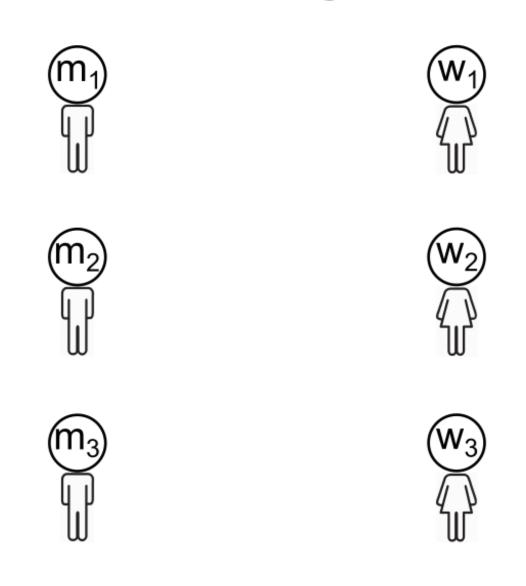
COL749: Computational Social Choice

Lecture 2

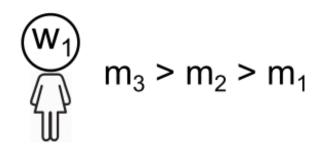
Structure of Stable Matchings

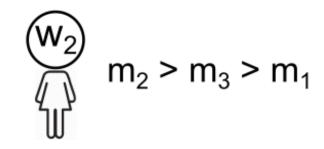


$$w_1 > w_2 > w_3$$

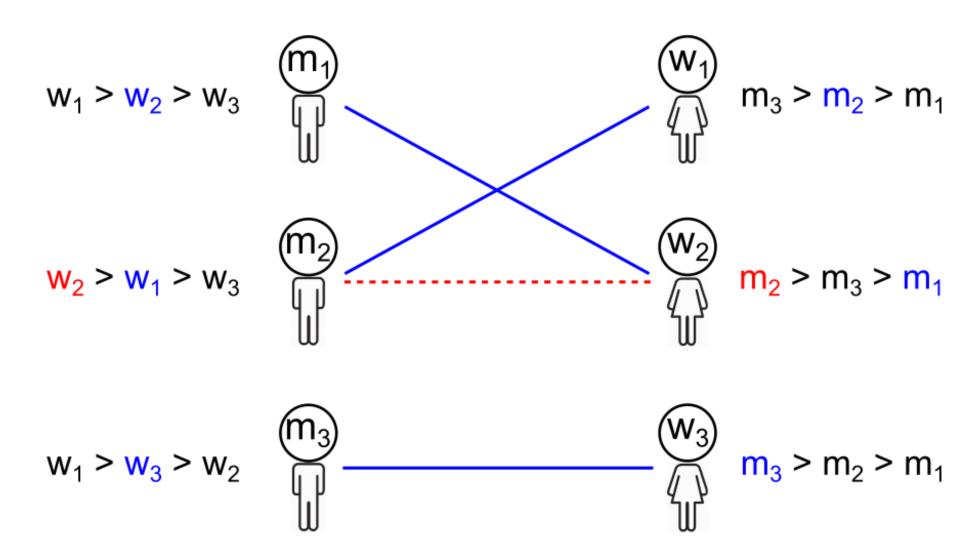
$$w_2 > w_1 > w_3$$

$$w_1 > w_3 > w_2$$
 m_3





$$m_3 > m_2 > m_1$$



A matching is stable if there is no blocking pair.

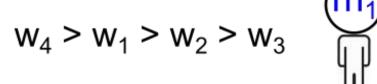
COLLEGE ADMISSIONS AND THE STABILITY OF MARRIAGE

D. GALE* AND L. S. SHAPLEY, Brown University and the RAND Corporation

Source: The American Mathematical Monthly, Jan., 1962, Vol. 69, No. 1 (Jan., 1962), pp. 9-15

Given any preference profile, a stable matching for that profile always exists and can be computed in polynomial time.

Structure of the Set of Stable Matchings



$$w_3 > w_2 > w_4 > w_1$$

$$w_1 > w_2 > w_3 > w_4$$

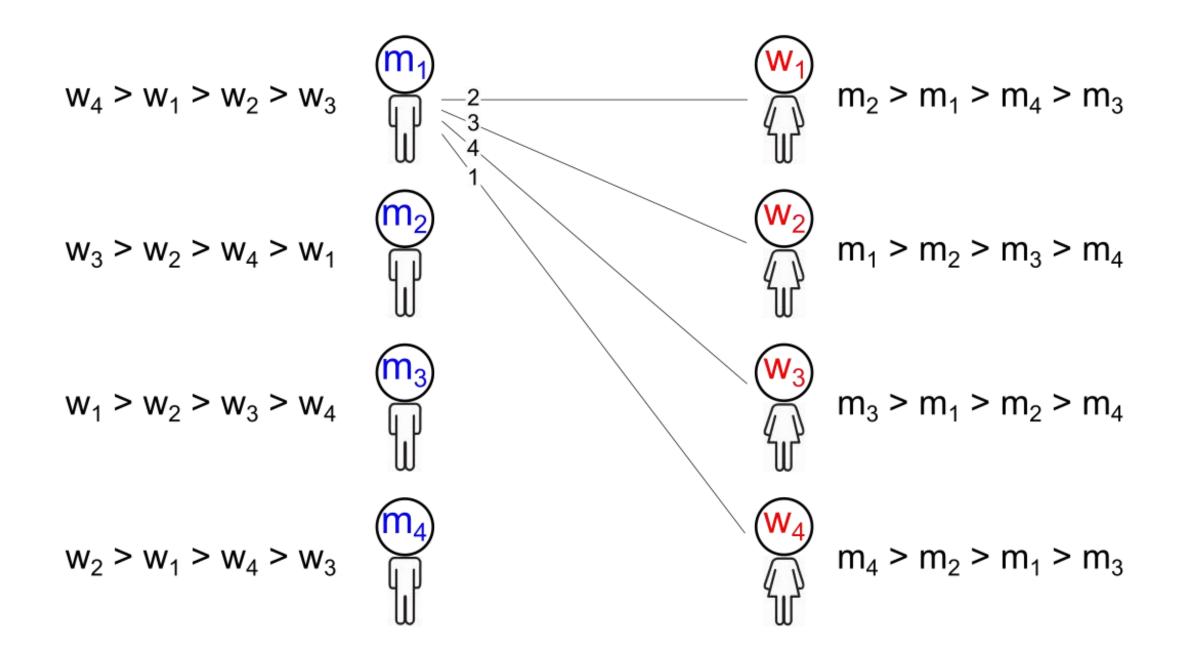
$$w_2 > w_1 > w_4 > w_3$$

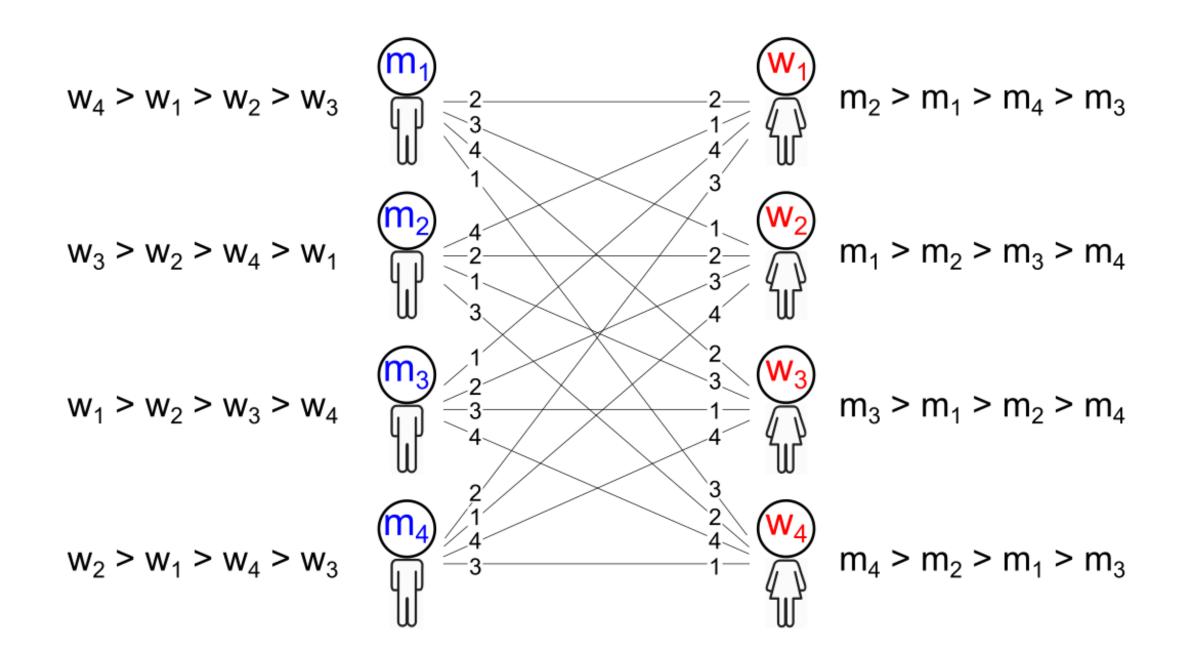
 $m_2 > m_1 > m_4 > m_3$

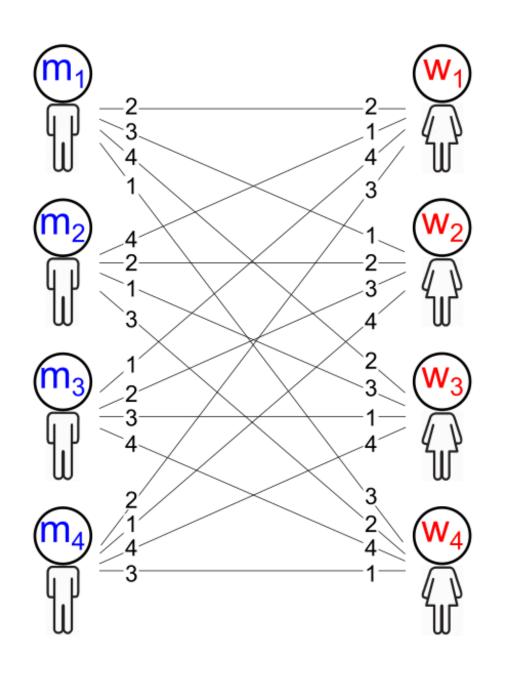
 $m_1 > m_2 > m_3 > m_4$

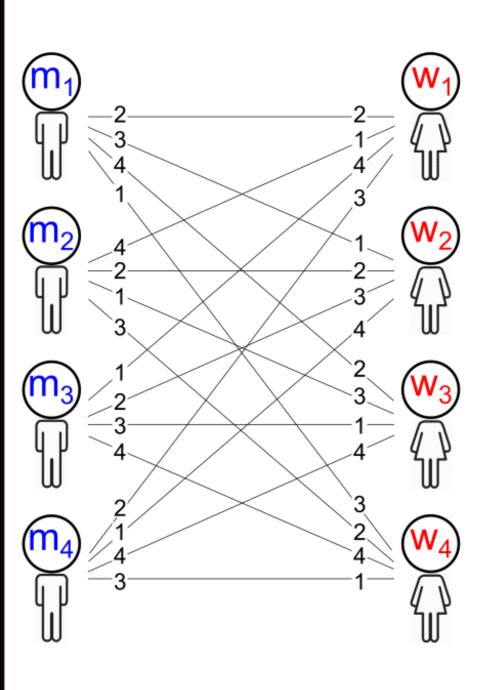
 $m_3 > m_1 > m_2 > m_4$

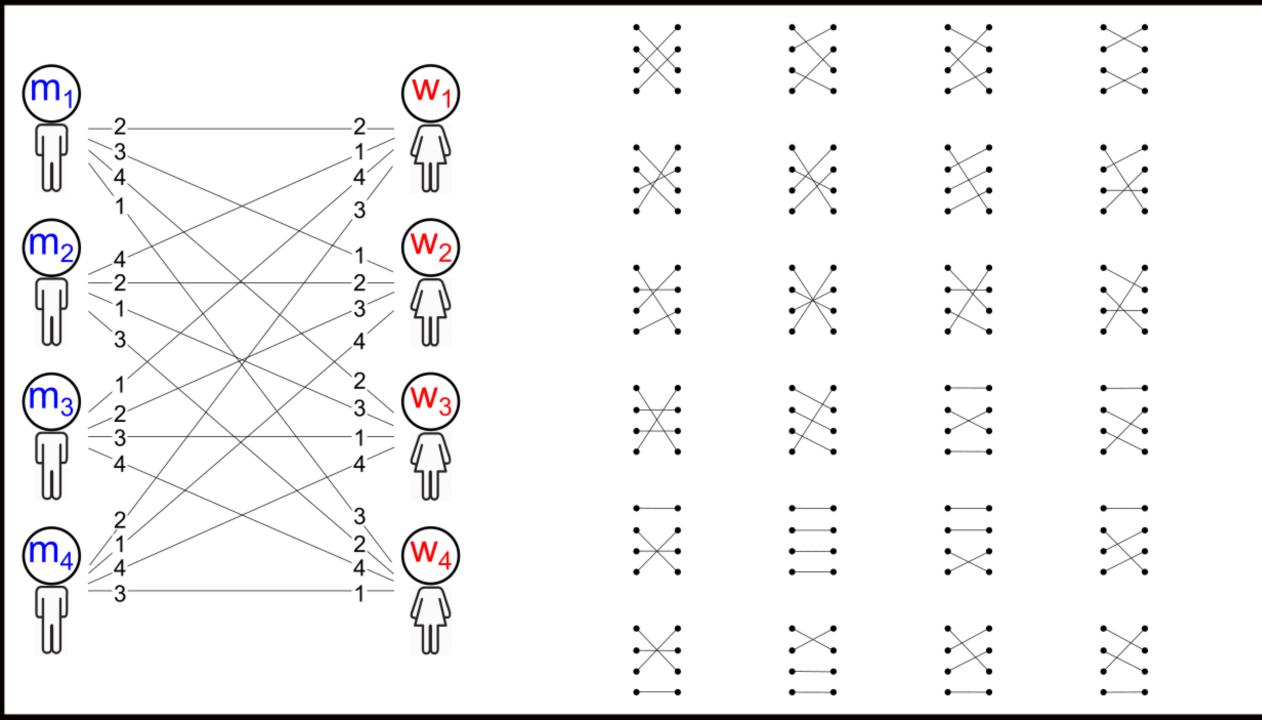
$$m_4 > m_2 > m_1 > m_3$$

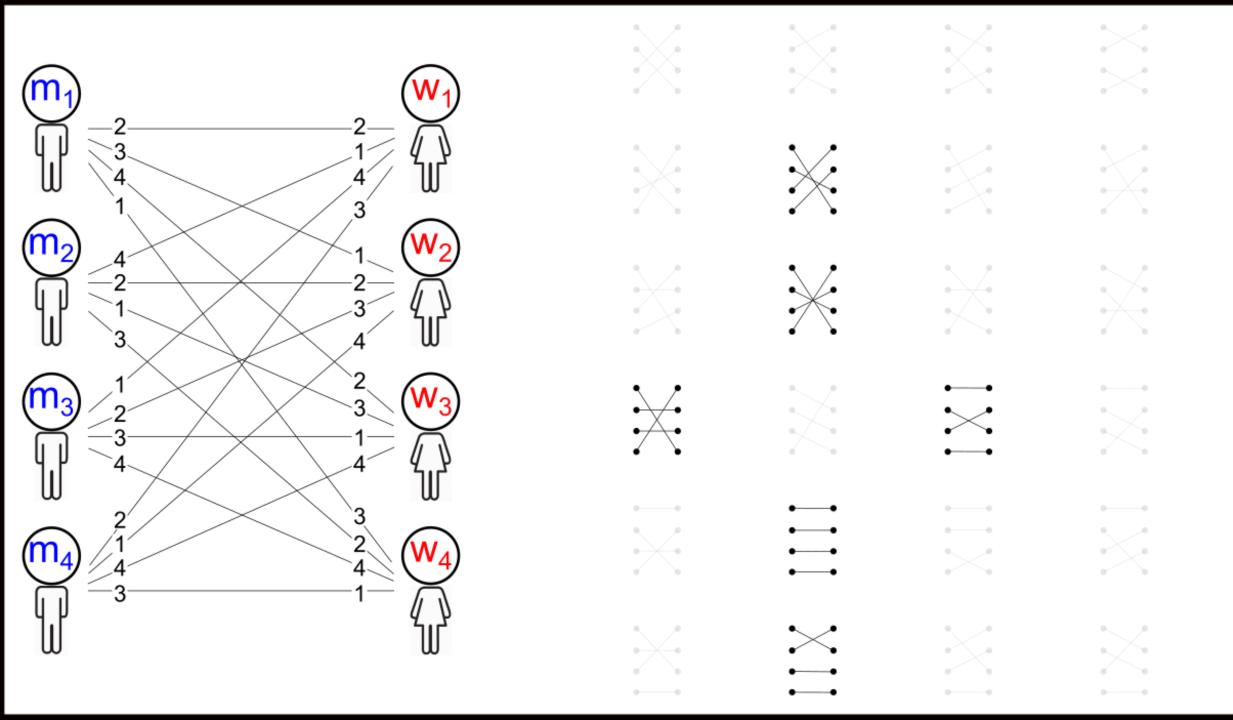


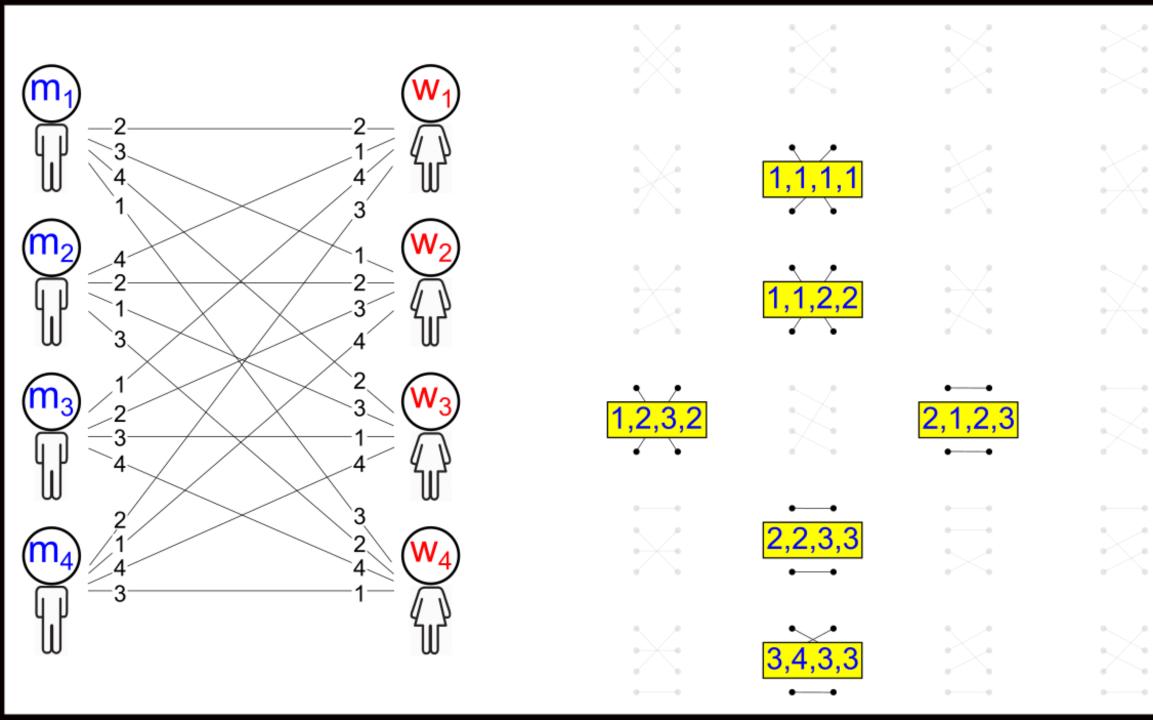


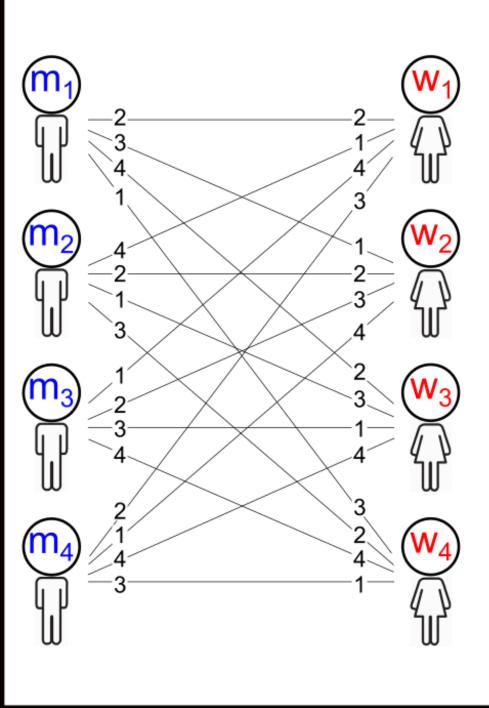












1,1,1,1

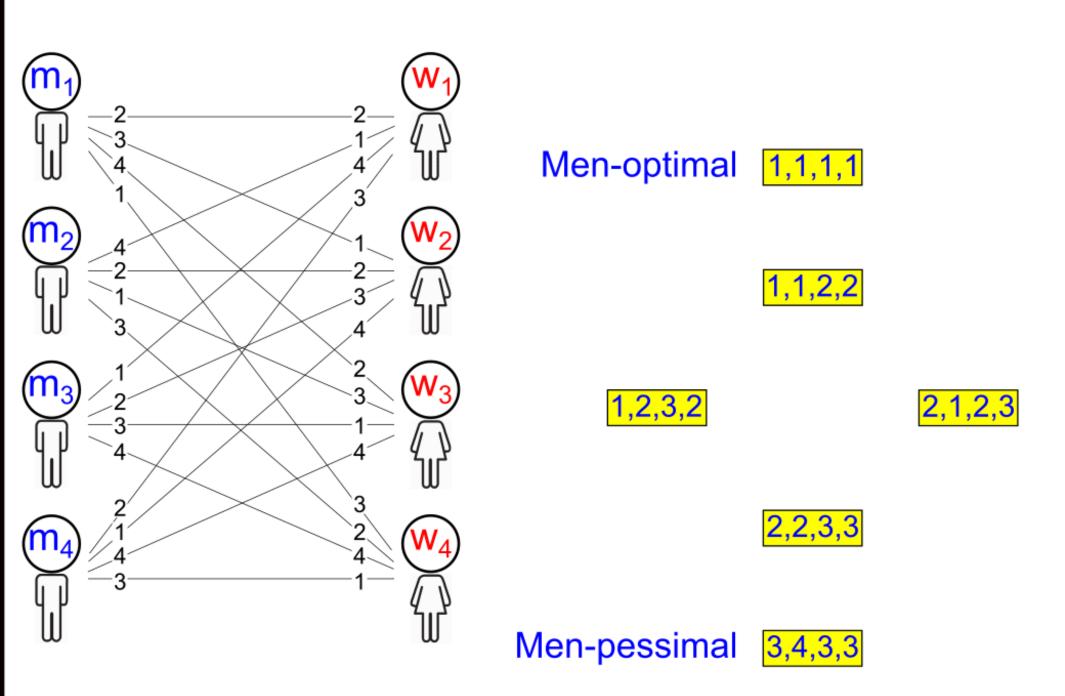
1,1,2,2

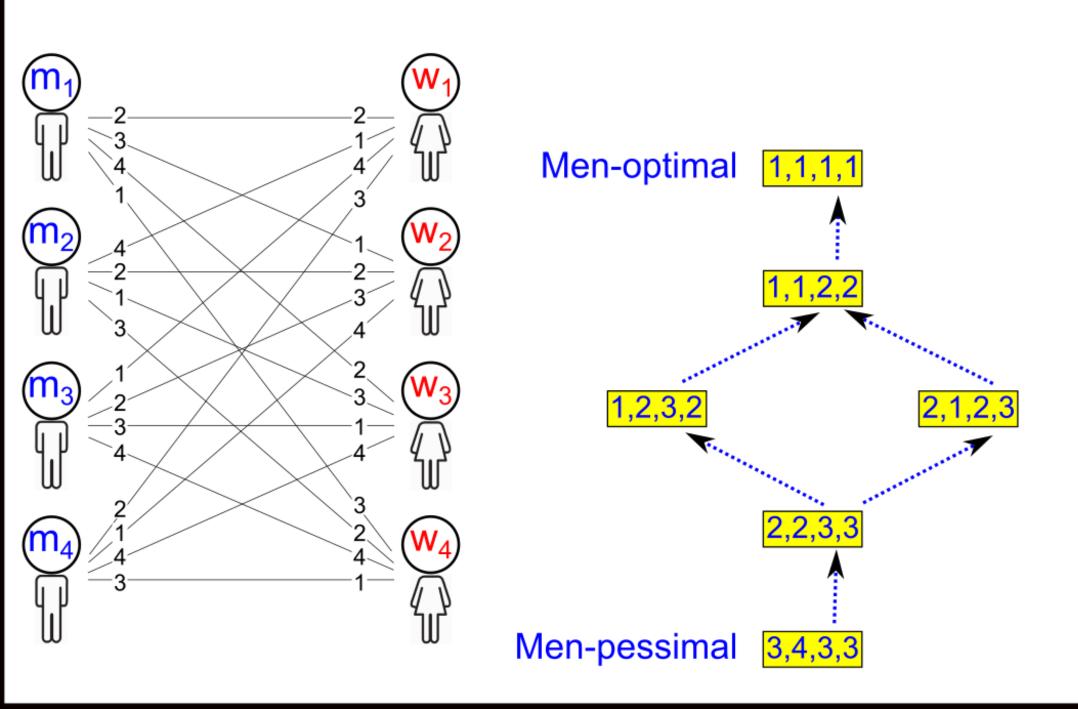
1,2,3,2

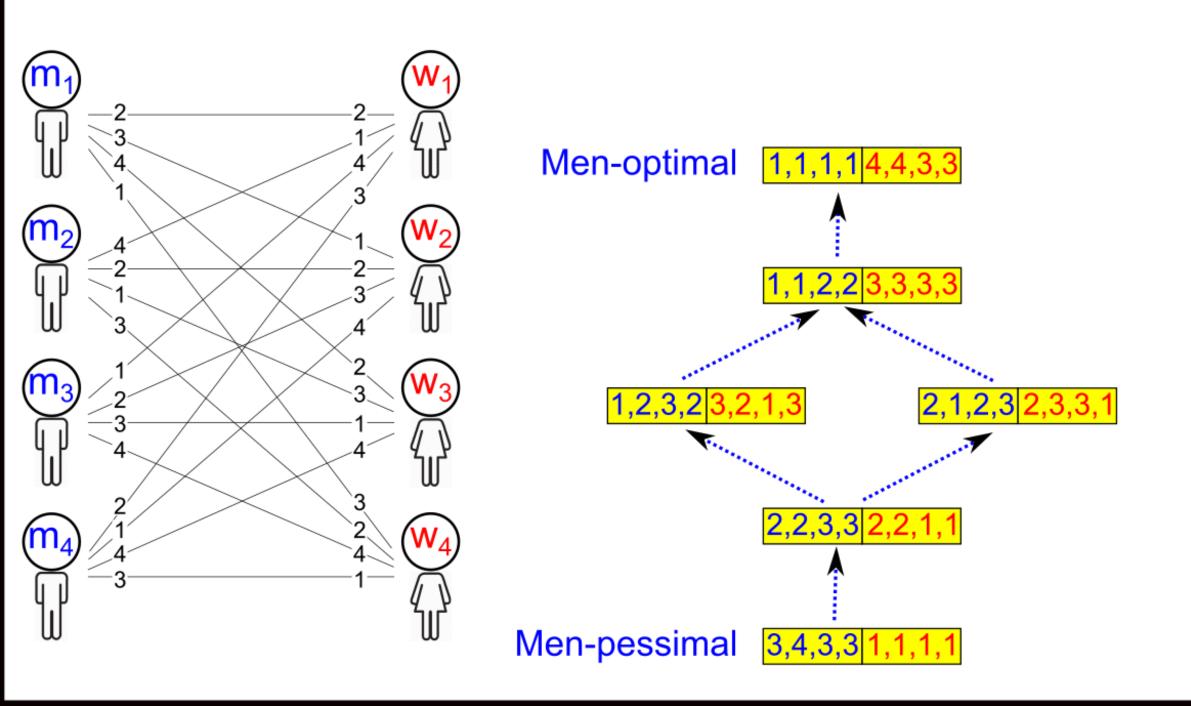
2,1,2,3

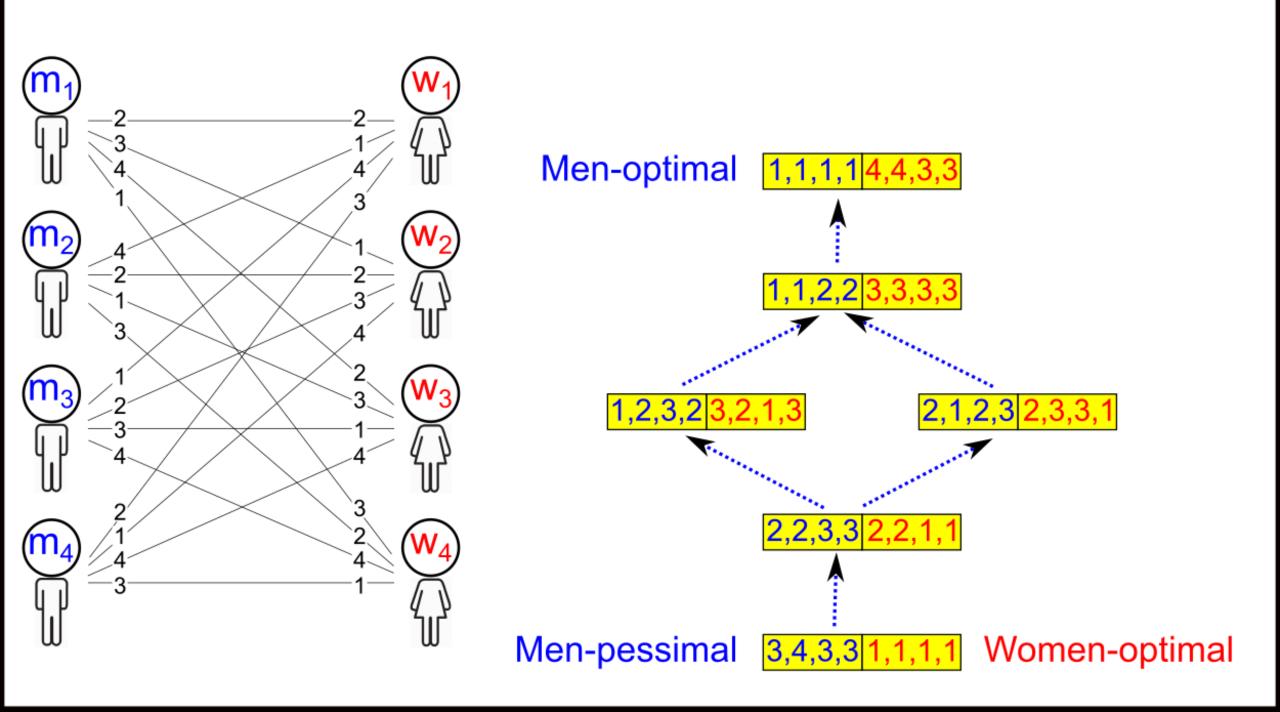
2,2,3,3

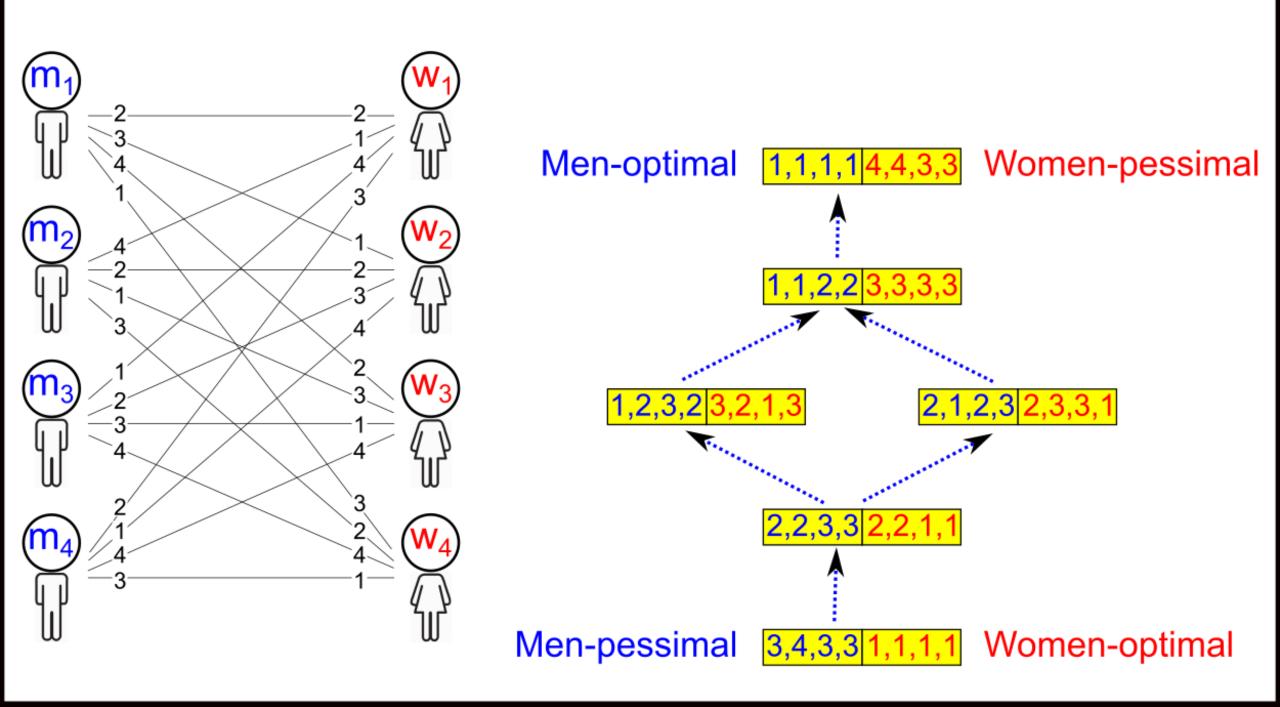
3,4,3,3

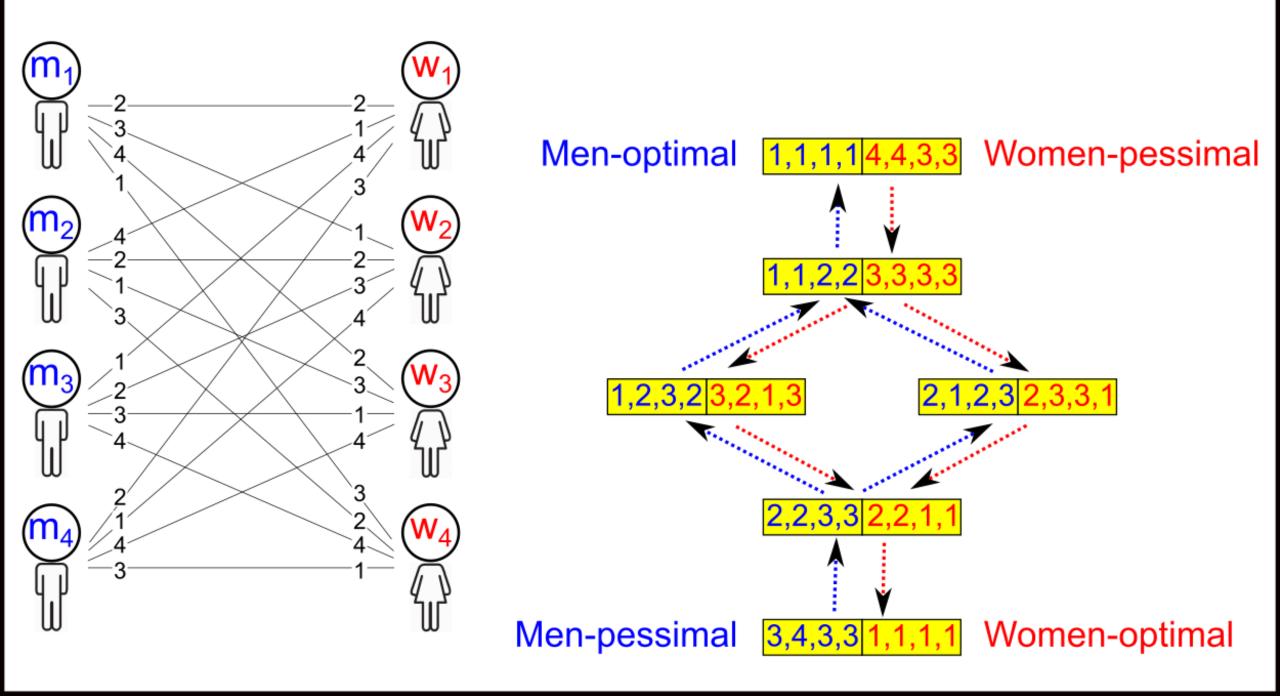


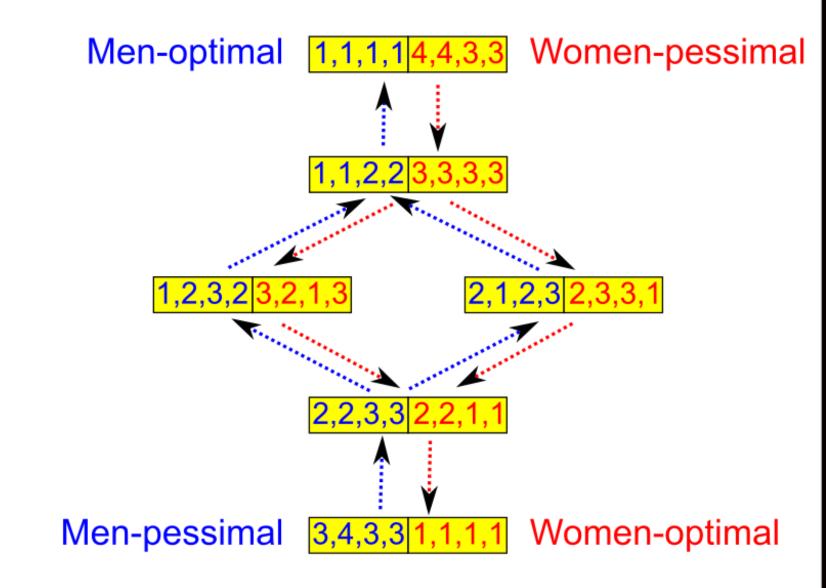


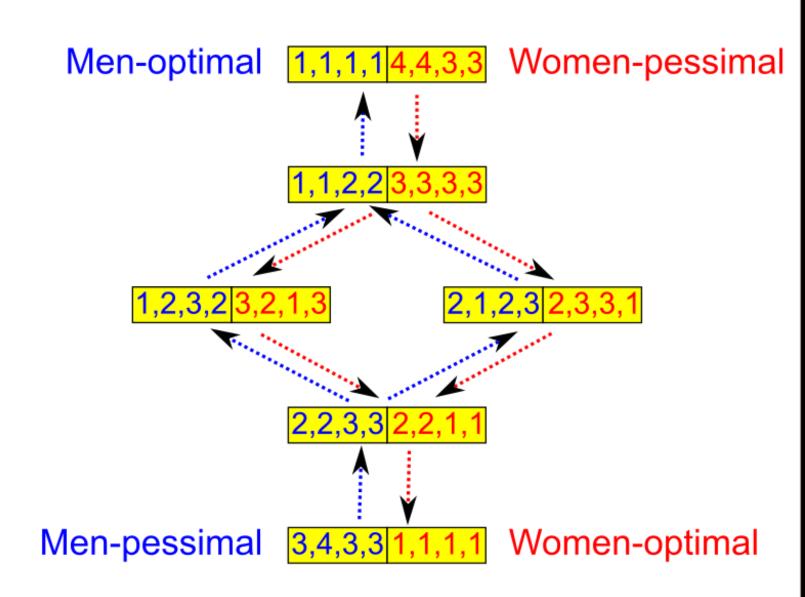


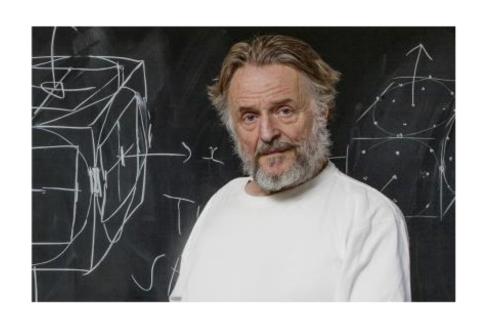


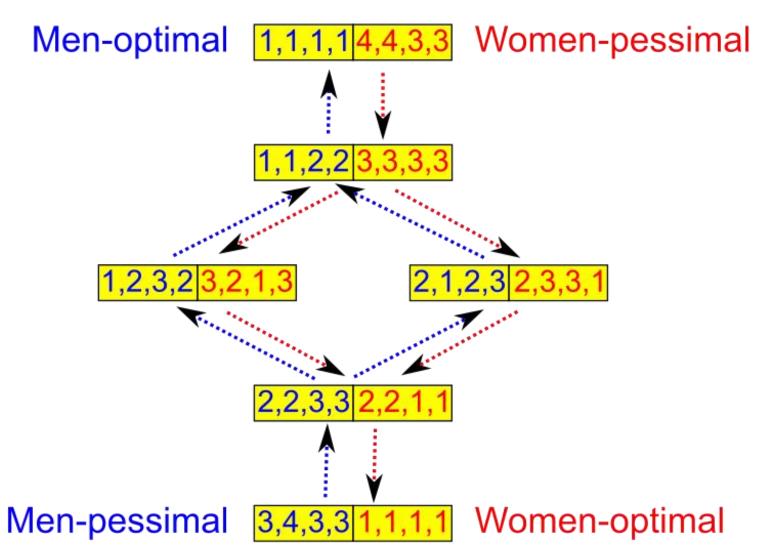


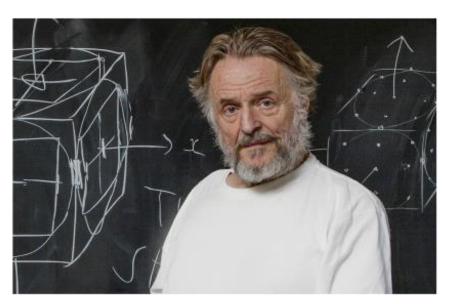




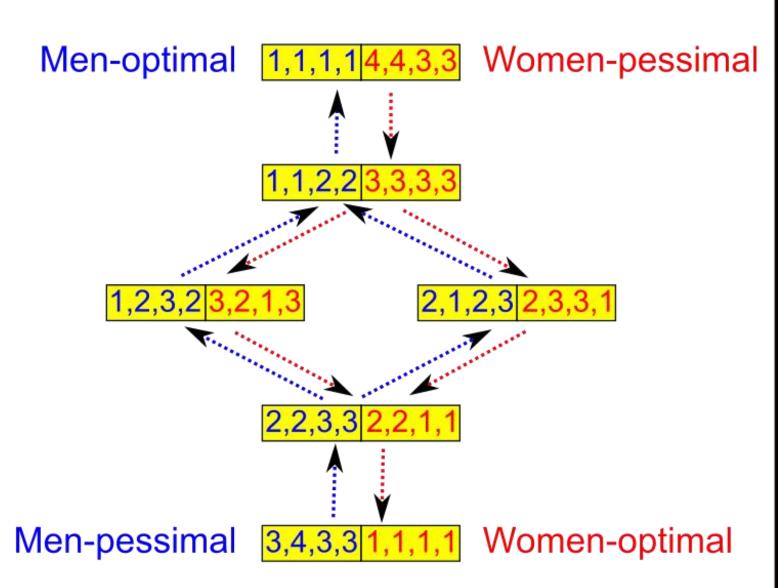


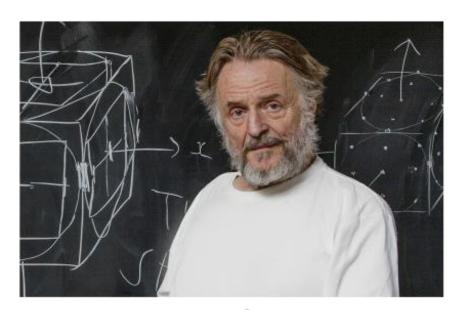




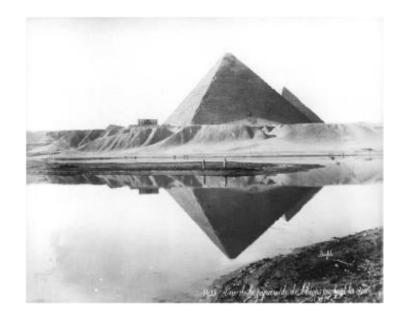


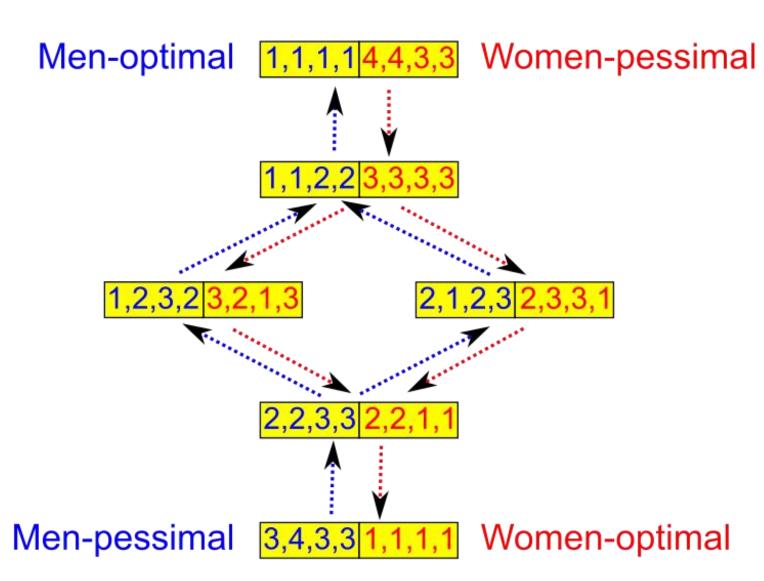
John H. Conway

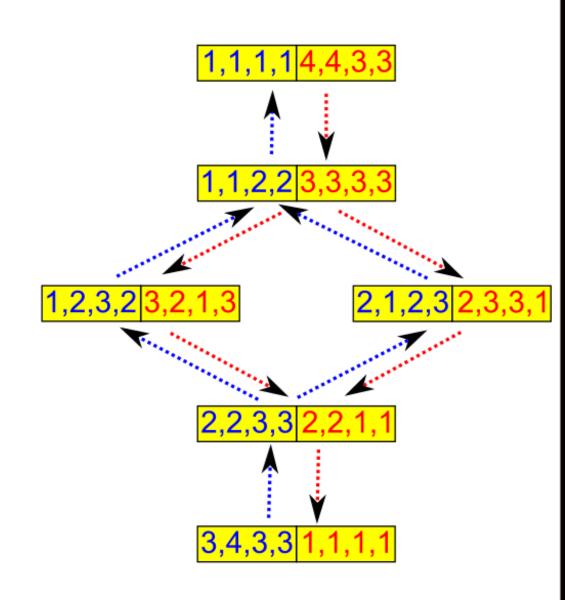




John H. Conway



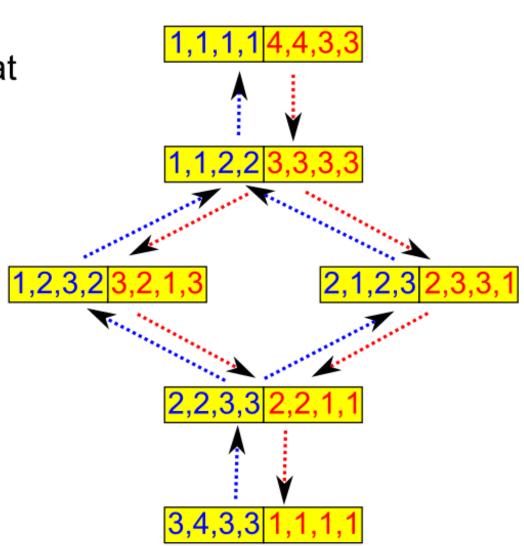




Consensus

There is a stable matching that all men find at least as good as any other stable matching, and one that they find at least as bad.

(Analogously for the women.)



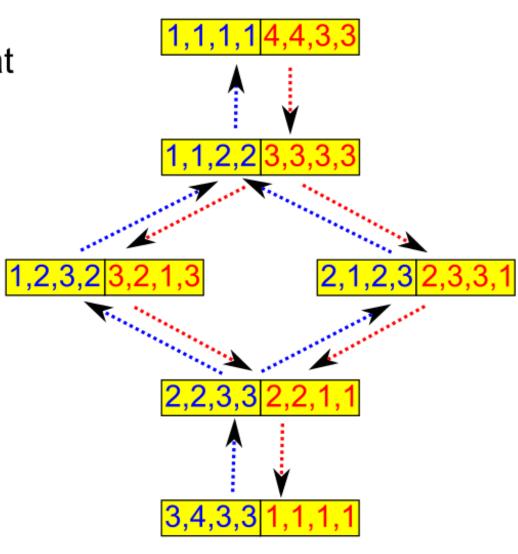
Consensus

There is a stable matching that all men find at least as good as any other stable matching, and one that they find at least as bad.

(Analogously for the women.)

Conflict

For any distinct stable matchings P and Q, if all men find P at least as good as Q, then all women find Q at least as good as P (and vice versa).



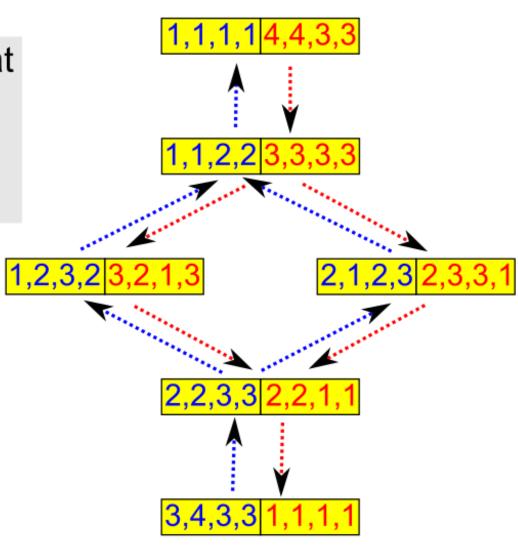
Consensus

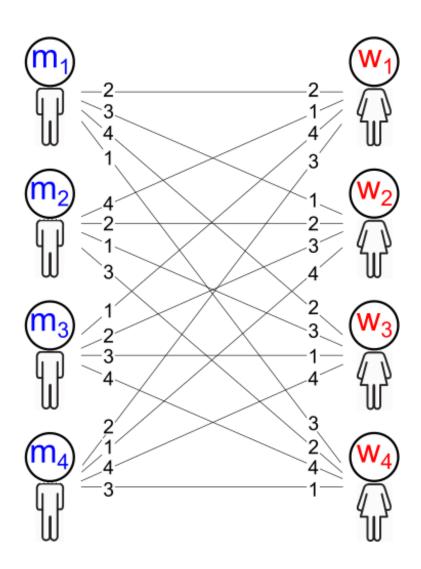
There is a stable matching that all men find at least as good as any other stable matching, and one that they find at least as bad.

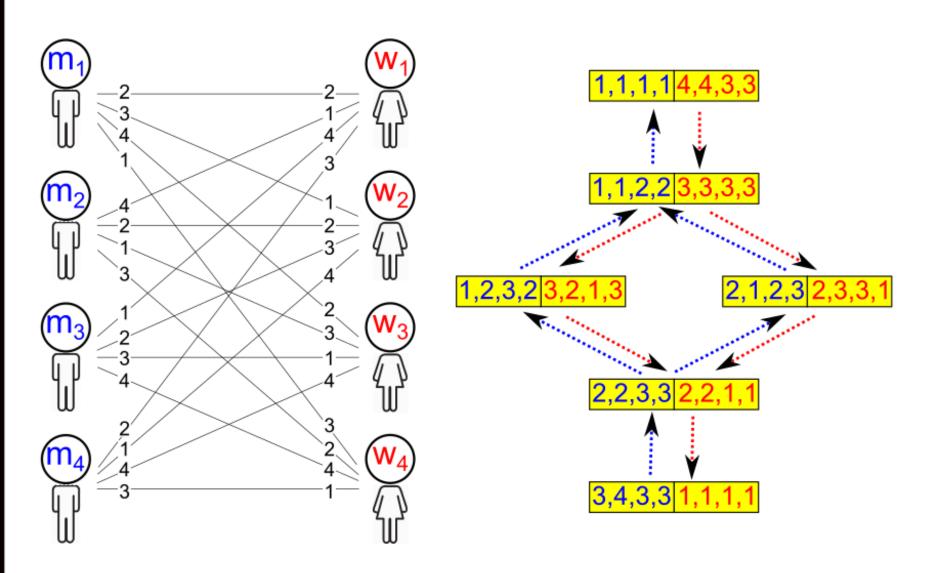
(Analogously for the women.)

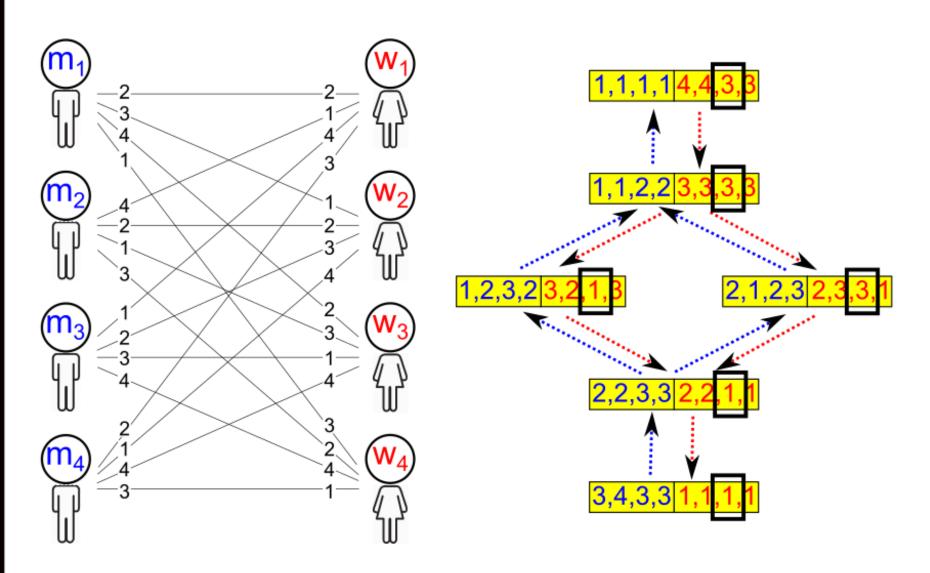
Conflict

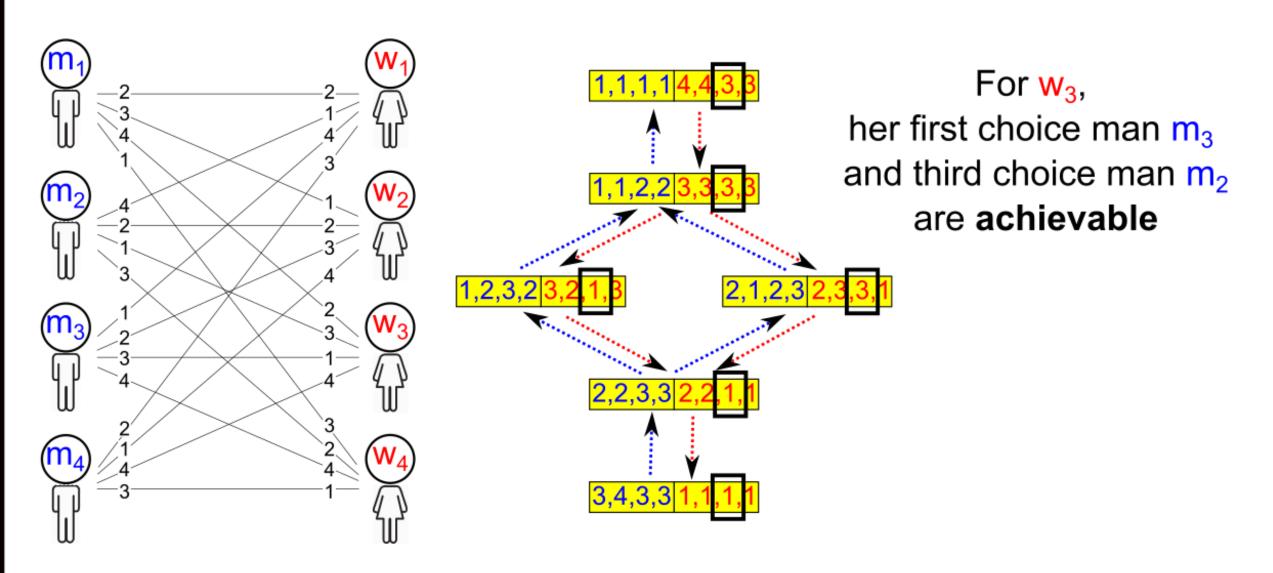
For any distinct stable matchings P and Q, if all men find P at least as good as Q, then all women find Q at least as good as P (and vice versa).











Strict preferences ⇒

Each man/woman has exactly one favorite achievable woman/man

Strict preferences ⇒

Each man/woman has exactly one favorite achievable woman/man

Define:

Men-optimal mapping: Each man points to his favorite achievable woman Women-optimal mapping: Each woman points to her favorite achievable man

Strict preferences ⇒

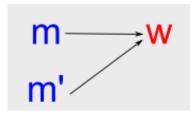
Each man/woman has exactly one favorite achievable woman/man

Define:

Men-optimal mapping: Each man points to his favorite achievable woman Women-optimal mapping: Each woman points to her favorite achievable man

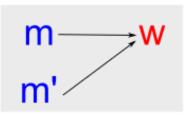
We will show that men/women-optimal mappings are one-to-one.

Suppose not. Then two men m and m' must map to the same woman w.

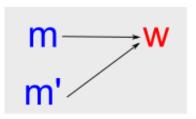


Suppose not. Then two men m and m' must map to the same woman w.

Suppose w prefers m over m'.



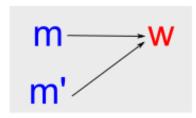
Suppose not. Then two men m and m' must map to the same woman w.



Suppose w prefers m over m'.

There must be a stable matching P where m' and w are matched.

Suppose not. Then two men m and m' must map to the same woman w.

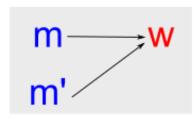


Suppose w prefers m over m'.

There must be a stable matching P where m' and w are matched.

In P, m must be matched to a woman he likes *less* than w (because w is m's favorite achievable woman).

Suppose not. Then two men m and m' must map to the same woman w.



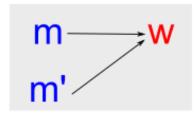
Suppose w prefers m over m'.

There must be a stable matching P where m' and w are matched.

In P, m must be matched to a woman he likes *less* than w (because w is m's favorite achievable woman).

But then, m and w will block P.

Suppose not. Then two men m and m' must map to the same woman w.

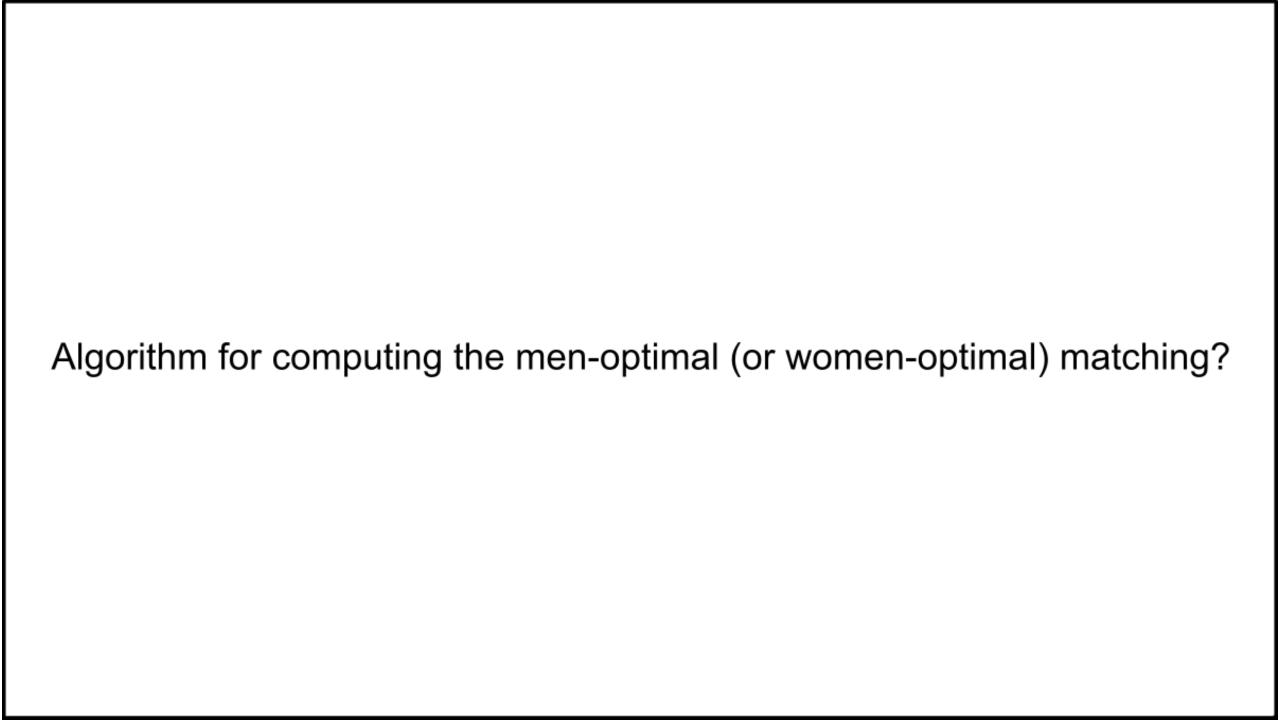


Suppose w prefers m over m'.

There must be a stable matching P where m' and w are matched.

In P, m must be matched to a woman he likes *less* than w (because w is m's favorite achievable woman).

But then, m and w will block P.



Given any preference profile, the matching computed by the men-proposing deferred-acceptance algorithm is men-optimal. Similarly, a women-optimal matching is obtained when women propose.

Given any preference profile, the matching computed by the men-proposing deferred-acceptance algorithm is men-optimal. Similarly, a women-optimal matching is obtained when women propose.

Suffices to show that in the men-proposing DA algorithm, a man is never rejected by his favorite achievable woman.

Given any preference profile, the matching computed by the men-proposing deferred-acceptance algorithm is men-optimal. Similarly, a women-optimal matching is obtained when women propose.

Suffices to show that in the men-proposing DA algorithm, a man is never rejected by his favorite achievable woman.

By way of contradiction, suppose man m is the first man to be rejected by his favorite achievable woman w.

Given any preference profile, the matching computed by the men-proposing deferred-acceptance algorithm is men-optimal. Similarly, a women-optimal matching is obtained when women propose.

Suffices to show that in the men-proposing DA algorithm, a man is never rejected by his favorite achievable woman.

By way of contradiction, suppose man m is the first man to be rejected by his favorite achievable woman w.

Then, w must have received a better proposal from some other man m'.

Given any preference profile, the matching computed by the men-proposing deferred-acceptance algorithm is men-optimal. Similarly, a women-optimal matching is obtained when women propose.

Suffices to show that in the men-proposing DA algorithm, a man is never rejected by his favorite achievable woman.

By way of contradiction, suppose man m is the first man to be rejected by his favorite achievable woman w.

Then, w must have received a better proposal from some other man m'.

When m' proposes to w, his past rejections (if any) must all have been from women that are *unachievable* for him.

Given any preference profile, the matching computed by the men-proposing deferred-acceptance algorithm is men-optimal. Similarly, a women-optimal matching is obtained when women propose.

Given any preference profile, the matching computed by the men-proposing deferred-acceptance algorithm is men-optimal. Similarly, a women-optimal matching is obtained when women propose.

Since m and w are achievable for each other, there must exist a stable matching, say P, where they are matched to each other.

Given any preference profile, the matching computed by the men-proposing deferred-acceptance algorithm is men-optimal. Similarly, a women-optimal matching is obtained when women propose.

Since m and w are achievable for each other, there must exist a stable matching, say P, where they are matched to each other.

Under P, man m' must be matched with a worse woman than w (since all women above w in his list are unachievable for him).

Given any preference profile, the matching computed by the men-proposing deferred-acceptance algorithm is men-optimal. Similarly, a women-optimal matching is obtained when women propose.

Since m and w are achievable for each other, there must exist a stable matching, say P, where they are matched to each other.

Under P, man m' must be matched with a worse woman than w (since all women above w in his list are unachievable for him).

So, m' and w form a blocking pair under P---contradicting its stability.

Given any preference profile, the matching computed by the men-proposing deferred-acceptance algorithm is men-optimal. Similarly, a women-optimal matching is obtained when women propose.

Since m and w are achievable for each other, there must exist a stable matching, say P, where they are matched to each other.

Under P, man m' must be matched with a worse woman than w (since all women above w in his list are unachievable for him).

So, m' and w form a blocking pair under P---contradicting its stability.

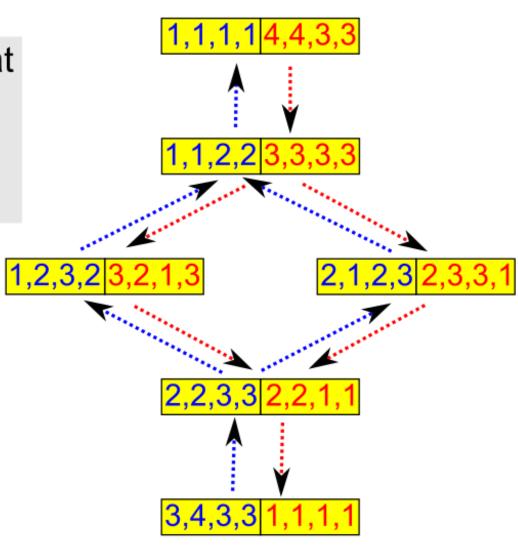
Some Observations

Consensus

There is a stable matching that all men find at least as good as any other stable matching, and one that they find at least as bad.

(Analogously for the women.)

Conflict



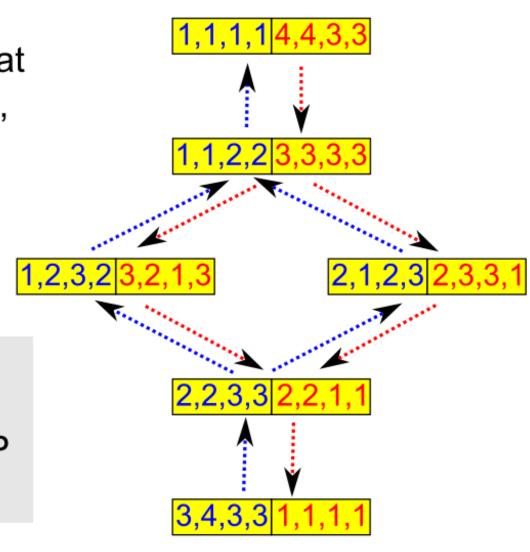
Some Observations

Consensus

There is a stable matching that all men find at least as good as any other stable matching, and one that they find at least as bad.

(Analogously for the women.)

Conflict



[Knuth, 1975 (Lectures) → 1976 (French) → 1997 (English)]

For any distinct stable matchings P and Q, if all men find P at least as good as Q, then all women find Q at least as good as P (and vice versa).

As a consequence:

The men-optimal stable matching is the worst stable matching for all women. The women-optimal stable matching is the worst stable matching for all men.

For any distinct stable matchings P and Q, if all men find P at least as good as Q, then all women find Q at least as good as P (and vice versa).

As a consequence:

The men-optimal stable matching is the worst stable matching for all women. The women-optimal stable matching is the worst stable matching for all men.

Men-optimal = Women-pessimal

Women-optimal = Men-pessimal

For any distinct stable matchings P and Q, if all men find P at least as good as Q, then all women find Q at least as good as P (and vice versa).

Suppose, for contradiction, that some woman w finds P better than Q.

For any distinct stable matchings P and Q, if all men find P at least as good as Q, then all women find Q at least as good as P (and vice versa).

Suppose, for contradiction, that some woman w finds P better than Q.

Let m be w's partner in P, and let m's partner in Q be w'.

For any distinct stable matchings P and Q, if all men find P at least as good as Q, then all women find Q at least as good as P (and vice versa).

Suppose, for contradiction, that some woman w finds P better than Q.

Let m be w's partner in P, and let m's partner in Q be w'.

Then, m prefers w over w', and w prefers m over her Q-partner.

For any distinct stable matchings P and Q, if all men find P at least as good as Q, then all women find Q at least as good as P (and vice versa).

Suppose, for contradiction, that some woman w finds P better than Q.

Let m be w's partner in P, and let m's partner in Q be w'.

Then, m prefers w over w', and w prefers m over her Q-partner.

Thus, the pair (m,w) blocks Q, contradicting its stability.

[Knuth, 1975 (Lectures) → 1976 (French) → 1997 (English)]

For any distinct stable matchings P and Q, if all men find P at least as good as Q, then all women find Q at least as good as P (and vice versa).

Suppose, for contradiction, that some woman w finds P better than Q.

Let m be w's partner in P, and let m's partner in Q be w'.

Then, m prefers w over w', and w prefers m over her Q-partner.

Thus, the pair (m,w) blocks Q, contradicting its stability.

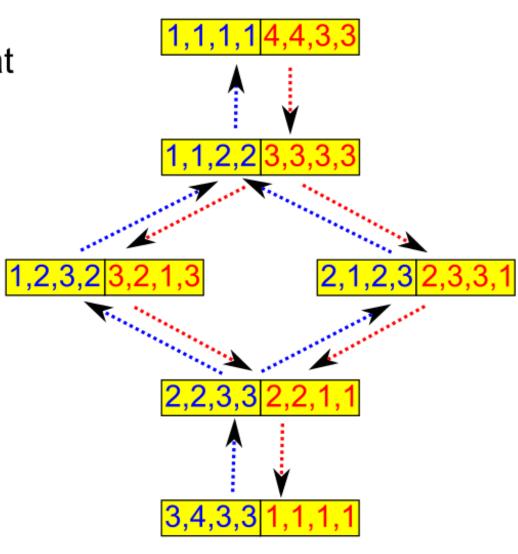
Some Observations

Consensus

There is a stable matching that all men find at least as good as any other stable matching, and one that they find at least as bad.

(Analogously for the women.)

Conflict

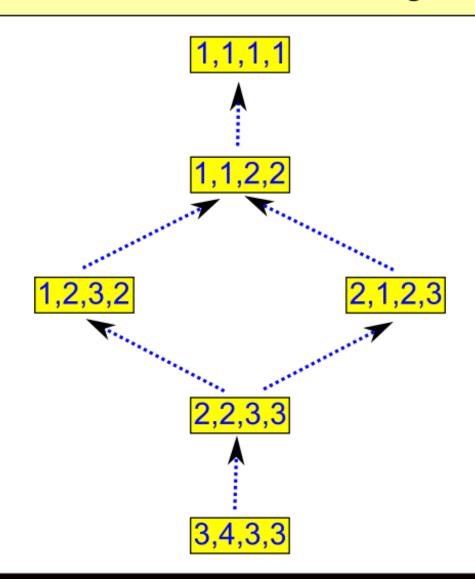


[Knuth, 1975 (Lectures) \rightarrow 1976 (French) \rightarrow 1997 (English)]

For any distinct stable matchings P and Q, if all men find P at least as good as Q, then all women find Q at least as good as P (and vice versa).

[Knuth, 1975 (Lectures) \rightarrow 1976 (French) \rightarrow 1997 (English)]

For any distinct stable matchings P and Q, if all men find P at least as good as Q, then all women find Q at least as good as P (and vice versa).

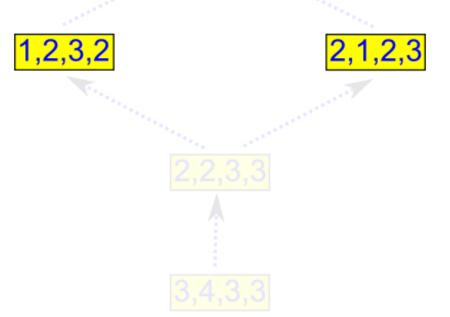


[Knuth, 1975 (Lectures) → 1976 (French) → 1997 (English)]

For any distinct stable matchings P and Q, if all men find P at least as good as Q, then all women find Q at least as good as P (and vice versa).

1,1,1,1

When there isn't a consensus among men/women w.r.t. two matchings, can we still say something useful?



Recall that when each man points to his favorite achievable woman, we get the men-optimal matching.

Recall that when each man points to his favorite achievable woman, we get the men-optimal matching.

If each man points to his least favorite achievable woman, we get the women-optimal/men-pessimal matching.

Recall that when each man points to his favorite achievable woman, we get the men-optimal matching.

If each man points to his least favorite achievable woman, we get the women-optimal/men-pessimal matching.

Let's generalize this idea to arbitrary pairs of stable matchings.

Let P and Q be any pair of stable matchings (not necessarily distinct).

Let P and Q be any pair of stable matchings (not necessarily distinct).

Define a *mapping* max_{P,Q} that maps:

- (a) each man to his more preferred partner between P and Q
- (b) each woman to her less preferred partner between P and Q

Let P and Q be any pair of stable matchings (not necessarily distinct).

Define a *mapping* max_{P,Q} that maps:

- (a) each man to his more preferred partner between P and Q
- (b) each woman to her less preferred partner between P and Q

$$\max_{P,Q}(m) = \begin{bmatrix} P(m) \text{ if } m \text{ prefers } P(m) \text{ over } Q(m) \\ Q(m) \text{ otherwise} \end{bmatrix}$$

$$\max_{P,Q}(w) = \begin{bmatrix} Q(w) \text{ if } w \text{ prefers } P(w) \text{ over } Q(w) \\ P(w) \text{ otherwise} \end{bmatrix}$$

The mapping max_{P,Q} induces a stable matching.

The mapping max_{P,Q} induces a stable matching.

Why is max_{P,Q} a valid matching?

The mapping max_{P,Q} induces a stable matching.

Why is max_{P,Q} a valid matching?

Suffices to show that for any m and w, $\max_{P,Q}(m) = w \iff \max_{P,Q}(w) = m$.

The mapping max_{P,Q} induces a stable matching.

Why is max_{P,Q} a valid matching?

Suffices to show that for any m and w, $\max_{P,Q}(m) = w \Leftrightarrow \max_{P,Q}(w) = m$.

```
"\Rightarrow" If \max_{P,Q}(m) = w but \max_{P,Q}(w) = m' \neq m, then:
```

The mapping max_{P,Q} induces a stable matching.

Why is max_{P,Q} a valid matching?

Suffices to show that for any m and w, $\max_{P,Q}(m) = w \iff \max_{P,Q}(w) = m$.

"
$$\Rightarrow$$
" If $\max_{P,Q}(m) = w$ but $\max_{P,Q}(w) = m' \neq m$, then:

P: **m**----w

Q: m----\

m' / W'

The mapping max_{P,Q} induces a stable matching.

Why is max_{P,Q} a valid matching?

Suffices to show that for any m and w, $\max_{P,Q}(m) = w \Leftrightarrow \max_{P,Q}(w) = m$.

"
$$\Rightarrow$$
" If $\max_{P,Q}(m) = w$ but $\max_{P,Q}(w) = m' \neq m$, then:

Q: m----w m' w'

The mapping max_{P,Q} induces a stable matching.

Why is max_{P,Q} a valid matching?

Suffices to show that for any m and w, $\max_{P,Q}(m) = w \iff \max_{P,Q}(w) = m$.

The mapping max_{P,Q} induces a stable matching.

Why is max_{P,Q} a valid matching?

Suffices to show that for any m and w, $\max_{P,Q}(m) = w \iff \max_{P,Q}(w) = m$.

The mapping max_{P,Q} induces a stable matching.

Why is max_{P,Q} a valid matching?

Suffices to show that for any m and w, $\max_{P,Q}(m) = w \iff \max_{P,Q}(w) = m$.

From "⇒" direction, if a man points to a woman, she points back at him. Therefore, each man must point to a **unique** woman (who must point back at him).

The mapping max_{P,Q} induces a stable matching.

Why is max_{P,Q} a valid matching?

Suffices to show that for any m and w, $\max_{P,Q}(m) = w \iff \max_{P,Q}(w) = m$.

From "⇒" direction, if a man points to a woman, she points back at him. Therefore, each man must point to a **unique** woman (who must point back at him).

Proof follows by observing that there are an equal number of men and women.

The mapping max_{P,Q} induces a stable matching.

Why is max_{P,Q} a valid matching?

Suffices to show that for any m and w, $\max_{P,Q}(m) = w \iff \max_{P,Q}(w) = m$.

From "⇒" direction, if a man points to a woman, she points back at him. Therefore, each man must point to a **unique** woman (who must point back at him).

Proof follows by observing that there are an equal number of men and women.

The mapping max_{P,Q} induces a stable matching.

Why is max_{P,Q} a stable matching?

The mapping max_{P,Q} induces a stable matching.

Why is max_{P,Q} a stable matching?

Suppose (m,w) blocks max_{P,Q}.

The mapping max_{P,Q} induces a stable matching.

Why is max_{P,Q} a stable matching?

Suppose (m,w) blocks max_{P,Q}.

Then, m prefers w over his partners in both P and Q.

The mapping max_{P,Q} induces a stable matching.

Why is max_{P,Q} a stable matching?

Suppose (m,w) blocks max_{P,Q}.

Then, m prefers w over his partners in both P and Q.

Say, w prefers P over Q. Then, (m,w) blocks Q.

The mapping max_{P,Q} induces a stable matching.

Why is max_{P,Q} a stable matching?

Suppose (m,w) blocks max_{P,Q}.

Then, m prefers w over his partners in both P and Q.

Say, w prefers P over Q. Then, (m,w) blocks Q.

By a similar reasoning, the mapping min_{P,Q} also induces a stable matching.

By a similar reasoning, the mapping min_{P,Q} also induces a stable matching.

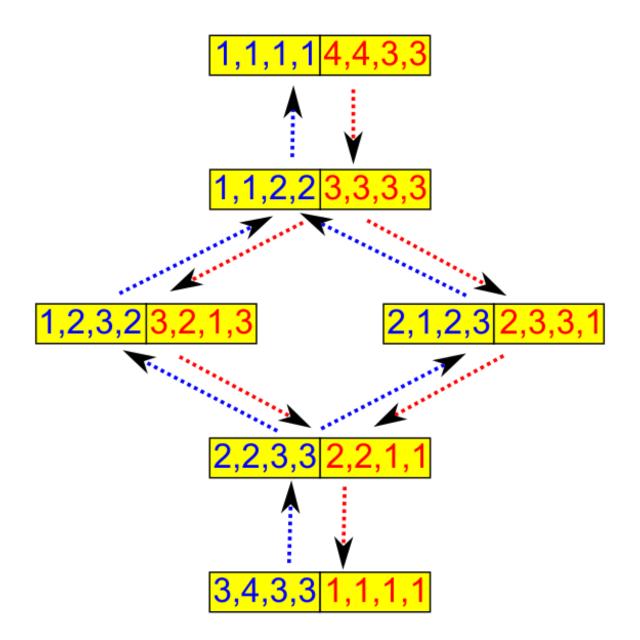
Define a *mapping* min_{P,Q} that maps:

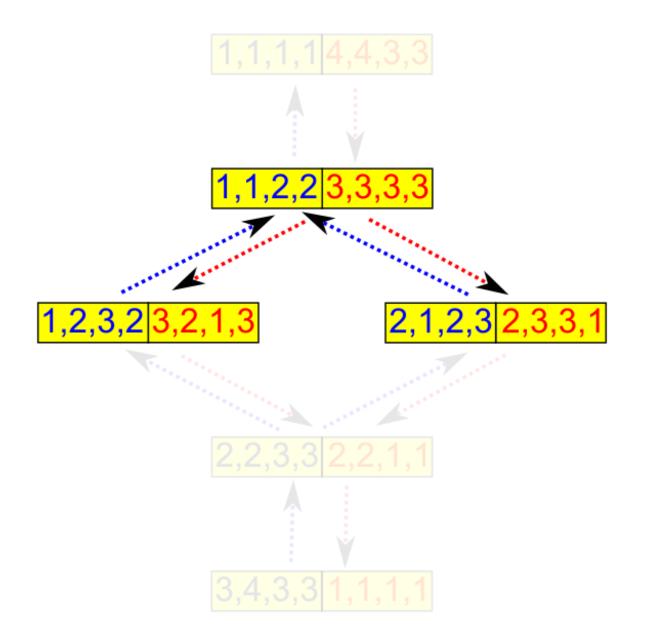
- (a) each man to his less preferred partner between P and Q
- (b) each woman to her more preferred partner between P and Q

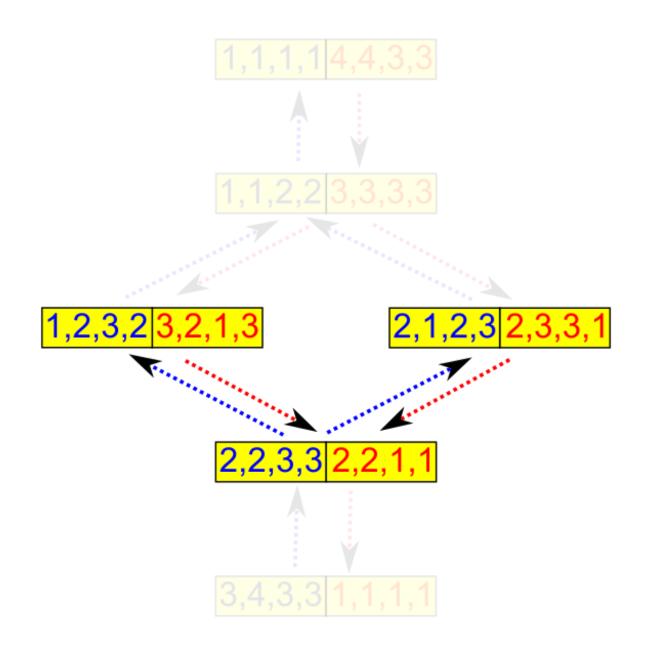
By a similar reasoning, the mapping min_{P,Q} also induces a stable matching.

Define a mapping min_{P,Q} that maps:

- (a) each man to his less preferred partner between P and Q
- (b) each woman to her more preferred partner between P and Q



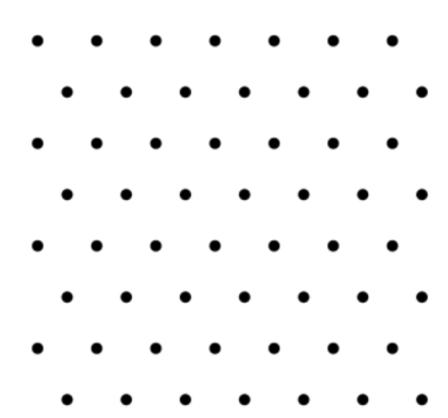




The mappings $\max_{P,Q}$ and $\min_{P,Q}$ induce stable matchings.

The mappings max_{P,Q} and min_{P,Q} induce stable matchings.

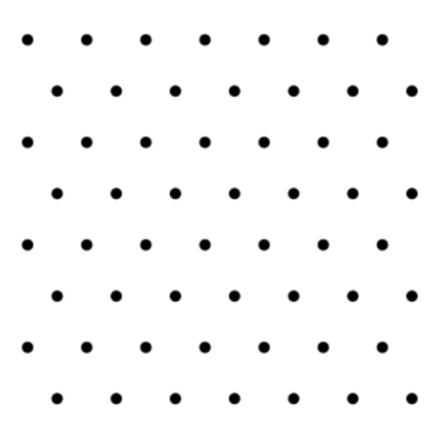
The mappings max_{P,Q} and min_{P,Q} induce stable matchings.



The mappings max_{P,Q} and min_{P,Q} induce stable matchings.

Consequences:

 Existence of men/women-optimal and men/women-pessimal matchings.

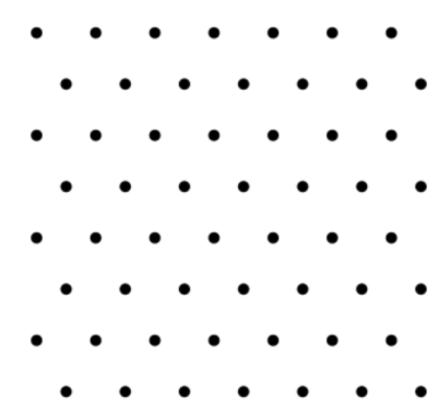


The mappings max_{P,Q} and min_{P,Q} induce stable matchings.

Consequences:

 Existence of men/women-optimal and men/women-pessimal matchings.

 For a model with "unacceptable" pairs, the set of matched agents is the same in all stable matchings.



The Lattice Theorem

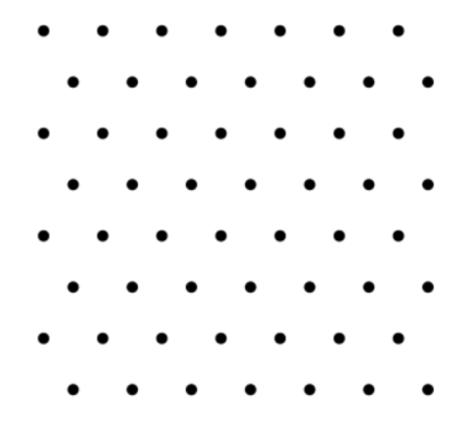
The mappings max_{P,Q} and min_{P,Q} induce stable matchings.

Consequences:

 Existence of men/women-optimal and men/women-pessimal matchings.

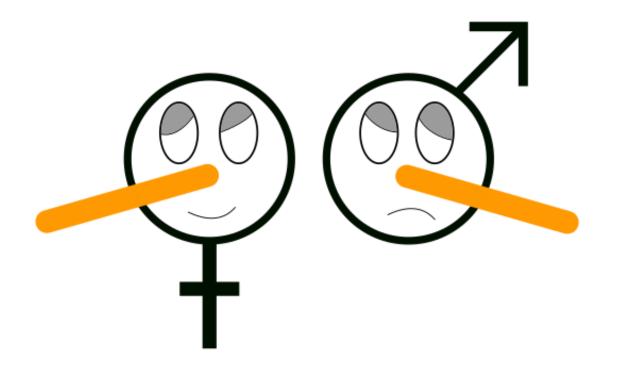
 For a model with "unacceptable" pairs, the set of matched agents is the same in all stable matchings.

The Rural Hospitals Theorem



Next Time

Incentives in the Stable Matching Problem



Quiz

Prove that an instance has a unique stable matching if and only if the men-optimal and women-optimal matchings are the same.

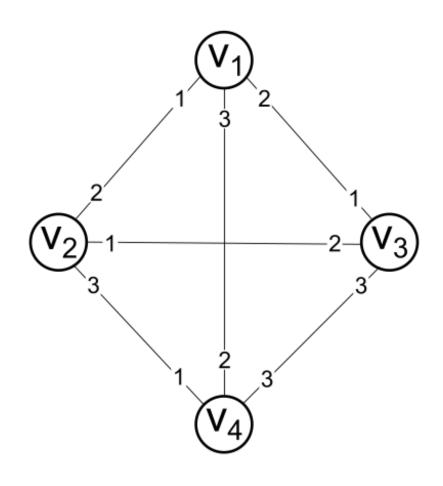
References

Structure of the Set of Stable Matchings

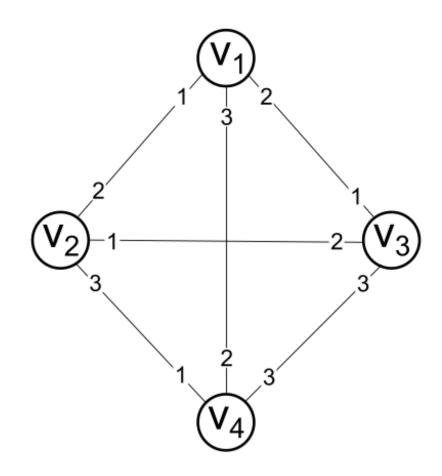
Alvin Roth and Marilda Sotomayor "Two-Sided Matching: A Study in Game-Theoretic Modeling and Analysis" Econometric Society Monograph Series, 1990

[Gale and Shapley, 1962]

[Gale and Shapley, 1962]

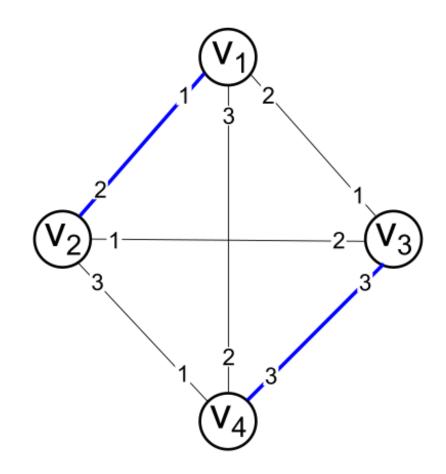


[Gale and Shapley, 1962]



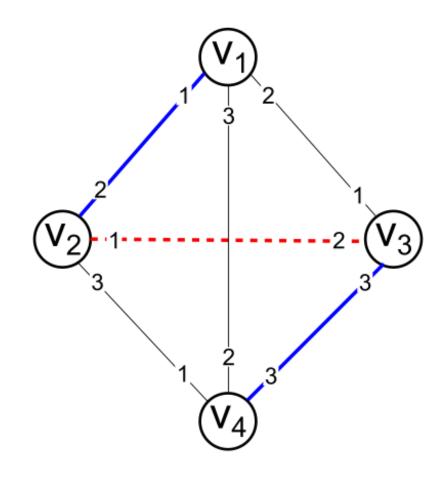
A matching is stable is there is no blocking pair of vertices that prefer each other over their assigned partners ("self-partnered" if unmatched).

[Gale and Shapley, 1962]



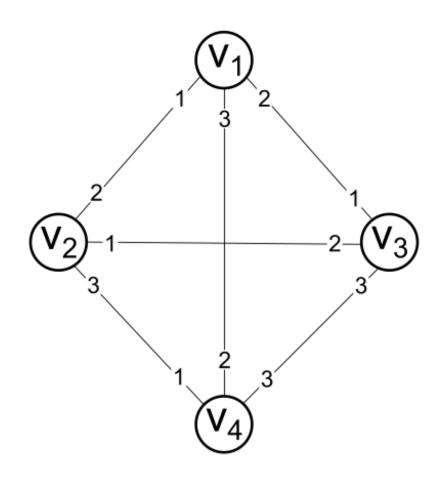
A matching is stable is there is no blocking pair of vertices that prefer each other over their assigned partners ("self-partnered" if unmatched).

[Gale and Shapley, 1962]

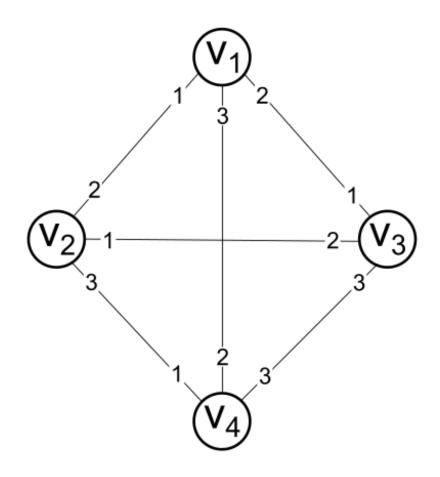


A matching is stable is there is no blocking pair of vertices that prefer each other over their assigned partners ("self-partnered" if unmatched).

[Gale and Shapley, 1962]

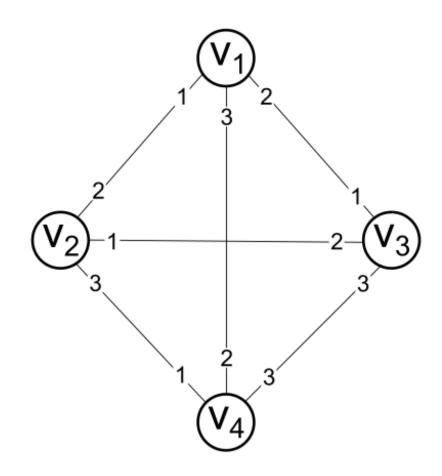


[Gale and Shapley, 1962]



There is no stable matching in the above instance.

[Gale and Shapley, 1962]



There is no stable matching in the above instance. Whoever is matched with v_4 will block with one of the other two agents.