COL749: Computational Social Choice

Lecture 13
Rent Division

I like Room 1 for Rs. 500 over Room 2 for Rs. 300 and Room 3 for Rs. 200.

I like Room 1 for Rs. 500 over Room 2 for Rs. 300 and Room 3 for Rs. 200.

I like Room 2 for Rs. 300 over Room 1 for Rs. 500 and Room 3 for Rs. 200.

I like Room 1 for Rs. 500 over Room 2 for Rs. 300 and Room 3 for Rs. 200.

I like Room 2 for Rs. 300 over Room 1 for Rs. 500 and Room 3 for Rs. 200.

I like Room 3 for Rs. 200 over Room 1 for Rs. 500 and Room 2 for Rs. 200.

1. Triangulation into *elementary* triangles

1. Triangulation into *elementary* triangles

- 1. Triangulation into *elementary* triangles
- 2. Sperner labeling

- 1. Triangulation into *elementary* triangles
- 2. Sperner labeling
 - Main vertices have distinct labels

- 1. Triangulation into *elementary* triangles
- 2. Sperner labeling
 - Main vertices have distinct labels

- 1. Triangulation into *elementary* triangles
- 2. Sperner labeling
 - Main vertices have distinct labels
 - Boundary vertices inherit the labels of the adjacent main vertices

- 1. Triangulation into *elementary* triangles
- 2. Sperner labeling
 - Main vertices have distinct labels
 - Boundary vertices inherit the labels of the adjacent main vertices

- 1. Triangulation into *elementary* triangles
- 2. Sperner labeling
 - Main vertices have distinct labels
 - Boundary vertices inherit the labels of the adjacent main vertices

- 1. Triangulation into *elementary* triangles
- 2. Sperner labeling
 - Main vertices have distinct labels
 - Boundary vertices inherit the labels of the adjacent main vertices

- 1. Triangulation into *elementary* triangles
- 2. Sperner labeling
 - Main vertices have distinct labels
 - Boundary vertices inherit the labels of the adjacent main vertices

[Sperner, 1928]

Any Sperner labeled triangulation has at least one fully labeled elementary triangle.

- 1. Triangulation into *elementary* triangles
- 2. Sperner labeling
 - Main vertices have distinct labels
 - Boundary vertices inherit the labels of the adjacent main vertices

[Sperner, 1928]

Any Sperner labeled triangulation has at least one fully labeled elementary triangle.

Call any 1—2 edge a "door".

Call any 1—2 edge a "door".

Call any 1—2 edge a "door".

Call any elementary triangle a "room".

Call any 1—2 edge a "door".

Call any elementary triangle a "room".

Observe:

No. of doors on the boundary is odd.

Call any 1—2 edge a "door".

Call any elementary triangle a "room".

Observe:

- No. of doors on the boundary is odd.
- A room can have zero, one, or two doors.

Call any 1—2 edge a "door".

Call any elementary triangle a "room".

Observe:

- No. of doors on the boundary is odd.
- A room can have zero, one, or two doors.

Call any 1—2 edge a "door".

Call any elementary triangle a "room".

Observe:

- No. of doors on the boundary is odd.
- A room can have zero, one, or two doors.

Call any 1—2 edge a "door".

Call any elementary triangle a "room".

Observe:

- No. of doors on the boundary is odd.
- A room can have zero, one, or two doors.

Room with one door ⇔
Fully-labeled elementary triangle

Call any 1—2 edge a "door".

Call any elementary triangle a "room".

Call any 1—2 edge a "door".

Call any elementary triangle a "room".

Start walking!

Call any 1—2 edge a "door".

Call any elementary triangle a "room".

Start walking!

Call any 1—2 edge a "door".

Call any elementary triangle a "room".

Call any 1—2 edge a "door".

Call any elementary triangle a "room".

Call any 1—2 edge a "door".

Call any elementary triangle a "room".

Call any 1—2 edge a "door".

Call any elementary triangle a "room".

Call any 1—2 edge a "door".

Call any elementary triangle a "room".

Call any 1—2 edge a "door".

Call any elementary triangle a "room".

Start walking!

If thrown out, take another door.

Call any 1—2 edge a "door".

Call any elementary triangle a "room".

- If thrown out, take another door.
- Some path must end up in a room with exactly one door.

Call any 1—2 edge a "door".

Call any elementary triangle a "room".

- If thrown out, take another door.
- Some path must end up in a room with exactly one door.

Call any 1—2 edge a "door".

Call any elementary triangle a "room".

- If thrown out, take another door.
- Some path must end up in a room with exactly one door.

Call any 1—2 edge a "door".

Call any elementary triangle a "room".

- If thrown out, take another door.
- Some path must end up in a room with exactly one door.

Call any 1—2 edge a "door".

Call any elementary triangle a "room".

- If thrown out, take another door.
- Some path must end up in a room with exactly one door.

Call any 1—2 edge a "door".

Call any elementary triangle a "room".

- If thrown out, take another door.
- Some path must end up in a room with exactly one door.

Call any 1—2 edge a "door".

Call any elementary triangle a "room".

Start walking!

- If thrown out, take another door.
- Some path must end up in a room with exactly one door.

Why can't such a walk cycle?

Call any 1—2 edge a "door".

Call any elementary triangle a "room".

Start walking!

- If thrown out, take another door.
- Some path must end up in a room with exactly one door.

Why can't such a walk cycle? Exercise.

Call any 1—2 edge a "door".

Call any elementary triangle a "room".

Start walking!

- If thrown out, take another door.
- Some path must end up in a room with exactly one door.

Why can't such a walk cycle? Exercise.

Rental Harmony via Sperner's Lemma

I like Room 1 for Rs. 500 over Room 2 for Rs. 300 and Room 3 for Rs. 200.

I like Room 2 for Rs. 300 over Room 1 for Rs. 500 and Room 3 for Rs. 200.

I like Room 3 for Rs. 200 over Room 1 for Rs. 500 and Room 2 for Rs. 200.

В

Preference labeling

(x,y,z): price of room 1/2/3 is x/y/z fraction of total rent

В

For each vertex in the ownership triangle, ask the owner its favorite room at the pricing given in the preference triangle.

Fully labeled room ⇒ a set of three "nearby" pricing schemes at which different agents prefer different rooms

[Su, Amer. Math. Mon. 1999]

[Su, Amer. Math. Mon. 1999]

Recap

Recap

Ownership labeling

Preference labeling

Case analysis

Sperner doesn't apply, but "proof by walking" does

OR

Embedding

Sperner directly applies

Recap

Ownership labeling

Preference labeling

Approximate envy-freeness

(for a sufficiently fine triangulation)

Exact envy-freeness

(for closed preferences)

Case analysis

Sperner doesn't apply, but "proof by walking" does

OR

Embedding

Sperner directly applies

Other Applications of Sperner's Lemma

Envy-free cake cutting with connected pieces

Monsky's theorem

A square cannot be dissected into an odd number of triangles with equal area.

 $rac{f(x) = x}{f(x)}$

 $rac{f(x) = x}{f(x)}$

 $rac{f(x) = x}{f(x)}$

 $rac{f(x) = x}{f(x)}$

rf(x) = x

Every continuous function from a compact convex set to itself has a fixed point.

Used to prove the existence of Nash equilibrium in game theory

Next Time

Fairness via Randomness

Quiz

Demonstrate a Sperner coloring that maximizes the number of fully-labeled elementary triangles.

References

Fair cake cutting and rent division via Sperner's Lemma

Francis Su "Rental Harmony: Sperner's Lemma in Fair Division" American Mathematical Monthly, 106, 1999 pg 930-942

Fun videos on the topic:

Mathologer: https://www.youtube.com/watch?v=7s-YM-kcKME MoMath: https://www.youtube.com/watch?v=CBVg8x4LWZE

PBS Infinite Series: https://www.youtube.com/watch?v=480BEvpdYSE