COL749: Computational Social Choice

Lecture 12

Fair Allocation of Indivisible Chores

Feb 13, 2025 Rohit Vaish

The Model

Set of agents A A A

Set of indivisible items (A) © O E&

Allocation A A A
©0 wW®EE

Valuation Function

For three items (A) (B) (C)
A{}=0 A{A}=1 A{®B}=1 A{ABEC}=3

A{®}=0 A{B©C}=2
A{©}=2 A{A©}=3

Description grows exponentially with the number of items!

Additive Valuations

A{W®©}= A{W}+ A{B}+ A{©C)]}

Additive Valuations

A{B®C}= A{B}+A{B}+A{©)}
My utility is 5 @ @

A 4 2
A 0 S

Description grows linearly with the number of items.

Mine too!

Marginal Value

Marginal value of (A) for A\ with respect to {(B) (C)}

AB{BOC}= A{AB®C}-A{B ©C}

Types of Resources

Types of Resources

The item(A)is a for 4\ if for all subsets of items S
AB|[S20

Types of Resources

The item(A)is a good for A\ if for all subsets of items S
AB|[S20

E.g., an extra GB of cloud storage

Palld

2GB 5GB 15GB 10GB

Types of Resources

The item(B)is a chore for A\ if for all subsets of items S

A|sso

E.g., a dish that you forgot to wash

Types of Resources

Good for one agent, chore for another: Mixed items

E.g., service charge in restaurant bills

Types of Resources

If all items are goods for all agents: instance
If all items are chores for all agents: Instance

Otherwise: iInstance

Types of Resources

Chores

Types of Valuation Functions

Goods

00,.

**

Chores

Mixed

Types of Valuation Functions

Goods

MonotoneT

AS =2 AT

whenever S 2 T

Chores

Mixed

Types of Valuation Functions

Goods Chores

MonotoneT Monotonel

AS 2 AT AS < AT

wheneverS 2 T whenever S 2 T

Types of Valuation Functions

Goods Chores Mixed
— — (//

Monotone! | Monotone | Doubly
monotone

AS 2 AT AS = AT each agent can

partition items into

wheneverS 2 T | wheneverS 2 T goods and chores

Types of Valuation Functions

MonotoneT

Additive
goods

Chores

Monotonei

AS < AT

whenever S 2 T

Mixed
7

Doubly
monotone

each agent can
partition items into
goods and chores

Types of Valuation Functions

MonotoneT

Additive
goods

Monotone |

Additive
chores

Mixed
7

Doubly
monotone

each agent can
partition items into
goods and chores

Types of Valuation Functions

Monotone! | Monotone| Mixed

Doubly monotone

Additive Additive
goods chores

Goods Chores

Additive mixed

Types of Valuation Functions

Under additive valuations

Goods Chores Mixed

A ® © A ® © n ® ©
A B 1 2 A -1 0 -2 A 1 1 -1
A 1 0 5 A -5 -1 -1 A 2 0 -2

Fairness Notions

Envy-Freeness

[Gamow and Stern, 1958; Foley, 1967]

Each agent prefers its own bundle over that of any other agent.

My bundle @ ©

IS the best
2

My bundle
Is the best

@ Not guaranteed to exist (two agents, one good)

@ Checking whether an EF allocation exists is NP-complete

Envy-Freeness Up To One Good

[Budish, 2011]

Envy can be eliminated by removing some good in the envied bundle.

My bundle is better @ @

if (A) is removed
A 42
My bundle is better

if (C) is removed f 1

\'_'/. Guaranteed to exist and efficiently computable

Envy-Freeness Up To One Chore

[Aziz, Caragiannis, Igarashi, and Walsh; IJCA/ 2019; JAAMAS 2022]

Eliminate envy by removing some chore in the envious agent's bundle.

My bundle is better @ @

if (C) is removed
- NEE R
My bundle is better

if (A) is removed
SN

Allocation A = (A4,...,A,) is EF1 if for every pair of agents 1, k,
there exists a chore j € A; such that v;(A; \ {j}) > vi(Ax).

Envy-Freeness Up To One Item

[Aziz, Caragiannis, Igarashi, and Walsh; IJCA/ 2019; JAAMAS 2022]

Eliminate envy by removing some "good" in the envied bundle
or some "chore" in the envious agent's bundle.

My bundle is better @ @

if (A) is removed
3 -1 -1
My bundle is better

4 -2

if (A) is removed f

Allocation A = (A4,...,A,) is EF1 if for every pair of agents 1, k,
there exists an item j € A; U Ay s.t. v;(A4A; \{j}) > vi(Ax \ {j}).

The Story of EF1

MonotoneT

Additive
goods

Monotonel

Additive
chores

Mixed

Doubly monotone

Goods

Chores

Additive mixed

The Story of EF1

MonotoneT

Additive
goods

The Story of EF1

MonotoneT

Envy-cycle elimination

Additive
goods

Round-robin

The Story of EF1

Monotonei

Additive
chores

Mixed

Doubly monotone

Goods

Chores

Additive mixed

The Story of EF1

Monotonei

Additive
chores

The Story of EF1

Additive
chores

Envy-Freeness Up To One Chore

[Aziz, Caragiannis, Igarashi, and Walsh; IJCA/ 2019; JAAMAS 2022]

Eliminate envy by removing some chore in the envious agent's bundle.

My bundle is better @ @

if (C) is removed
- NEE R
My bundle is better

if (A) is removed
SN

Allocation A = (A4,...,A,) is EF1 if for every pair of agents 1, k,
there exists a chore j € A; such that v;(A; \ {j}) > vi(Ax).

For additive chores, the allocation computed by round-robin
algorithm satisfies EF1.

For additive chores, the allocation computed by round-robin
algorithm satisfies EF1.

n ® © © ®

For additive chores, the allocation computed by round-robin
algorithm satisfies EF1.

n ® © © ®

For additive chores, the allocation computed by round-robin
algorithm satisfies EF1.

n ® © © ®

For additive chores, the allocation computed by round-robin
algorithm satisfies EF1.

n ® © © ®

For additive chores, the allocation computed by round-robin
algorithm satisfies EF1.

n ® © © ®

For additive chores, the allocation computed by round-robin
algorithm satisfies EF1.

n ® © © ®

For additive chores, the allocation computed by round-robin
algorithm satisfies EF1.

For additive chores, the allocation computed by round-robin
algorithm satisfies EF1.

Fix a pair of agents (r,b). Analyze envy of r towards b.

For additive chores, the allocation computed by round-robin
algorithm satisfies EF1.

Fix a pair of agents (r,b). Analyze envy of r towards b.

I

First round

Second round
Third round

Last round

For additive chores, the allocation computed by round-robin
algorithm satisfies EF1.

Fix a pair of agents (r,b). Analyze envy of r towards b.

I

First round

Second round
Third round

Last round ® -

If r precedes b: Then, by additivity, v.(A\{c}) = v.(A,).

For additive chores, the allocation computed by round-robin
algorithm satisfies EF1.

Fix a pair of agents (r,b). Analyze envy of r towards b.

For additive chores, the allocation computed by round-robin
algorithm satisfies EF1.

Fix a pair of agents (r,b). Analyze envy of r towards b.

First round

b r
CI
Second round - - - ./0
Third round - - - /o
./.C

Last round

For additive chores, the allocation computed by round-robin
algorithm satisfies EF1.

Fix a pair of agents (r,b). Analyze envy of r towards b.

First round

b r
CI
Second round - - - ./0 C
Third round - - - /o C.

Last round C/ @ C

If b precedes r: Again, by additivity, v.(A\{c}) = v.(A\{c'"}) = v (A,).

For additive chores, the allocation computed by round-robin
algorithm satisfies EF1.

Fix a pair of agents (r,b). Analyze envy of r towards b.

First round

b r
CI
Second round - - - ./0 C
Third round - - - /o C.

Last round C/ @ C

If b precedes r: Again, by additivity, v.(A\{c}) = v.(A\{c'"}) = v (A,). H

The Story of EF1

Additive
chores

The Story of EF1

Additive
chores

Round-robin

The Story of EF1

Monotonel

Additive
chores

Round-robin

Adapting envy-cycle elimination to chores

While there is an unallocated good
* If the envy graph has a source vertex, assign the good to that agent.

» Otherwise, resolve envy cycles until a source vertex shows up, and then
assign the good to it.

Adapting envy-cycle elimination to chores

i i chore
While there is an unallocated_geed™ chore

K
* If the envy graph has a sgg]rcfé vertex, assiin the goedto that agent.
« Otherwise, resolve envy cycles until a sasgrcé vertex shows up, and then

assign the goedto it.

chore

Adapting envy-cycle elimination to chores

While there is an unallocated chore
* If the envy graph has a sink vertex, assign the chore to that agent.

» Otherwise, resolve envy cycles until a sink vertex shows up, and then
assign the chore to it.

Adapting envy-cycle elimination to chores

While there is an unallocated chore
* If the envy graph has a sink vertex, assign the chore to that agent.

« Otherwise, resolve envy cycles until a sink vertex shows up, and then
assign the chore to it.

n ® © 0O ® @

Adapting envy-cycle elimination to chores

While there is an unallocated chore
* If the envy graph has a sink vertex, assign the chore to that agent.

« Otherwise, resolve envy cycles until a sink vertex shows up, and then
assign the chore to it.

n ® © © ® ® @A)

Adapting envy-cycle elimination to chores

While there is an unallocated chore
* If the envy graph has a sink vertex, assign the chore to that agent.

« Otherwise, resolve envy cycles until a sink vertex shows up, and then
assign the chore to it.

n ® © © ® ® @A)

Adapting envy-cycle elimination to chores

While there is an unallocated chore
* If the envy graph has a sink vertex, assign the chore to that agent.

« Otherwise, resolve envy cycles until a sink vertex shows up, and then
assign the chore to it.

n ® © © ® ® @A)

Adapting envy-cycle elimination to chores

While there is an unallocated chore
* If the envy graph has a sink vertex, assign the chore to that agent.

« Otherwise, resolve envy cycles until a sink vertex shows up, and then
assign the chore to it.

n ® © 0O ® E e

Adapting envy-cycle elimination to chores

While there is an unallocated chore
* If the envy graph has a sink vertex, assign the chore to that agent.

« Otherwise, resolve envy cycles until a sink vertex shows up, and then
assign the chore to it.

n ® © 0O ® E e

Adapting envy-cycle elimination to chores

While there is an unallocated chore
* If the envy graph has a sink vertex, assign the chore to that agent.

« Otherwise, resolve envy cycles until a sink vertex shows up, and then
assign the chore to it.

n ® © 0O ® E e

Adapting envy-cycle elimination to chores

While there is an unallocated chore
* If the envy graph has a sink vertex, assign the chore to that agent.

« Otherwise, resolve envy cycles until a sink vertex shows up, and then
assign the chore to it.

n ® © 0O ® @ e

No sink

Adapting envy-cycle elimination to chores

While there is an unallocated chore
* If the envy graph has a sink vertex, assign the chore to that agent.

« Otherwise, resolve envy cycles until a sink vertex shows up, and then
assign the chore to it.

n ® © O ® ® e

No sink

Adapting envy-cycle elimination to chores

While there is an unallocated chore
* If the envy graph has a sink vertex, assign the chore to that agent.

« Otherwise, resolve envy cycles until a sink vertex shows up, and then
assign the chore to it.

n ® © 0O ® @

Adapting envy-cycle elimination to chores

While there is an unallocated chore
* If the envy graph has a sink vertex, assign the chore to that agent.

« Otherwise, resolve envy cycles until a sink vertex shows up, and then
assign the chore to it.

n ® © O ® ® e

0 -1

Not EF1

B)E

Adapting envy-cycle elimination to chores

While there is an unallocated chore
* If the envy graph has a sink vertex, assign the chore to that agent.
» Otherwise, resolve envy cycles until a sink vertex shows up, and then

assign the chore to it.

New bundle only has "tiny" chores Not EF1

N

A -3 -10 @

The old bundle of A\ had a "large" chore to offset envy.

Adapting envy-cycle elimination to chores

While there is an unallocated chore

* If the envy graph has a sink vertex, assign the chore to that agent.

» Otherwise, resolve envy cycles until a sink vertex shows up, and then
assign the chore to it. \

Source of the problem
Resolving arbitrary envy cycles gives us no control
over the size of individual chores in the new bundle.

e

Not EF1

B)E

Adapting envy-cycle elimination to chores

While there is an unallocated chore
* If the envy graph has a sink vertex, assign the chore to that agent.

» Otherwise, resolve envy cycles until a sink vertex shows up, and then
assign the chore to it. \

e

Solutior;
Resolve top-trading envy cycle

Each agent points to its favorite envied bundle Not EF1

B)E

Top-trading envy-cycle elimination

[Bhaskar, Sricharan, and Vaish, APPROX 2021]

While there is an unallocated chore
* If the envy graph has a sink vertex, assign the chore to that agent.

« Otherwise, resolve a top-trading envy cycle until a sink vertex shows up,
and then assign the chore to it.

Top-trading envy-cycle elimination

[Bhaskar, Sricharan, and Vaish, APPROX 2021]

While there is an unallocated chore
* If the envy graph has a sink vertex, assign the chore to that agent.

« Otherwise, resolve a top-trading envy cycle until a sink vertex shows up,
and then assign the chore to it.

n ® © O ® ® e

Top-trading envy-cycle elimination

[Bhaskar, Sricharan, and Vaish, APPROX 2021]

While there is an unallocated chore
* If the envy graph has a sink vertex, assign the chore to that agent.

« Otherwise, resolve a top-trading envy cycle until a sink vertex shows up,
and then assign the chore to it.

n ® © O ® ® e

No sink

Top-trading envy-cycle elimination

[Bhaskar, Sricharan, and Vaish, APPROX 2021]

While there is an unallocated chore
* If the envy graph has a sink vertex, assign the chore to that agent.

« Otherwise, resolve a top-trading envy cycle until a sink vertex shows up,
and then assign the chore to it.

n ® © O ® ® e

No sink

@U

©F

Top-trading envy-cycle elimination

[Bhaskar, Sricharan, and Vaish, APPROX 2021]

While there is an unallocated chore
* If the envy graph has a sink vertex, assign the chore to that agent.

« Otherwise, resolve a top-trading envy cycle until a sink vertex shows up,
and then assign the chore to it.

@ @ @ @ ® ®@ Resolve

top-trading
envy cycle

@V

©F®

Top-trading envy-cycle elimination

[Bhaskar, Sricharan, and Vaish, APPROX 2021]

While there is an unallocated chore
* If the envy graph has a sink vertex, assign the chore to that agent.

« Otherwise, resolve a top-trading envy cycle until a sink vertex shows up,
and then assign the chore to it.

n ® © O ® ® ©®

Top-trading envy-cycle elimination

[Bhaskar, Sricharan, and Vaish, APPROX 2021]

While there is an unallocated chore
* If the envy graph has a sink vertex, assign the chore to that agent.

« Otherwise, resolve a top-trading envy cycle until a sink vertex shows up,
and then assign the chore to it.

Top-trading envy-cycle elimination

[Bhaskar, Sricharan, and Vaish, APPROX 2021]

While there is an unallocated chore
* If the envy graph has a sink vertex, assign the chore to that agent.

« Otherwise, resolve a top-trading envy cycle until a sink vertex shows up,
and then assign the chore to it.

Why does a top-trading envy cycle exist when there is no sink?

Top-trading envy-cycle elimination

[Bhaskar, Sricharan, and Vaish, APPROX 2021]

While there is an unallocated chore
* If the envy graph has a sink vertex, assign the chore to that agent.

« Otherwise, resolve a top-trading envy cycle until a sink vertex shows up,
and then assign the chore to it.

Why does a top-trading envy cycle exist when there is no sink?

No sink = Every vertex has an outgoing envy edge

Top-trading envy-cycle elimination

[Bhaskar, Sricharan, and Vaish, APPROX 2021]

While there is an unallocated chore
* If the envy graph has a sink vertex, assign the chore to that agent.

« Otherwise, resolve a top-trading envy cycle until a sink vertex shows up,
and then assign the chore to it.

Why does a top-trading envy cycle exist when there is no sink?

| a favorite
No sink = Every vertex has aﬂﬁoutgomg envy edge

Top-trading envy-cycle elimination

[Bhaskar, Sricharan, and Vaish, APPROX 2021]

While there is an unallocated chore
* If the envy graph has a sink vertex, assign the chore to that agent.

« Otherwise, resolve a top-trading envy cycle until a sink vertex shows up,
and then assign the chore to it.

Why does a top-trading envy cycle exist when there is no sink?

| a favorite
No sink = Every vertex has aﬂﬁoutgomg envy edge

= There is a cycle of "most envied" edges

Top-trading envy-cycle elimination

[Bhaskar, Sricharan, and Vaish, APPROX 2021]

While there is an unallocated chore
* If the envy graph has a sink vertex, assign the chore to that agent.

« Otherwise, resolve a top-trading envy cycle until a sink vertex shows up,
and then assign the chore to it.

Why does top-trading envy cycle algorithm satisfy EF1?

Top-trading envy-cycle elimination

[Bhaskar, Sricharan, and Vaish, APPROX 2021]

While there is an unallocated chore
* If the envy graph has a sink vertex, assign the chore to that agent.

« Otherwise, resolve a top-trading envy cycle until a sink vertex shows up,
and then assign the chore to it.

Why does top-trading envy cycle algorithm satisfy EF1?

Every vertex in the top-trading cycle becomes envy-free.

The problem of "new bundle with tiny chores" does not arise.

[Bhaskar, Sricharan, and Vaish, APPROX 2021]

For monotone chores, the allocation computed by the
top-trading envy-cycle elimination algorithm satisfies EF1.

The Story of EF1

Monotonel

Additive
chores

Round-robin

The Story of EF1

Monotonel

Top-trading envy-cycle

Additive
chores

Round-robin

The Story of EF1

Mixed

Doubly monotone

Goods

Chores

Additive mixed

The Story of EF1

Additive mixed

Envy-Freeness Up To One Item

[Aziz, Caragiannis, Igarashi, and Walsh; IJCA/ 2019; JAAMAS 2022]

Eliminate envy by removing some "good" in the envied bundle
or some "chore" in the envious agent's bundle.

My bundle is better @ @

if (A) is removed
3 -1 -1
My bundle is better

4 -2

if (A) is removed f

Allocation A = (A4,...,A,) is EF1 if for every pair of agents 1, k,
there exists an item j € A; U Ay s.t. v;(A4A; \{j}) > vi(Ax \ {j}).

For goods+chores, naive round-robin fails EF1.

n ®

1 -1

£\
A 1 -1

Double round-robin algorithm

[Aziz, Caragiannis, Igarashi, and Walsh; IJCAI 2019; JAAMAS 2022]

Double round-robin algorithm

[Aziz, Caragiannis, Igarashi, and Walsh; IJCAI 2019; JAAMAS 2022]

Partition the items into two sets: positive and negative

Positive: items with strictly positive value for at least one agent

(considered to be a "good” by at least one agent)

Negative: all other items
(considered a "chore" by all agents)

Double round-robin algorithm

[Aziz, Caragiannis, Igarashi, and Walsh; IJCAI 2019; JAAMAS 2022]

Double round-robin algorithm

[Aziz, Caragiannis, Igarashi, and Walsh; IJCAI 2019; JAAMAS 2022]

Double round-robin algorithm

[Aziz, Caragiannis, Igarashi, and Walsh; IJCAI 2019; JAAMAS 2022]

AB® O

Double round-robin algorithm

[Aziz, Caragiannis, Igarashi, and Walsh; IJCAI 2019; JAAMAS 2022]

allocate negative items in this order

AB® - ©

Double round-robin algorithm

[Aziz, Caragiannis, Igarashi, and Walsh; IJCAI 2019; JAAMAS 2022]

allocate negative items in this order

AB® - ©

and positive items in the opposite order

Double round-robin algorithm

[Aziz, Caragiannis, Igarashi, and Walsh; IJCAI 2019; JAAMAS 2022]

No. of negative items
is an integer multiple of n

allocate negative items in this order 44 ;610 valued items)

and positive items in the opposite order

Double round-robin algorithm

[Aziz, Caragiannis, Igarashi, and Walsh; IJCAI 2019; JAAMAS 2022]

No. of negative items
is an integer multiple of n

allocate negative items in this order 44 ;610 valued items)

Picking with skipping

and positive items in the opposite order

Double round-robin algorithm

[Aziz, Caragiannis, Igarashi, and Walsh; IJCAI 2019; JAAMAS 2022]

Double round-robin algorithm

[Aziz, Caragiannis, Igarashi, and Walsh; IJCAI 2019; JAAMAS 2022]

Double round-robin algorithm

[Aziz, Caragiannis, Igarashi, and Walsh; IJCAI 2019; JAAMAS 2022]

Double round-robin algorithm

[Aziz, Caragiannis, Igarashi, and Walsh; IJCAI 2019; JAAMAS 2022]

Double round-robin algorithm

[Aziz, Caragiannis, Igarashi, and Walsh; IJCAI 2019; JAAMAS 2022]

Double round-robin algorithm

[Aziz, Caragiannis, Igarashi, and Walsh; IJCAI 2019; JAAMAS 2022]

Double round-robin algorithm

[Aziz, Caragiannis, Igarashi, and Walsh; IJCAI 2019; JAAMAS 2022]

Double round-robin algorithm

[Aziz, Caragiannis, Igarashi, and Walsh; IJCAI 2019; JAAMAS 2022]

Double round-robin algorithm

[Aziz, Caragiannis, Igarashi, and Walsh; IJCAI 2019; JAAMAS 2022]

Why does double round-robin algorithm satisfy EF17

Why does double round-robin algorithm satisfy EF17

Fix a pair of agents (r,b). Analyze envy of r towards b.

Why does double round-robin algorithm satisfy EF17

Fix a pair of agents (r,b). Analyze envy of r towards b.

Why does double round-robin algorithm satisfy EF17

Fix a pair of agents (r,b). Analyze envy of r towards b.

Why does double round-robin algorithm satisfy EF17

Fix a pair of agents (r,b). Analyze envy of r towards b.

Why does double round-robin algorithm satisfy EF17

Fix a pair of agents (r,b). Analyze envy of r towards b.

Why does double round-robin algorithm satisfy EF17

Fix a pair of agents (r,b). Analyze envy of r towards b.

Why does double round-robin algorithm satisfy EF17

Fix a pair of agents (r,b). Analyze envy of r towards b.

Why does double round-robin algorithm satisfy EF17

Fix a pair of agents (r,b). Analyze envy of r towards b.

Why does double round-robin algorithm satisfy EF17

Fix a pair of agents (r,b). Analyze envy of r towards b.

Why does double round-robin algorithm satisfy EF17

Fix a pair of agents (r,b). Analyze envy of r towards b.

The Story of EF1

Additive mixed
Double round-robin

The Story of EF1

Doubly monotone

Goods

Chores

Additive mixed
Double round-robin

Doubly Monotone Valuations

Doubly Monotone Valuations

Each agent can partition the items into "goods” and "chores”.

marginal 2 0 marginal <0

Doubly Monotone Valuations

Each agent can partition the items into "goods” and "chores”.

marginal 2 0 marginal <0

wn ® © © ©

EF1 for Doubly Monotone Valuations

Partition the items into two sets: positive and negative

Positive: items considered "good" by at least one agent

Negative: items considered "chore" by everyone

EF1 for Doubly Monotone Valuations

 Assign positive items via envy-cycle elimination
(envy graph defined w.r.t. agents who consider the item a "good")

» Assign negative items via top-trading envy-cycle elimination

[Bhaskar, Sricharan, and Vaish, APPROX 2021]

For doubly monotone items, the above algorithm
returns an EF1 allocation.

The Story of EF1

Doubly monotone

Goods

Chores

Additive mixed
Double round-robin

The Story of EF1

Doubly monotone
Envy-cycle + top-trading

Goods

Chores

Additive mixed
Double round-robin

The Story of EF1

Mixed

Doubly monotone
Envy-cycle + top-trading

Goods Chores

Additive mixed
Double round-robin

The Story of EF1

| /N
Mixed

Doubly monotone
Envy-cycle + top-trading

Goods Chores

Additive mixed
Double round-robin

Next Time

Fair Rent Division

Quiz

Quiz

Prove or disprove:

For n identical agents with additive valuations over
mixed items, an EF X allocation always exists.

References

* Double round-robin algorithm

Haris Aziz, loannis Caragiannis, Ayumi Igarashi and Toby Walsh
“Fair allocation of indivisible goods and chores”

Autonomous Agents and Multiagent Systems, 36(3), 2022 pg 1-21
https://link.springer.com/article/10.1007//s10458-021-09532-8

 Top-trading envy-cycle elimination

Umang Bhaskar, A R Sricharan, and Rohit Vaish

“On approximate envy-freeness for indivisible chores and mixed
resources”

APPROX 2021
https://drops.dagstuhl.de/opus/volltexte/2021/14694/

https://link.springer.com/article/10.1007/s10458-021-09532-8
https://www.sciencedirect.com/science/article/pii/S0020019017300212

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Slide 92
	Slide 93
	Slide 94
	Slide 95
	Slide 96
	Slide 97
	Slide 98
	Slide 99
	Slide 100
	Slide 101
	Slide 102
	Slide 103
	Slide 104
	Slide 105
	Slide 106
	Slide 107
	Slide 108
	Slide 109
	Slide 110
	Slide 111
	Slide 112
	Slide 113
	Slide 114
	Slide 115
	Slide 116
	Slide 117
	Slide 118
	Slide 119
	Slide 120
	Slide 121
	Slide 122
	Slide 123
	Slide 124
	Slide 125
	Slide 126
	Slide 127
	Slide 128
	Slide 129
	Slide 130
	Slide 131
	Slide 132
	Slide 133

