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The model

Indivisible

Divisible

𝑛 agents with additive valuations over:



EFM: A fusion of EF and EF1

For any two agents 𝑎𝑖 and 𝑎𝑗:

• If 𝑎𝑗  is given some cake, then 𝑎𝑖  does not envy 𝑎𝑗  (EF).

• Else, 𝑎𝑖  does not envy 𝑎𝑗  upto one good (EF1).

  Theorem: An EFM allocation always exists!



Warmup: Identical Agents

Algorithm:

1. Round robin: Find an EF1 allocation of the indivisible goods.

2. Water filling: Keep on allocating the cake equally to the set of 
poorest agents.
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Generalizing to non-identical agents

1. Round robin: EF1 allocation of indivisible goods - Still works! ☺ 

2. Water filling: Keep allocating cake equally to the set of poorest 
agents:
1. How to allocate equally?  

2. Which agents are the poorest? 



Allocating equally: Perfect cake division

Theorem: Given a cake 𝐶, 𝑛 (non-identical) agents and a 
positive integer 𝑘, a perfect division into 𝑘 pieces exists:

    For each agent, all 𝑘 pieces have the same value.

𝑣𝑖 𝐶𝑗 =
𝑣𝑖 𝐶

𝑘
 ∀ 𝑖 ∈ 𝑛 , 𝑗 ∈ 𝑘



Recap: The envy cycle algorithm

Maintain a partial-allocation that is EF1.

In the envy graph:
• Either ∃ a source ⇒ give it a good.

• Or ∃ a cycle ⇒ do a cyclic shift of bundles.

Measure of progress?
• Either a good is allocated.

• Or the number of envy edges strictly decreases.



Envy cycle elimination maintains EFM
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Envy cycle elimination maintains EFM
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Give cake “equally” to sources?

𝑎𝑗𝑎𝑖

Source

(𝐴𝑖 , 𝐶𝑖) (𝐴𝑗 , 𝐶𝑗)

Issue: Can not allocate anything to 𝑎𝑗  if 𝑣𝑖 𝐴𝑖 , 𝐶𝑖 = 𝑣𝑖 𝐴𝑗 , 𝐶𝑗  

Fix: Must also consider “equality” edges.

Not a source

=



Who to allocate cake to?

Addable subset: A subset 𝑆 of sources, that does not have incoming 
equality edges from outside.

Might not exist! 

= =

<

<



(Envy ∪ equality) cycle elimination

Consider graph with both envy and equality edges.

EFM is maintained on cyclic transfer. ☺

But, progress might not be made  …

* unless there is at least one envy edge in the cycle. ☺



So…

• Cycle with at least one envy edge in the (envy ∪ equality) graph

⇒ Do a cyclic transfer.

• Else, allocate as much cake as possible to the maximal addable subset 
of agents:
• Why does an addable subset exist?

• Why is the maximum addable subset unique?

• How much cake to allocate?



Existence of an addable subset

1. Compress the SCC’s of the equality graph.

2. Consider the envy edges.

3. Claim:
1. No envy edge within the same component.

2. No cycle of components through (envy ∪ equality) edges.
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Existence of an addable subset

1. Compress the SCC’s of the equality graph.

2. Consider the envy edges.

3. Claim:
1. No envy edge within the same component.

2. No cycle of components through (envy ∪ equality) edges.

 The source component is an addable subset!



Uniqueness of maximal addable subset

If 𝑆 and 𝑇 are addable, then so is 𝑆 ∪ 𝑇:

 𝑆 and 𝑇 are subsets of sources in the envy graph 

 ⇒ 𝑆 ∪ 𝑇 is a subset of sources.

 No equality edge from ҧ𝑆 to 𝑆, from ത𝑇 to 𝑇

 ⇒ no equality edge from 𝑆 ∪ 𝑇 to 𝑆 ∪ 𝑇



How much cake?

Maximal addable subset 𝑆

𝑎𝑗
𝑎𝑖

(𝐴𝑗 , 𝐶𝑗) (𝐴𝑖 , 𝐶𝑖)

𝑣𝑖 𝐻

|𝑆|
≤ 𝑣𝑖 𝐴𝑖 , 𝐶𝑖 − 𝑣𝑖(𝐴𝑗 , 𝐶𝑗)



Progress?

Either the number of envy edges decreases

   OR

The size of the maximal addable subset decreases



Progress?

Say the number of envy edge does not decrease.

⇒ The set of envy edges remains the same.

⇒ The set of sources in the envy graph remains the same.

Let 𝑇 be the new maximal addable subset:
• 𝑇 ≠ 𝑆, as 𝑆 now has an incoming equality edge.

• 𝑆 ∪ 𝑇 must also have been an addable subset to begin with!



𝑺 ∪ 𝑻 must also have been an addable subset to begin with!
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Progress?

Say the number of envy edge does not decrease.

⇒ The set of envy edges remains the same.

⇒ The set of sources in the envy graph remains the same.

Let 𝑇 be the new maximal addable subset:
• 𝑇 ≠ 𝑆, as 𝑆 now has an incoming equality edge.

• 𝑆 ∪ 𝑇 must also have been an addable subset to begin with!

• Maximality of 𝑆 is contradicted!



Generalization to chores

Indivisible

Divisible
Cake Bad Cake

Goods

Chores

?
• Identical rankings     ✓ 
• 𝑚 ≤ 𝑛 + 1            ✓

 ✓

 ✓ ✓

[Bhaskar, Sricharan and Vaish, APPROX 2021]
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