of polynomial size,
such that is satisfiable if and only if is satisfiable

F FCNF
F FCNF

18

K-SAT

CNF:

where

where

Where p is propositional variable

F = C1 ∧ C2 ∧ C3… ∧ Cm

Ci = (l1 ∨ l2 ∨ … ∨ lk)

lj = p; lj = ¬p

19

K-SAT

CNF:

where

where

Where p is propositional variable

F = C1 ∧ C2 ∧ C3… ∧ Cm

Ci = (l1 ∨ l2 ∨ … ∨ lk)

lj = p; lj = ¬p

19

 if every clause in
has exactly literals.
K − SAT F

K

K-SAT

CNF:

where

where

Where p is propositional variable

F = C1 ∧ C2 ∧ C3… ∧ Cm

Ci = (l1 ∨ l2 ∨ … ∨ lk)

lj = p; lj = ¬p

If , K = 2 F = (x1 ∨ ¬x2) ∧ (x3 ∨ x4)

19

 if every clause in
has exactly literals.
K − SAT F

K

K-SAT

CNF:

where

where

Where p is propositional variable

F = C1 ∧ C2 ∧ C3… ∧ Cm

Ci = (l1 ∨ l2 ∨ … ∨ lk)

lj = p; lj = ¬p

If , K = 2 F = (x1 ∨ ¬x2) ∧ (x3 ∨ x4)

If , K = 3 F = (x1 ∨ ¬x2 ∨ x3) ∧ (x1 ∨ x3 ∨ x4)

19

 if every clause in
has exactly literals.
K − SAT F

K

Can you convert given formula into an equisatisfiable formula?4 − SAT 3 − SAT

20

Can you convert given formula into an equisatisfiable formula?3 − SAT 2 − SAT

Constraint Encoding

Encoding of Graph Coloring to SAT

• Proper coloring: An assignment of colors to the vertices of a graph such that no
two adjacent vertices have same color.

• K-color: A proper coloring involving a total of K colors.

• Is the following graphs 2-colorable?

22

Encoding of Graph Coloring to SAT

• Proper coloring: An assignment of colors to the vertices of a graph such that no
two adjacent vertices have same color.

• K-color: A proper coloring involving a total of K colors.

• Is the following graphs 2-colorable?

V1 V2

22

Encoding of Graph Coloring to SAT

• Proper coloring: An assignment of colors to the vertices of a graph such that no
two adjacent vertices have same color.

• K-color: A proper coloring involving a total of K colors.

• Is the following graphs 2-colorable?

V1 V2 V1 V2 V1 V2

22

Encoding of Graph Coloring to SAT

• Proper coloring: An assignment of colors to the vertices of a graph such that no
two adjacent vertices have same color.

• K-color: A proper coloring involving a total of K colors.

• Is the following graphs 2-colorable?

V1 V2 V1 V2 V1 V2

V1 V2

V3
22

Encoding of Graph Coloring to SAT

• Proper coloring: An assignment of colors to the vertices of a graph such that no
two adjacent vertices have same color.

• K-color: A proper coloring involving a total of K colors.

• Is the following graphs 2-colorable?

V1 V2 V1 V2 V1 V2

V1 V2

V3

V1 V2

V3

V1 V2

V322

Encoding of Graph Coloring to SAT

Given a graph G(V,E) with V as a set of vertices and E as a set of edges, and an integer
K (representing the number of colors), can we encode the proper graph coloring into
a CNF formula such that the formula is satisfiable (SAT) if and only if the graph is K-
colorable.

V1 V2

V3

23

We want to encode that:
• No two adjacent vertices share the same color.
• Each vertex has exactly one color.

Step 1: Propositional Variables

• Use propositional variables

• is True, if and only if, vertex is assigned color.

vi,g , where i ∈ {1,2,3}, g ∈ {R, G, B}

vi,g i g

V1 V2

V3

v1,G, v1,R, v1,B v2,G, v2,R, v2,B v3,G, v3,R, v3,B

24

Step 2: Encoding Constraints

• Each vertex must have exactly one color.

• Each vertex must have at least one color, and each vertex must have at most
one color

25

Step 2: Encoding Constraints

• Each vertex must have exactly one color.

• Each vertex must have at least one color, and each vertex must have at most
one color

How are we going to encode, each vertex must have at least one color:

25

Step 2: Encoding Constraints

• Each vertex must have exactly one color.

• Each vertex must have at least one color, and each vertex must have at most
one color

How are we going to encode, each vertex must have at least one color:

For vertex V1 : v1,G ∨ v1,R ∨ v1,B V2 : v2,G ∨ v2,R ∨ v2,B
 V3 : v3,G ∨ v3,R ∨ v3,B

25

Step 2: Encoding Constraints

• Each vertex must have exactly one color.

• Each vertex must have at least one color, and each vertex must have at most
one color

How are we going to encode, each vertex must have at least one color:

For vertex V1 : v1,G ∨ v1,R ∨ v1,B V2 : v2,G ∨ v2,R ∨ v2,B
 V3 : v3,G ∨ v3,R ∨ v3,B

How are we going to encode, each vertex must have at most one color:

25

Step 2: Encoding Constraints

• Each vertex must have exactly one color.

• Each vertex must have at least one color, and each vertex must have at most
one color

How are we going to encode, each vertex must have at least one color:

For vertex V1 : v1,G ∨ v1,R ∨ v1,B V2 : v2,G ∨ v2,R ∨ v2,B
 V3 : v3,G ∨ v3,R ∨ v3,B

How are we going to encode, each vertex must have at most one color:

 V1 : (¬v1,G ∨ ¬v1,R) ∧

25

Step 2: Encoding Constraints

• Each vertex must have exactly one color.

• Each vertex must have at least one color, and each vertex must have at most
one color

How are we going to encode, each vertex must have at least one color:

For vertex V1 : v1,G ∨ v1,R ∨ v1,B V2 : v2,G ∨ v2,R ∨ v2,B
 V3 : v3,G ∨ v3,R ∨ v3,B

How are we going to encode, each vertex must have at most one color:

 V1 : (¬v1,G ∨ ¬v1,R) ∧

(¬v1,G ∨ ¬v1,B) ∧

25

Step 2: Encoding Constraints

• Each vertex must have exactly one color.

• Each vertex must have at least one color, and each vertex must have at most
one color

How are we going to encode, each vertex must have at least one color:

For vertex V1 : v1,G ∨ v1,R ∨ v1,B V2 : v2,G ∨ v2,R ∨ v2,B
 V3 : v3,G ∨ v3,R ∨ v3,B

How are we going to encode, each vertex must have at most one color:

 V1 : (¬v1,G ∨ ¬v1,R) ∧

(¬v1,G ∨ ¬v1,B) ∧

(¬v1,R ∨ ¬v1,B) ∧ 25

Step 2: Encoding Constraints

• Each vertex must have exactly one color.

• Each vertex must have at least one color, and each vertex must have at most
one color

How are we going to encode, each vertex must have at least one color:

For vertex V1 : v1,G ∨ v1,R ∨ v1,B V2 : v2,G ∨ v2,R ∨ v2,B
 V3 : v3,G ∨ v3,R ∨ v3,B

How are we going to encode, each vertex must have at most one color:

 V1 : (¬v1,G ∨ ¬v1,R) ∧

(¬v1,G ∨ ¬v1,B) ∧

(¬v1,R ∨ ¬v1,B) ∧

 V2 : (¬v2,G ∨ ¬v2,R) ∧

25

Step 2: Encoding Constraints

• Each vertex must have exactly one color.

• Each vertex must have at least one color, and each vertex must have at most
one color

How are we going to encode, each vertex must have at least one color:

For vertex V1 : v1,G ∨ v1,R ∨ v1,B V2 : v2,G ∨ v2,R ∨ v2,B
 V3 : v3,G ∨ v3,R ∨ v3,B

How are we going to encode, each vertex must have at most one color:

 V1 : (¬v1,G ∨ ¬v1,R) ∧

(¬v1,G ∨ ¬v1,B) ∧

(¬v1,R ∨ ¬v1,B) ∧

 V2 : (¬v2,G ∨ ¬v2,R) ∧

(¬v2,G ∨ ¬v2,B) ∧

25

Step 2: Encoding Constraints

• Each vertex must have exactly one color.

• Each vertex must have at least one color, and each vertex must have at most
one color

How are we going to encode, each vertex must have at least one color:

For vertex V1 : v1,G ∨ v1,R ∨ v1,B V2 : v2,G ∨ v2,R ∨ v2,B
 V3 : v3,G ∨ v3,R ∨ v3,B

How are we going to encode, each vertex must have at most one color:

 V1 : (¬v1,G ∨ ¬v1,R) ∧

(¬v1,G ∨ ¬v1,B) ∧

(¬v1,R ∨ ¬v1,B) ∧

 V2 : (¬v2,G ∨ ¬v2,R) ∧

(¬v2,G ∨ ¬v2,B) ∧

(¬v2,R ∨ ¬v2,B) ∧25

Step 2: Encoding Constraints

• Each vertex must have exactly one color.

• Each vertex must have at least one color, and each vertex must have at most
one color

How are we going to encode, each vertex must have at least one color:

For vertex V1 : v1,G ∨ v1,R ∨ v1,B V2 : v2,G ∨ v2,R ∨ v2,B
 V3 : v3,G ∨ v3,R ∨ v3,B

How are we going to encode, each vertex must have at most one color:

 V1 : (¬v1,G ∨ ¬v1,R) ∧

(¬v1,G ∨ ¬v1,B) ∧

(¬v1,R ∨ ¬v1,B) ∧

 V2 : (¬v2,G ∨ ¬v2,R) ∧

(¬v2,G ∨ ¬v2,B) ∧

(¬v2,R ∨ ¬v2,B) ∧

 V3 : (¬v3,G ∨ ¬v3,R) ∧

25

Step 2: Encoding Constraints

• Each vertex must have exactly one color.

• Each vertex must have at least one color, and each vertex must have at most
one color

How are we going to encode, each vertex must have at least one color:

For vertex V1 : v1,G ∨ v1,R ∨ v1,B V2 : v2,G ∨ v2,R ∨ v2,B
 V3 : v3,G ∨ v3,R ∨ v3,B

How are we going to encode, each vertex must have at most one color:

 V1 : (¬v1,G ∨ ¬v1,R) ∧

(¬v1,G ∨ ¬v1,B) ∧

(¬v1,R ∨ ¬v1,B) ∧

 V2 : (¬v2,G ∨ ¬v2,R) ∧

(¬v2,G ∨ ¬v2,B) ∧

(¬v2,R ∨ ¬v2,B) ∧

 V3 : (¬v3,G ∨ ¬v3,R) ∧

(¬v3,G ∨ ¬v3,B) ∧

25

Step 2: Encoding Constraints

• Each vertex must have exactly one color.

• Each vertex must have at least one color, and each vertex must have at most
one color

How are we going to encode, each vertex must have at least one color:

For vertex V1 : v1,G ∨ v1,R ∨ v1,B V2 : v2,G ∨ v2,R ∨ v2,B
 V3 : v3,G ∨ v3,R ∨ v3,B

How are we going to encode, each vertex must have at most one color:

 V1 : (¬v1,G ∨ ¬v1,R) ∧

(¬v1,G ∨ ¬v1,B) ∧

(¬v1,R ∨ ¬v1,B) ∧

 V2 : (¬v2,G ∨ ¬v2,R) ∧

(¬v2,G ∨ ¬v2,B) ∧

(¬v2,R ∨ ¬v2,B) ∧

 V3 : (¬v3,G ∨ ¬v3,R) ∧

(¬v3,G ∨ ¬v3,B) ∧

(¬v3,R ∨ ¬v3,B) ∧
25

Step 2: Encoding Constraints

• No two adjacent vertex have the same color.

For :

V1 and V2

(¬v1,R ∨ ¬v2,R) ∧

(¬v1,G ∨ ¬v2,G) ∧

(¬v1,B ∨ ¬v2,B) ∧

For :

V1 and V3

(¬v1,R ∨ ¬v3,R) ∧

(¬v1,G ∨ ¬v3,G) ∧

(¬v1,B ∨ ¬v3,B) ∧

For :

V2 and V3

(¬v2,R ∨ ¬v3,R) ∧

(¬v2,G ∨ ¬v3,G) ∧

(¬v2,B ∨ ¬v3,B)

26

Proper Coloring to SAT

V1 V2

V3

(v1,G ∨ v1,R ∨ v1,B) ∧ (v2,G ∨ v2,R ∨ v2,B) ∧ (v3,G ∨ v3,R ∨ v3,B) ∧

(¬v1,G ∨ ¬v1,R) ∧ (¬v1,G ∨ ¬v1,B) ∧ (¬v1,R ∨ ¬v1,B) ∧

(¬v2,G ∨ ¬v2,R) ∧ (¬v2,G ∨ ¬v2,B) ∧ (¬v2,R ∨ ¬v2,B) ∧

(¬v3,G ∨ ¬v3,R) ∧ (¬v3,R ∨ ¬v3,B) ∧ (¬v3,R ∨ ¬v3,B) ∧

(¬v1,R ∨ ¬v2,R) ∧ (¬v1,G ∨ ¬v2,G) ∧ (¬v1,B ∨ ¬v2,B) ∧
(¬v1,R ∨ ¬v3,R) ∧ (¬v1,G ∨ ¬v3,G) ∧ (¬v1,B ∨ ¬v3,B) ∧
(¬v2,R ∨ ¬v3,R) ∧ (¬v2,G ∨ ¬v3,G) ∧ (¬v2,B ∨ ¬v3,B)

FCNF =

27

Boolean Satisfiability (SAT) Simple to State, Rich in Structure

Despite its simplicity, it captures a vast range of real-world problems.

Different
Problems

Scheduling
Planning

Graph coloring
Vertex cover
Does there exists an
envy free allocation?

Does there exists a fair committee?

SAT problem SAT Solvers A satisfying
assignment

A solution to
original problem

Encoding

decoding

Problems in NP!

….

SAT solvers

• Boolean formulas -> SAT Solvers

If formula is SAT, gives an satisfying

 assignment

Otherwise, UNSAT

DPLL algorithm (Davis -Putnam-Logemann-Loveland 1960)

1. Maintains a partial model, initially

2. Assign unassigned variables either or

1. (Randomly one after the other)

3. Sometime forced to make a decision due to unit clause

∅

0 1

DPLL

F = (¬x1 ∨ ¬x2 ∨ ¬x3) ∧ (¬x3 ∨ x2) ∧ (¬x3 ∨ x1)

DPLL

F = (¬x1 ∨ ¬x2 ∨ ¬x3) ∧ (¬x3 ∨ x2) ∧ (¬x3 ∨ x1)

x3 decision variable

1
Pick a variable, say , and assign it a Boolean value, say 1.
Partial model

x3
m = {x3 ↦ 1}

DPLL

F = (¬x1 ∨ ¬x2 ∨ ¬x3) ∧ (¬x3 ∨ x2) ∧ (¬x3 ∨ x1)

x3 decision variable

1
Pick a variable, say , and assign it a Boolean value, say 1.
Partial model

x3
m = {x3 ↦ 1}

 — unit clauses(¬x3 ∨ x2) ∧ (¬x3 ∨ x1)
x2 Propagated

variables
1,C2

x1
0,C1

Conflict, FalseC3

DPLL

F = (¬x1 ∨ ¬x2 ∨ ¬x3) ∧ (¬x3 ∨ x2) ∧ (¬x3 ∨ x1)

x3 decision variable

1
Pick a variable, say , and assign it a Boolean value, say 1.
Partial model

x3
m = {x3 ↦ 1}

 — unit clauses(¬x3 ∨ x2) ∧ (¬x3 ∨ x1)
x2 Propagated

variables
1,C2

x1
0,C1

Conflict, FalseC3

What to do if is False under partial model m?F

DPLL Backtracking

F = (¬x1 ∨ ¬x2 ∨ ¬x3) ∧ (¬x3 ∨ x2) ∧ (¬x3 ∨ x1)

x3 decision variable

1
Pick a variable, say , and assign it a Boolean value, say 1.
Partial model

x3
m = {x3 ↦ 1}

 — unit clauses(¬x3 ∨ x2) ∧ (¬x3 ∨ x1)
x2 Propagated

variables
1,C2

x1
0,C1

Conflict, FalseC3

Backtrack

F = (¬x1 ∨ ¬x2 ∨ ¬x3) ∧ (¬x3 ∨ x2) ∧ (¬x3 ∨ x1)

0

True

DPLL Backtracking

F = (¬x1 ∨ ¬x2 ∨ ¬x3) ∧ (¬x3 ∨ x2) ∧ (¬x3 ∨ x1)

x3 decision variable
0

True

DPLL Backtracking

F = (¬x1 ∨ ¬x2 ∨ ¬x3) ∧ (¬x3 ∨ x2) ∧ (¬x3 ∨ x1)

x3 decision variable
0Backtrack to last decision, and change the polarity.

Partial model m = {x3 ↦ 0}
True

DPLL Backtracking

F = (¬x1 ∨ ¬x2 ∨ ¬x3) ∧ (¬x3 ∨ x2) ∧ (¬x3 ∨ x1)

x3 decision variable
0Backtrack to last decision, and change the polarity.

Partial model m = {x3 ↦ 0}
True

All clauses are True, hence F is True

DPLL Backtracking

DPLL algorithm (Davis -Putnam-Logemann-Loveland 1960)

1. Maintains a partial model, initially

2. Assign unassigned variables either or

1. (Randomly one after the other)

3. Sometime forced to make a decision due to unit clause

∅

0 1

DPLL run consists of

• Decision

• Unit propagation

• Backtracking

C1 = (¬p1 ∨ p2)
C2 = (¬p1 ∨ p3 ∨ p5)
C3 = (¬p2 ∨ p4)
C4 = (¬p3 ∨ ¬p4)
C5 = (p1 ∨ p5 ∨ ¬p2)
C6 = (p2 ∨ p3)
C7 = (p2 ∨ ¬p3 ∨ p7)
C8 = (p6 ∨ ¬p5)

decision variable

propagated
variables

C1 = (¬p1 ∨ p2)
C2 = (¬p1 ∨ p3 ∨ p5)
C3 = (¬p2 ∨ p4)
C4 = (¬p3 ∨ ¬p4)
C5 = (p1 ∨ p5 ∨ ¬p2)
C6 = (p2 ∨ p3)
C7 = (p2 ∨ ¬p3 ∨ p7)
C8 = (p6 ∨ ¬p5)

p6
0

decision variable

propagated
variables

C1 = (¬p1 ∨ p2)
C2 = (¬p1 ∨ p3 ∨ p5)
C3 = (¬p2 ∨ p4)
C4 = (¬p3 ∨ ¬p4)
C5 = (p1 ∨ p5 ∨ ¬p2)
C6 = (p2 ∨ p3)
C7 = (p2 ∨ ¬p3 ∨ p7)
C8 = (p6 ∨ ¬p5)

p6
0

p5
0,C8

decision variable

propagated
variables

C1 = (¬p1 ∨ p2)
C2 = (¬p1 ∨ p3 ∨ p5)
C3 = (¬p2 ∨ p4)
C4 = (¬p3 ∨ ¬p4)
C5 = (p1 ∨ p5 ∨ ¬p2)
C6 = (p2 ∨ p3)
C7 = (p2 ∨ ¬p3 ∨ p7)
C8 = (p6 ∨ ¬p5)

p6
0

p5
0,C8

p7
0

p1
1

decision variable

propagated
variables

C1 = (¬p1 ∨ p2)
C2 = (¬p1 ∨ p3 ∨ p5)
C3 = (¬p2 ∨ p4)
C4 = (¬p3 ∨ ¬p4)
C5 = (p1 ∨ p5 ∨ ¬p2)
C6 = (p2 ∨ p3)
C7 = (p2 ∨ ¬p3 ∨ p7)
C8 = (p6 ∨ ¬p5)

p6
0

p5
0,C8

p7
0

p1
1

1,C2

decision variable

propagated
variables

p3

C1 = (¬p1 ∨ p2)
C2 = (¬p1 ∨ p3 ∨ p5)
C3 = (¬p2 ∨ p4)
C4 = (¬p3 ∨ ¬p4)
C5 = (p1 ∨ p5 ∨ ¬p2)
C6 = (p2 ∨ p3)
C7 = (p2 ∨ ¬p3 ∨ p7)
C8 = (p6 ∨ ¬p5)

p6
0

p5
0,C8

p7
0

p1
1

1,C2

p2
1,C1

1,C3
p4

decision variable

propagated
variables

p3

C1 = (¬p1 ∨ p2)
C2 = (¬p1 ∨ p3 ∨ p5)
C3 = (¬p2 ∨ p4)
C4 = (¬p3 ∨ ¬p4)
C5 = (p1 ∨ p5 ∨ ¬p2)
C6 = (p2 ∨ p3)
C7 = (p2 ∨ ¬p3 ∨ p7)
C8 = (p6 ∨ ¬p5)

p6
0

p5
0,C8

p7
0

p1
1

1,C2

p2
1,C1

Conflict, C4

1,C3
p4

decision variable

propagated
variables

p3

Backtrack

C1 = (¬p1 ∨ p2)
C2 = (¬p1 ∨ p3 ∨ p5)
C3 = (¬p2 ∨ p4)
C4 = (¬p3 ∨ ¬p4)
C5 = (p1 ∨ p5 ∨ ¬p2)
C6 = (p2 ∨ p3)
C7 = (p2 ∨ ¬p3 ∨ p7)
C8 = (p6 ∨ ¬p5)

p6
0

p5
0,C8

p7
0

p1
1

1,C2

p2
1,C1

Conflict, C4

1,C3
p4

decision variable

propagated
variables

p3

Backtrack

0

C1 = (¬p1 ∨ p2)
C2 = (¬p1 ∨ p3 ∨ p5)
C3 = (¬p2 ∨ p4)
C4 = (¬p3 ∨ ¬p4)
C5 = (p1 ∨ p5 ∨ ¬p2)
C6 = (p2 ∨ p3)
C7 = (p2 ∨ ¬p3 ∨ p7)
C8 = (p6 ∨ ¬p5)

p6
0

p5
0,C8

p7
0

p1
1

1,C2

p2
1,C1

Conflict, C4

1,C3
p4

decision variable

propagated
variables

p3

Backtrack

0

p20,C5

C1 = (¬p1 ∨ p2)
C2 = (¬p1 ∨ p3 ∨ p5)
C3 = (¬p2 ∨ p4)
C4 = (¬p3 ∨ ¬p4)
C5 = (p1 ∨ p5 ∨ ¬p2)
C6 = (p2 ∨ p3)
C7 = (p2 ∨ ¬p3 ∨ p7)
C8 = (p6 ∨ ¬p5)

p6
0

p5
0,C8

p7
0

p1
1

1,C2

p2
1,C1

Conflict, C4

1,C3
p4

decision variable

propagated
variables

p3

Backtrack

0

p20,C5

p3
1,C6

C1 = (¬p1 ∨ p2)
C2 = (¬p1 ∨ p3 ∨ p5)
C3 = (¬p2 ∨ p4)
C4 = (¬p3 ∨ ¬p4)
C5 = (p1 ∨ p5 ∨ ¬p2)
C6 = (p2 ∨ p3)
C7 = (p2 ∨ ¬p3 ∨ p7)
C8 = (p6 ∨ ¬p5)

p6
0

p5
0,C8

p7
0

p1
1

1,C2

p2
1,C1

Conflict, C4

1,C3
p4

decision variable

propagated
variables

p3

Backtrack

0

p20,C5

p3
1,C6

Conflict, C7

C1 = (¬p1 ∨ p2)
C2 = (¬p1 ∨ p3 ∨ p5)
C3 = (¬p2 ∨ p4)
C4 = (¬p3 ∨ ¬p4)
C5 = (p1 ∨ p5 ∨ ¬p2)
C6 = (p2 ∨ p3)
C7 = (p2 ∨ ¬p3 ∨ p7)
C8 = (p6 ∨ ¬p5)

p6
0

p5
0,C8

p7
0

p1
1

1,C2

p2
1,C1

Conflict, C4

1,C3
p4

decision variable

propagated
variables

p3

Backtrack

0

p20,C5

p3
1,C6

Conflict, C7

Backtrack 1

Complete and Sound algorithm.

Still the basis of SAT solver

zChaff Solver — efficient implementation of DPLL (2001)

 Won test of time award at CAV.

DPLL

An optimization of DPLL:
As we decide and propagate, we can observe the run, and
avoid unnecessary backtracking.

Complete and Sound algorithm.

Still the basis of SAT solver

zChaff Solver — efficient implementation of DPLL (2001)

 Won test of time award at CAV.

DPLL

An optimization of DPLL:
As we decide and propagate, we can observe the run, and
avoid unnecessary backtracking.

CDCL— Construct a data structure to avoid unnecessary backtracking.

Heuristics: which variables to pick, what value to assign?

Complete and Sound algorithm.

Still the basis of SAT solver

zChaff Solver — efficient implementation of DPLL (2001)

 Won test of time award at CAV.

DPLL

Taken from Alex’s (SAT+SMT Indian School) slides.

