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Satisfiability

Boolean Satisfiability: Given a Boolean formula, is there a solution? Assignment of 0’s
and 1’s to the variables that makes the formula equal 1.

F(X{,X5,X3) : X1 VX5 V X3

[s it satishiable?



Satisfiability

Boolean Satisfiability: Given a Boolean formula, is there a solution? Assignment of 0’s
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F(X{,X5,X3) : X1 VX5 V X3
[s it satisfiable?

Yes: 0 =<x, =06 =0x;=1>

o F F(x;,x,,Xx;) :is called a satisfying assignment.
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Satisfiability

F(X) — (xl V ’XZ) A (—le V XZ) A\ (.xl V _I‘XZ) A\ (—le V _'.XZ)
[s it satishable?

No, F(X) 1s UNSAT
F(X) — (xl VXZ V.X3) AN (—le V.X2 VX3) AN (‘Xl V _IXZ V.X3) AN (Xl V.XZ V _'.X3)
[s it satisfiable?

Yes, F(X)isSAT, o06=<x=0x=1x=1>



SAT solvers

If formula is SAT, gives an satisfying

assignment

N

Otherwise, UNSAT

 Boolean formulas -> SAT Solvers
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Boolean Satisfiability (SAT) Simple to State, Rich in Structure

Despite its simplicity, it captures a vast range of real-world problems.

Different Encoding

» | SAT problem SAT Solvers A sgtlsfylng
Problems assignment
Scheduling decoding
Planning
Graph coloring A solution to
Vertex cover Problems in NP! original problem
Does there exists an
envy free allocation? /
Does there exists a fair committee?



Boolean satisfiability (SAT) In Formal Verification
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Boolean satisfiability (SAT) In Formal Verification
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System Satisfies Properties
S(1,0) IZ P(1,0)
[s the always the case that S How often S satisfies P? Why S doesn’t satisfy P?

satisfies Property P?
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Outline

* Basic of propositional logic, and constraints encoding !

Sudoku Graph Coloring Neural Networks

* How does SAT solver works? What makes them fast?



Propositional Logic

Left parenthesis

Right parenthesis
Logical Symbols: The meaning of logical symbols is always

the same.

(

)

' Negation

AN Or

V And

—  Condition

< Bi-Condition

P} Propositional variables
Non logical Symbols/Propositional Symbols:

The meaning of nonlogical symbols
depends on the context.
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. . . TakeML v TakeFM
Propositional Logic

~FirstSucceed — TryAgain

Left parenthesis IsWinter A IsSnow

Right parenthesis
Logical Symbols: The meaning of logical symbols is always

the same.
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)

' Negation

AN Or

V And

—  Condition

< Bi-Condition

P} Propositional variables
Non logical Symbols/Propositional Symbols:

The meaning of nonlogical symbols
depends on the context.
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Propositional Logic: Semantics

* 7 isa function that maps proposition variables of a propositional formula to {o0,1}.

F=((pVqgVr)
t:{p— 1,g—~0,r— 1}

We call 7 a truth assignment.

» How many such 7 (truth assignments) can exists? ~ 2Veriables()

o tsatisfies formula F if and only if F(7) is1,

O OO OO0

such a 7 is called satisfying assignment

F(z): (1vOvl)=1

 We use 7 F F to represent.
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Propositional Logic: Semantics

* If there exists a 7 such that 7 E F, we say that F is satisfiable.

F=((pVqg)Vr) t:ip 1,g>0,r=1} Fissatisfiable

e If for all 7in 2verablest) p (7)is1, then F is valid.
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Conjunction Normal Form (CNF)

o = (Xl VX2)/\(_'.X1 VX3)

N

Clauses  Literals : x;, 7x;, Xy, X, X3, T1X3

CNF: F=C,AC,AC;...ANC,
Where Ci — (11V12V \/lk)
where [ = p;l; = =p

Where p is propositional variable

[



Conjunction Normal Form (CNF)

o = (xl V.Xz)/\(_'.xl VX3)

N

Clauses  Literals : x;, 7x;, Xy, X, X3, T1X3

CNF: F=Ci,ANGAG...ANC, SAT solvers takes

where C;=(, VL,V ...V1]) CNF formulas as input.
where [ = p;[; = —p

Where p is propositional variable

[



[s every Boolean formula F expressible in conjunctive normal form (CNF)?
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Equisatisfiable Formulas

Boolean formulas F and G are equisatisfiable if the following holds:
Vars(G) C Vars(F)
* Every satisfying assighment of G can be extended to the satisfying assighment of F.

* Forevery 7 F G, thereisa 7’such that 7’ extends 7 to Vars(F/G), and 7' F F

* Every satistying assignment of F can be projected on Vars(G) to get the satisfying
assignment of G.

» Forevery7'F F,thereisazsuchthatz =7, and7F G



Equisatisfiable Formulas

F=(pVaA(pVp) and G = (aVp)
Models(F) ={(p—~ l,a— 0 1) ,(p— la—~» 10—~ 1),(p—0,a~ 1, 0),(p—~ 0, 1, 1)}
Models(F) y,.c) = (@0 — 1), (a— 1.f— 1),(a— 1, 0)}

Models(F) v, := Models(G)

For every 7 E G, there is a 7’ such that 7’ extends 7 to Vars(F/G), and ' E F

For every 7' F F, thereisazsuchthatz =7}y, s and 7 F G



Equisatisfiable Formulas

G=pV(@AT) [s F and G equisatisfiable?
F=(pVO)ON{E o gAT) Is F’ and G equisatisfiable?

F=(pVOHOA({L—qgAT)



Equisatisfiable Formulas

17



Equisatisfiable Formulas

F = ((xl A —|X2) \ (.X3 N\ )C4))
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Equisatisfiable Formulas

F=(x Ax)V(x3Axy) Canyouconvert Finto equisatisfiable F-y?

=l o AT AL < (VX)) AV B)
= (=t; VX)DA (VX)) A(X VI VE)A(CL V) A(TL V) A (R VX, Vi) AL VD)
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Every Boolean formula F can be converted into a CNF formula F -, of polynomial size,
such that F is satisfiable if and only if F -y is satisfiable
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K-SAT

CNF: F=C,AC,AC;5... AC,,
where C; = ([, VI,V ...V I])
where [, = p; [ = —p

Where p is propositional variable
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K-SAT

CNE: F=CAGAG... NG, K — SAT if every clause in F
where C;= ([, VLV ... V) has exactly K literals.

where [, = p; [ = —p

Where p is propositional variable

IfK: 2,F — (.xl V _'.XZ) N\ (X3 V.X4)

IfK: 3, F: (xl\/—lxz\/x3)/\(x1\/x3 V.X4)
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Can you convert given 4 — SAT formula into an equisatisfiable 3 — SAT formula?

Can you convert given 3 — SAT formula into an equisatisfiable 2 — SAT formula?

20



Constraint Encoding



Encoding of Graph Coloring to SAT

* Proper coloring: An assignment of colors to the vertices of a graph such that no
two adjacent vertices have same color.

» K-color: A proper coloring involving a total of K colors.

* Is the following graphs 2-colorable?
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Encoding of Graph Coloring to SAT

* Proper coloring: An assignment of colors to the vertices of a graph such that no
two adjacent vertices have same color.

» K-color: A proper coloring involving a total of K colors.

* Is the following graphs 2-colorable?
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Encoding of Graph Coloring to SAT

* Proper coloring: An assignment of colors to the vertices of a graph such that no
two adjacent vertices have same color.

» K-color: A proper coloring involving a total of K colors.

* Is the following graphs 2-colorable?

O—= 00 @ O

0,0 e 80 8




Encoding of Graph Coloring to SAT

Given a graph G(V,E) with V as a set of vertices and E as a set of edges, and an integer
K (representing the number of colors), can we encode the proper graph coloring into
a CNF formula such that the formula is satisfiable (SAT) if and only if the graph is K-

colorable.

We want to encode that:

* No two adjacent vertices share the same color.

* Each vertex has exactly one color.
23



Step 1: Propositional Variables

* Use propositional variables v; , ,where i € {1,2,3},¢ € {R, G, B}

v; o 18 True, if and only if, vertex i is assigned g color.

Vi Vir V1B Voo V2R V2B V3G Vi g V3p

24



Step 2: Encoding Constraints

* Each vertex must have exactly one color.

 Each vertex must have at least one color, and each vertex must have at most
one color
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 Each vertex must have at least one color, and each vertex must have at most
one color

How are we going to encode, each vertex must have at least one color:

Forvertex Vi :vigVVi g VVvipg Vo vV e Vg V3iv36VV3pV g
How are we going to encode, each vertex must have at most one color:

Vl . (_IVI,G V _IVI,R) AN V2 X (_IVZ,G V _IVZ,R) A\

(_IVI,G V _IVI,B) A (_'Vz,G \V/ _'Vz’B) A\

(_IVI,R V _'VI,B) AN (_'Vz,R V _'szg) AN
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one color

How are we going to encode, each vertex must have at least one color:

Forvertex Vi :vigVVi g VVvipg Vo vV e Vg V3iv36VV3pV g
How are we going to encode, each vertex must have at most one color:

Vl : (_IVI,G V _IVI,R) A V2 X (_IVZ,G V _IVZ,R) A\ V3 . (_'V3,G V _IV3,R) A

(_IVI,G V _IVI,B) A (_'Vz,G \V/ _'Vz’B) A\

(_IVI,R V _'VI,B) AN (_'Vz,R V _'szg) AN



Step 2: Encoding Constraints

* Each vertex must have exactly one color.

 Each vertex must have at least one color, and each vertex must have at most
one color

How are we going to encode, each vertex must have at least one color:

Forvertex Vi :vigVVi g VVvipg Vo vV e Vg V3iv36VV3pV g

How are we going to encode, each vertex must have at most one color:
Vl . (_IVI,G V _IVI,R) AN V2 X (_IVZ,G V _IVZ,R) A\ V3 . (_'V3’G V _IV3,R) AN

(7VigV VB A (76 VIV p) A (7v36V V3 p) A

(_IVI,R V _'VI,B) AN (_'Vz,R V _'szg) AN



Step 2: Encoding Constraints

* Each vertex must have exactly one color.

 Each vertex must have at least one color, and each vertex must have at most
one color

How are we going to encode, each vertex must have at least one color:

Forvertex V, : v e VVi g Vg Voiv eV VgV  V3:V3GgVV3pVVip
How are we going to encode, each vertex must have at most one color:

Vl : (_IVI,G V _IVI,R) A V2 X (_IVZ,G V _IVZ,R) A\ V3 . (_'V3,G V _IV3,R) A

(7VigV VB A (76 VIV p) A (7v36V V3 p) A

(7Vi gV 7V ) A (T rV TVap) A (73 gV TV38) A



Step 2: Encoding Constraints

* No two adjacent vertex have the same color.

FOI‘ Vl and Vzi
(_IVI,R V _'Vz,R) A\
(_IVI,G V _IV2,G) AN

(_IVI,B V _IVZ,B) A\

FOl‘ Vl and V3:
(_IVI,R V _IV3,R) A\
(_IVI,G V _IV3,G) AN

(_'VI,B V _'V3’B) N\

26

For V, and Vj:
(_IVZ,R V _IV3,R) A\
(_IV2,G V _IV3,G) AN

(7vy gV V3 p)



Proper Coloring to SAT

(VLG VVigpV V1,B) A (Vz,G VVpV Vz,B) A (v3’G VeV v3,B) A

o e (_IVI,G Vv _IVI,R) N\ (_IVI,G Vv _IVI,B) N\ (_IVI,R V _IVI,B) N\

@ (_IVZ,G V _IVZ,R) N\ (_IVZ,G V _IVZ,B) N\ (_IVZ,R V _IVZ,B) N\

FCNF —

(_IV3,G V _IV3,R) AN (_IV3,R V _IV3,B) AN (_Iv3,R V _IV3,B) N\

(_IVI,R V _IVQ,R) A\ (_IVI,G V _IVZ,G) N\ (_IVI,B V _IVZ,B) N\
(_IVI,R V _IV3,R) N\ (_IVI,G V _IV3,G) N\ (_IVI,B V _'V3,B) AN

(Vo rV W3R ATV 6V V3 6) ATV, gV Vs )

27



Boolean Satisfiability (SAT) Simple to State, Rich in Structure

Despite its simplicity, it captures a vast range of real-world problems.

Different Encoding

» | SAT problem SAT Solvers A sgtlsfylng
Problems assignment
Scheduling decoding
Planning
Graph coloring A solution to
Vertex cover Problems in NP! original problem
Does there exists an
envy free allocation? /
Does there exists a fair committee?



SAT solvers

If formula is SAT, gives an satisfying

assignment

N

Otherwise, UNSAT

 Boolean formulas -> SAT Solvers



DPLL algorithm (Davis -Putnam-Logemann-Loveland 1960)

1. Maintains a partial model, initially &

2. Assign unassigned variables either O or 1
1. (Randomly one after the other)

3. Sometime forced to make a decision due to unit clause
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A3 <« decision variable
Pick a variable, say x5, and assign it a Boolean value, say 1. \1

Partial model m = {x; — 1}
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A3 <« decision variable
Pick a variable, say x5, and assign it a Boolean value, say 1. \1

Partial model m = {x; — 1}
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variables
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Contlict, C; False

(73 V Xy) A (73 V x;) — unit clauses



DPLL

F — (_'Xl V _'X2v _'X3) AN (_'.X3 VX2) AN (_'X3 V.xl)

A3 <« decision variable

Pick a variable, say x5, and assign it a Boolean value, say 1. |
Partial model m = {x; — 1} \
X, Propagated
(—x3 V x,) A (73 V x;) — unit clauses L C variables
\ 18
X1 /

0,C
What to do if F'is False under partial model m? /
Contlict, C; False



DPLL Backtracking

F — (_'Xl V _'X2v _'X3) AN (_'.X3 VX2) AN (_'X3 V.xl)

A3 <« decision variable
Pick a variable, say x;, and assign it a Boolean value, say 1.

Partial model m = {x; — 1}

X, Propagated
variables

\I,CZ
A /

Contlict, C; False

(7x3 V X5) A (7x3 V x;) — unit clauses
Backf



DPLL Backtracking

F — (_'Xl V _'X2v _'.X3) AN (_'.X3 VXZ) AN (_'X3 Vxl)

True



DPLL Backtracking

F — (_'Xl V _'X2v _'.X3) AN (_'.X3 VXZ) AN (_'X3 Vxl)

A3 <« decision variable

/

True



DPLL Backtracking

F — (_'Xl V _'X2v _'.X3) AN (_'.X3 VXZ) AN (_'X3 Vxl)

A3 <« decision variable
Backtrack to last decision, and change the polarity. V

Partial model m = {x; — 0}
True



DPLL Backtracking

F — (_'Xl V _'X2v _'.X3) AN (_'.X3 VXZ) AN (_'X3 Vxl)

A3 <« decision variable
Backtrack to last decision, and change the polarity. V

Partial model m = {x; — 0}
True

All clauses are True, hence F is True



DPLL algorithm (Davis -Putnam-Logemann-Loveland 1960)

1. Maintains a partial model, initially &

2. Assign unassigned variables either O or 1
1. (Randomly one after the other)

3. Sometime forced to make a decision due to unit clause

DPLL run consists of
* Decision
* Unit propagation

* Backtracking
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C,=(p; VD)

C, = (7p V3V ps)
C; = (7py V py)

Cy = (“‘Pg V py)
Cs=(pyVpsVp,)
Co = (P2 V D3)
C;=(pyVp3Vpr)
Cs = (pg V 7P5)

Pe
/
Ps
o,cy
P7
0
/
P1
1
\Ps

decision variable

propagated
variables
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C, = (7p V3V Pps)
C; = (7pyV py)

Cy = (7p3V py)

Cs =P VPpsVpy)
Co = (P2 V D3)
C;=(pyVp3Vpq)
Cs = (pg V 7P5)
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C,=(p; VD)

C, = (7p V3V Pps)
C; = (7pyV py)

Cy = (7p3V py)
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C,=(p; VD)
C, = (7p V3V Pps)
C; = (7pyV py)

Cy = (7p3V py)

Cs =P VPpsVpy)
Co = (P2 V D3)
C;=(pyVp3Vpq)
Cs = (pg V 7P5)

AN Conflict, C,

decision variable

propagated
variables



C,=(7p;Vp,)

C, = (7p; V3V Ps) Ps

0 .
C;=(7p,Vpy) / decision variable
Cy = (7p3V py) 0 Ps propagated
Cs=(p;VpsVp,) ’ % variables
Co = (P2 V P3) o b
C7=(pVp3Vpy) /

Cs = (Pg V 1D5)

nflict, C .
N Coniics, C,



C,=(p; VD)

C, = (7p; V3V Ps) Ps
Cy = (7pyV py) /
Cy = (7p3V py) Ps
Cs=(pVPsV D) o,&/

Co = (P2 V D3)
C7 = ( PV pyV p7) ‘.
Cg = (P V 7Ds)

Conflict, C

AN Conflict, C,

decision variable

propagated
variables
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zChaft Solver — efficient implementation of DPLL (2001)

Won test of time award at CAV.
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As we decide and propagate, we can observe the run, and
avoid unnecessary backtracking.



DPLL

Complete and Sound algorithm.

Still the basis of SAT solver

zChaft Solver — efficient implementation of DPLL (2001)

Won test of time award at CAV.

An optimization of DPLL:
As we decide and propagate, we can observe the run, and
avoid unnecessary backtracking.

CDCL— Construct a data structure to avoid unnecessary backtracking.

Heuristics: which variables to pick, what value to assign?



SAT Competition & Race Winners (CNF & Appl. & Seq. & Non-incr. & All-inst.)
2002 2003 2004 2005 2006

eGTI

2007 2008 2009 2010 2011

MiniSat
Pipatsris  Eéen Bier Audemar

Moskewic  Goldberg Moskewic Eén MiniSat-base
Z Novikov  z gffn Sérensso awat Sérensso e 4

Madigan Madigan 0rensso n Darwich  n S S/mon :

Zhao Zhao n e -
Zhang Zhang

Malik Malik o
2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 Armin Biere's&

Maple Maple Maple
COMS LCMDis | LCMDist

derived:

I

Maple

LCMDist
2udemar Bier Bier Liang e ChronoB e el DBiere Cherif
e e n Fazekas Habet :
Simon Oh Luo Nadel DLV Fleury — Terrioux Others:
Ganesh Li Ryvchi Kochemazo Hejsinger -
Czarnec Manya n V
ki Lu Zaikin
2022 2023 Poupart Kondratiev
Semenov
Zheng Haberlandt
He Green
Chen

Taken from Alex’s (SAT+SMT Indian School) slides.



Run-Time Distribution (Time Limit 1000 seconds)
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SAT Competition 2013 Application Track Benchmarks Solved by Lingeling
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