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Last Time

[Gibbard'73; Satterthwaite'75]
Any onto and non-dictatorial voting rule

must be manipulable.




VOTING RULE

A mapping from preference profiles to candidates.
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f-Manipulation

Input:
A set of candidates and a set of voters v,,v,,...,v,
» Votes P,,...,P, of all non-manipulating voters vs,...,v,

« Manipulator v,'s favorite candidate c

Question:

Does there exist a vote P, of the manipulator v, such that
f(P4,Ps,...,P,) = C?
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A Greedy Strategy

* Rank c at the top position in v,'s vote

* While there is an unranked candidate:

If a candidate, say x, can be "safely" placed in the next
highest position in v,'s list without preventing ¢ from

winning, then place x in that position.

» Otherwise, return 'No'.
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The greeqy strategy does not always work.
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Tie-breaking rule

Can I make @ win? >0>0>
Vi 2 3 2 2
@ O
@
O
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Let's follow the greedy strategy and put @ at the top.

@ is eliminated in the next round (due to tie-breaking rule).
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Manipulation under STV

Tie-breaking rule

Can I make @ win? >0>0>
V4 2 3 2 2
O
O ©

STV winner: ©
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So, when does the greedy strategy work?
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» Score-based: There exists a scoring function s: (P4,x) = R such that
for any vote P, of v,, the f-winner is the candidate maximizing s(P,x).
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a [Bartholdi, Tovey and Trick, SCW 1989] N\
The greedy strategy can correctly solve f-Manipulation

iIn polynomial time for any voting rule f satisfying:

» Score-based: There exists a scoring function s: (P4,x) = R such that
for any vote P, of v,, the f-winner is the candidate maximizing s(P,x).

» Monotonicity: Suppose a candidate "x" is preferred over the set of
candidates S under P and the set S' under P, and say S € S'.
Then, s(P,x) < s(P',x).
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a [Bartholdi, Tovey and Trick, SCW 1989] N\
The greedy strategy can correctly solve f-Manipulation

iIn polynomial time for any voting rule f satisfying:

» Score-based: There exists a scoring function s: (P4,x) = R such that
for any vote P, of v,, the f-winner is the candidate maximizing s(P,x).

» Monotonicity: Suppose a candidate "x" is preferred over the set of
candidates S under P and the set S' under P, and say S € S'.
Then, s(P,x) < s(P',x).

\ Efficiency: The voting rule f can be evaluated in polynomial time. -

In particular, for f € {Plurality, Borda, Copeland}.
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Plurality

Scoring function

p, = Plurality score of x from P,,...,P,

S(P1!X) =

—1+p, If X Is top-ranked in P,
—p, otherwise
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Voting rule Scoring function

p, = Plurality score of x from P,,...,P,

Plurality S(P.x) =] 1+p, if X is trf)p-ranked in P,
—p, otherwise
b, = Borda score of x from P,,...,P,
Borda

s(P,x) = b, + #candidates below x in P,

s(P4,x) = #candidates x beats in a head-to-head +

Copeland 0.5.#candidates that x ties with in a head-to-head
(based on all votes P,,P,,...,P,)
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Correctness of Greedy Strategy

p
* Rank ¢ at the top position in v,'s vote
 While there is an unranked candidate:

If a candidate, say X, can be "safely" placed in the next
highest position in v,'s list without preventing ¢ from

winning, then place x in that position.

\- Otherwise, return 'No'.

If the greedy strategy returns a ranking, it must be correct.

Need to show:
If there is a winning vote for c, then the greedy strategy must also find one.
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Correctness of Greedy Strategy

Suppose, for contradiction, that there exists a
winning vote W but the greedy strategy returns 'No'.

Let P be the partial list constructed by greedy
before termination.

Consider the set of candidates that were not ranked
by P. Among them, let k be ranked highest in W.
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Extend P by placing k in the next available position
and arbitrarily ranking the remaining candidates.
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Correctness of Greedy Strategy

s(P,c) =2 s(W,c) by monotonicity of s
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s(W,c) =2 s(W,k) since ¢ wins under W
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Correctness of Greedy Strategy

s(P,c) =2 s(W,c) by monotonicity of s
s(W,c) =2 s(W,k) since ¢ wins under W

s(W,k) = s(P,k) by monotonicity of s
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s(P,c) =2 s(W,c) by monotonicity of s
s(W,c) =2 s(W,k) since ¢ wins under W
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s(P,c) =2 s(W,c) by monotonicity of s
s(W,c) =2 s(W,k) since ¢ wins under W
s(W,k) = s(P,k) by monotonicity of s
Overall, s(P,c) = s(P,k).

Thus, k could not have prevented ¢ from winning,
and therefore greedy should have continued.
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s(P,c) =2 s(W,c) by monotonicity of s
s(W,c) =2 s(W,k) since ¢ wins under W

s(W,k) = s(P,k) by monotonicity of s
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Overall, s(P,c) = s(P,k).

Thus, k could not have prevented ¢ from winning,
and therefore greedy should have continued.
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Is manipulation always easy?
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The Computational Difficulty of Manipulating an Election™

J. J. Bartholdi I1I, C. A. Tovey, and M. A. Trick**

School of Industrial and Systems Engineering, Georgia Institute of Technology,
Atlanta, GA 30332, USA

Received June 9, 1987/ Accepted July 29, 1988

Abstract. We show how computational complexity might protect the integrity of
social choice. We exhibit a voting rule that cfficiently computes winners but 18
computationally resistant to strategic manipulation. It is NP-complete for a
manipulative voter to determine how to exploit knowledge of the preferences of
others. In contrast, many standard voting schemes can be manipulated with
only polynomial computational effort.
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For many voting rules, f-Manipulation is NP-hard.

[Bartholdi, Tovey, and Trick, SCW 1989]
Copeland with second-order tie-breaking
In case of a tie, winner is the candidate whose defeated competitors
have the highest sum of Copeland scores.

[Bartholdi and Orlin, SCW 1991]

Single Transferable Vote (STV)

[Xia, Zuckerman, Procaccia, Conitzer, Rosenschein, [JCAI 2009]

Ranked Pairs

Consider candidate pairs according to the margin of head-to-head victories,
and create a ranking based on it while avoiding cycles.
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For many voting rules, f-Manipulation is NP-hard.

NP-hardness is good news!
No general-purpose efficient algorithm that
correctly works on all preference profiles (unless P=NP).

Using worst-case computational hardness
as a barrier to manipulation.

Note: NP-hard even with full information.
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Single manipulator

Plurality P

[Bartholdi, Tovey and Trick, SCW 1989]

Borda P

[Bartholdi, Tovey and Trick, SCW 1989]

Copeland® P

(friendly tie-breaking)  [Bartholdi, Tovey and Trick, SCW 1989]
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[Parkes and Xia, AAAI 2012]
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Plurality

Borda

Copeland®

(friendly tie-breaking)

Ranked pairs

Schulze

Single manipulator

P

[Bartholdi, Tovey and Trick, SCW 1989]

[

[Bartholdi, Tovey and Trick, SCW 1989]

P

[Bartholdi, Tovey and Trick, SCW 1989]

NP-hard

[Xia, Zuckerman, Procaccia, Conitzer,
and Rosenschein, [JCAI 2009]

P

[Parkes and Xia, AAAI 2012]

Two manipulators

P

NP-hard

[Betzler, Niedermeier and Woeginger, IJCAI 2011,
Davies, Katsirelos, Narodytska and Walsh, AAAI 2011]

NP-hard

[Faliszewski, Hemaspaandra and Schnoor,
AAMAS 2008]

NP-hard

[Xia, Zuckerman, Procaccia, Conitzer,
and Rosenschein, IJCAI 2009]

=

[Gaspers, Kalinowski, Narodytska and Walsh,
AAMAS 2013]
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Next Time

Circumventing negative results
with structured preferences
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Quiz




Quiz

What is the optimal manipulation strategy for each voter
under the Borda rule?

O O W >» <

> O U W <

O W > O <

W > O O

Tie-breaking rule
B>A>C>D




Enough about voting. Let's talk sports!
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Imagine we are at the halfway point of a sports tournament.

Some games have been played, others are still to go.




ELIMINATION IN SPORTS

Imagine we are at the halfway point of a sports tournament.

Some games have been played, others are still to go.

Q: Does my favorite team still have a chance of winning?













After each game, winner gets 1 point, loser get 0. No ties.
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After each game, winner gets 1 point, loser get 0. No ties.

Can T still win the
competition?

A 7
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After each game, winner gets 1 point, loser get 0. No ties.

CC,




After each game, winner gets 1 point, loser get 0. No ties.

A 7

One of these three will
end up with at least 9 points




We will solve this problem using max flow.
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‘;b wins all its remaining games.

Step 1: Imagine

Doing so freezes the score of 6&..
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We will solve this problem using max flow.

Step 1: Imagine ‘@.‘j‘ wins all its remaining games.
w
N

Doing so freezes the score of 6&..
‘w

Step 2: Set up a flow network to check for a winning schedule.
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Cap = # points at stake
in each game

1

N

it is "safe" to give to a tea

Cap = # additional pointsJ
m




in each game it is "safe" to give to a team

N

{ Cap = # points at stake J Cap = # additional points}

There is a max flow that saturates the edges of S & There is a winning schedule.
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Away
team

0,0 1 2 3

What about other point systems?
4
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A
{(0,1),(1,0)}
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Home team




The minion championship used a {(0,1),(1,0)} point system.

Away
team

0,0

What about other point systems?

e
=

%Y (03).(1.1,3.0)

1(0,1),(1,0);

1 2 3
Home team




The minion championship used a {(0,1),(1,0)} point system.
What about other point systems?

3 3
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The minion championship used a {(0,1),(1,0)} point system.
What about other point systems?

3 3

1(0,1),(1,0);

Away {(0,3),(1,1),(3,0)}
team 1 )
P B (0,2),(1,1),(2,0)

0,0 1 2 3

Home team

{(0,3),(1,2),(2,1),(3,0)}




The minion championship used a {(0,1),(1,0)} point system.

Away
team

0,0 1 2 3

What about other point systems?

cC
=

| H

ﬂ INDIAN * JE&nE s
PREMIER o E N
LEAGUE ABRRLR

Home team

1(0,1),(1,0);
1(0,3),(1,1),(3,0);

1(0,2),(1,1),(2,0)}

\ 1(0.3),(1,2),(2,1),(3,0)}

M

[Kern and Paulusma, Disc. Opt. 2004]

Elimination problem is NP-complete for all point systems
except for those that "line up nicely".

iy




The minion championship used a {(0,1),(1,0)} point system.
What about other point systems?

3 3

ﬁ INDIAN = [& &S
. PREMIER
LEAGUE ;n

{(0,3),(1,2),(2,1),(3,0)}

1(0,1),(1,0);

Away
team

{(0,3),(1,1),(3,0);

1(0,2),(1,1),(2,0)}

0,0 1 2 3

Home team

[Football Is computationally harder than chess and ice hockeyﬂ
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 “Sports elimination via max flow” with |IPL teams:
https://www.youtube.com/watch?v=XK6g9Z|JHWo09A

* When it's easy to recognize the existence of a beneficial manipulation
but hard to find a manipulative vote.

“Search versus Decision for Election Manipulation Problems”
Hemaspaandra, Hemaspaandra, and Menton
https://dl.acm.org/doi/10.1145/3369937
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