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Fully-labeled elementary triangle
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(1,0,0)




For each vertex in the ownership triangle, ask the owner
its favorite room at the pricing given in the preference triangle.

(1,0,0)










"Miserly agents™ assumption
Agents always prefer a free room
over a room with non-zero rent.

























convex combination of 20r3
(1,0,0) and 0 1,0)




must be of the form
(x,y,0)
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Approx. envy-free rent division
(up to a rupee)
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Other Applications of Sperner's Lemma




Envy-free cake cutting with connected pieces

My piece is My piece Is My piece Is
the best the best the best




Monsky's theorem

A square cannot be dissected into an odd number of triangles with equal area.
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(f(x) = X

Every continuous function from a compact convex set to itself has a fixed point.

. . WM"‘
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Connaught * 3
Place EAST }

* Defence |
Colony A

» Used to prove the existence of Nash equilibrium in game theory




Next Time

Fairness via Randomness




Quiz



/\

Demonstrate a Sperner coloring
that maximizes the number of
fully-labeled elementary triangles.




References

 Fair cake cutting and rent division via Sperner’s Lemma

Francis Su
“Rental Harmony: Sperner’s Lemma in Fair Division”
American Mathematical Monthly, 106, 1999 pg 930-942

* Fun videos on the topic:

Mathologer: https://www.youtube.com/watch?v=7s-YM-kcKME
MoMath: https.//www.youtube.com/watch?v=CBVqg8x4L.\WZE
PBS Infinite Series: https://www.youtube.com/watch?v=480BEvpdYSE



https://www.youtube.com/watch?v=7s-YM-kcKME
https://www.youtube.com/watch?v=CBVg8x4LWZE
https://www.youtube.com/watch?v=48oBEvpdYSE
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