COL749: Computational Social Choice

Lecture 12

Fair Allocation of Indivisible Chores

The Model

Set of agents

Set of indivisible items

Allocation

Valuation Function

For three items (A) (B) (C)

Description grows exponentially with the number of items!

Additive Valuations

Additive Valuations

Description grows *linearly* with the number of items.

Marginal Value

Marginal value of (A) for (△) with respect to ((B) (C))

The item (A) is a good for (A) if for all subsets of items S

$$\triangle |S| \ge 0$$

The item (A) is a good for (A) if for all subsets of items S

$$\triangle$$
 A $S \ge 0$

E.g., an extra GB of cloud storage

The item B is a chore for A if for all subsets of items S

E.g., a dish that you forgot to wash

Good for one agent, chore for another: Mixed items

E.g., service charge in restaurant bills

If all items are goods for all agents: Goods instance

If all items are chores for all agents: Chores instance

Otherwise: Mixed instance

Goods

Monotone 1

 $\triangle S \ge \triangle T$

whenever S ⊇ T

Chores

Mixed

Goods

=

Monotone 1

 $\triangle S \ge \triangle T$

whenever S ⊇ T

Chores

Monotone↓

whenever S ⊇ T

Mixed

Goods

=

Monotone 1

 $\triangle S \ge \triangle T$

whenever $S \supseteq T$

Chores

Monotone ↓

 \triangle S \leq \triangle T

whenever S ⊇ T

Mixed

1/

Doubly monotone

each agent can partition items into goods and chores

Monotone ↑

Additive goods

Chores

Monotone ↓

 \triangle S \leq \triangle T

whenever S ⊇ T

Mixed

4

Doubly monotone

each agent can partition items into goods and chores

Monotone †

Additive goods

Monotone ↓

Additive chores

Mixed

4

Doubly monotone

each agent can partition items into goods and chores

Under additive valuations

Fairness Notions

Envy-Freeness [Gamow and Stern, 1958; Foley, 1967]

Each agent prefers its own bundle over that of any other agent.

- Not guaranteed to exist (two agents, one good)
- Checking whether an EF allocation exists is NP-complete

Envy-Freeness Up To One Good

[Budish, 2011]

Envy can be eliminated by removing some good in the envied bundle.

Guaranteed to exist and efficiently computable

Envy-Freeness Up To One Chore

[Aziz, Caragiannis, Igarashi, and Walsh; IJCAI 2019; JAAMAS 2022]

Eliminate envy by removing some chore in the envious agent's bundle.

Allocation $A = (A_1, ..., A_n)$ is EF1 if for every pair of agents i, k, there exists a chore $j \in A_i$ such that $v_i(A_i \setminus \{j\}) \ge v_i(A_k)$.

Envy-Freeness Up To One Item

[Aziz, Caragiannis, Igarashi, and Walsh; IJCAI 2019; JAAMAS 2022]

Eliminate envy by removing some "good" in the envied bundle or some "chore" in the envious agent's bundle.

Allocation $A = (A_1, ..., A_n)$ is EF1 if for every pair of agents i, k, there exists an item $j \in A_i \cup A_k$ s.t. $v_i(A_i \setminus \{j\}) \ge v_i(A_k \setminus \{j\})$.

Envy-cycle elimination

Additive goods

Round-robin

Monotone

Additive chores

Mixed

Monotone '

Envy-cycle elimination

Additive goods

Monotone ↓

Additive chores

Mixed

Goods Chores

Additive mixed

Monotone '

Envy-cycle elimination

Additive goods

Round-robin

Monotone ↓

Additive chores

Mixed

Monotone '

Envy-cycle elimination

Additive goods

Round-robin

Monotone

Additive chores

Mixed

Envy-Freeness Up To One Chore

[Aziz, Caragiannis, Igarashi, and Walsh; IJCAI 2019; JAAMAS 2022]

Eliminate envy by removing some chore in the envious agent's bundle.

Allocation $A = (A_1, ..., A_n)$ is EF1 if for every pair of agents i, k, there exists a chore $j \in A_i$ such that $v_i(A_i \setminus \{j\}) \ge v_i(A_k)$.

For additive chores, the allocation computed by round-robin algorithm satisfies EF1.

For additive chores, the allocation computed by round-robin algorithm satisfies EF1.

For additive chores, the allocation computed by round-robin algorithm satisfies EF1.

Fix a pair of agents (r,b). Analyze envy of r towards b.

Fix a pair of agents (r,b). Analyze envy of r towards b.

Fix a pair of agents (r,b). Analyze envy of r towards b.

If r precedes b: Then, by additivity, $v_r(A_r \setminus \{c\}) \ge v_r(A_b)$.

Fix a pair of agents (r,b). Analyze envy of r towards b.

Fix a pair of agents (r,b). Analyze envy of r towards b.

Fix a pair of agents (r,b). Analyze envy of r towards b.

If b precedes r: Again, by additivity, $v_r(A_r \setminus \{c\}) \ge v_r(A_b \setminus \{c'\}) \ge v_r(A_b)$.

Fix a pair of agents (r,b). Analyze envy of r towards b.

If b precedes r: Again, by additivity, $v_r(A_r \setminus \{c\}) \ge v_r(A_b \setminus \{c'\}) \ge v_r(A_b)$.

The Story of EF1

Monotone 1

Envy-cycle elimination

Additive goods

Round-robin

Monotone

Additive chores

Mixed

The Story of EF1

Monotone '

Envy-cycle elimination

Additive goods

Round-robin

Monotone

Additive chores

Round-robin

Mixed

The Story of EF1

Monotone '

Envy-cycle elimination

Additive

Round-robin

Monotone ↓

Additive chores

Round-robin

Mixed

While there is an unallocated good

- If the envy graph has a source vertex, assign the good to that agent.
- Otherwise, resolve envy cycles until a source vertex shows up, and then assign the good to it.

While there is an unallocated good chore chore

- If the envy graph has a source vertex, assign the good to that agent.
- Otherwise, resolve envy cycles until a source vertex shows up, and then assign the good to it.

chore

- If the envy graph has a sink vertex, assign the chore to that agent.
- Otherwise, resolve envy cycles until a sink vertex shows up, and then assign the chore to it.

While there is an unallocated chore

- If the envy graph has a sink vertex, assign the chore to that agent.
- Otherwise, resolve envy cycles until a sink vertex shows up, and then assign the chore to it.

-1

-4

-2

-3

0

-1

-2

-1

-2

-2

-3

-1

-1

-3

-1

-1

-3

While there is an unallocated chore

- If the envy graph has a sink vertex, assign the chore to that agent.
- Otherwise, resolve envy cycles until a sink vertex shows up, and then assign the chore to it.

-4

-2

-3

0

-1

-2

-1

-2

-2

-3

-1

-1

-3

-1

-1

-3

While there is an unallocated chore

- If the envy graph has a sink vertex, assign the chore to that agent.
- Otherwise, resolve envy cycles until a sink vertex shows up, and then assign the chore to it.

-4

-2

-3

0

-1

-2

-1

-2

-2

-3

-1

-1

-3

-1

-1

-3

While there is an unallocated chore

- If the envy graph has a sink vertex, assign the chore to that agent.
- Otherwise, resolve envy cycles until a sink vertex shows up, and then assign the chore to it.

-4

-2

-3

0

-1

-2

-1

-2

-2

-3

-1

-1

-3

-1

-1

-3

- If the envy graph has a sink vertex, assign the chore to that agent.
- Otherwise, resolve envy cycles until a sink vertex shows up, and then assign the chore to it.

While there is an unallocated chore

- If the envy graph has a sink vertex, assign the chore to that agent.
- Otherwise, resolve envy cycles until a sink vertex shows up, and then assign the chore to it.

-2

-2

-2

-1

-1

-3

-1

-1

-3

- If the envy graph has a sink vertex, assign the chore to that agent.
- Otherwise, resolve envy cycles until a sink vertex shows up, and then assign the chore to it.

- If the envy graph has a sink vertex, assign the chore to that agent.
- Otherwise, resolve envy cycles until a sink vertex shows up, and then assign the chore to it.

- If the envy graph has a sink vertex, assign the chore to that agent.
- Otherwise, resolve envy cycles until a sink vertex shows up, and then assign the chore to it.

- If the envy graph has a sink vertex, assign the chore to that agent.
- Otherwise, resolve envy cycles until a sink vertex shows up, and then assign the chore to it.

- If the envy graph has a sink vertex, assign the chore to that agent.
- Otherwise, resolve envy cycles until a sink vertex shows up, and then assign the chore to it.

- If the envy graph has a sink vertex, assign the chore to that agent.
- Otherwise, resolve envy cycles until a sink vertex shows up, and then assign the chore to it.

While there is an unallocated chore

- If the envy graph has a sink vertex, assign the chore to that agent.
- Otherwise, resolve envy cycles until a sink vertex shows up, and then assign the chore to it.

Source of the problem

Resolving arbitrary envy cycles gives us no control over the size of individual chores in the new bundle.

-1

-3

-1

-1

-3

∙10

(**F**

B

Not EF

While there is an unallocated chore

- If the envy graph has a sink vertex, assign the chore to that agent.
- Otherwise, resolve envy cycles until a sink vertex shows up, and then assign the chore to it.

Solution

Resolve top-trading envy cycle

Each agent points to its *favorite* envied bundle

-1

-3

-1

-1

-3

-10

E

BE

Not EF

[Bhaskar, Sricharan, and Vaish, APPROX 2021]

- If the envy graph has a sink vertex, assign the chore to that agent.
- Otherwise, resolve a top-trading envy cycle until a sink vertex shows up, and then assign the chore to it.

[Bhaskar, Sricharan, and Vaish, APPROX 2021]

- If the envy graph has a sink vertex, assign the chore to that agent.
- Otherwise, resolve a top-trading envy cycle until a sink vertex shows up, and then assign the chore to it.

[Bhaskar, Sricharan, and Vaish, APPROX 2021]

- If the envy graph has a sink vertex, assign the chore to that agent.
- Otherwise, resolve a top-trading envy cycle until a sink vertex shows up, and then assign the chore to it.

[Bhaskar, Sricharan, and Vaish, APPROX 2021]

- If the envy graph has a sink vertex, assign the chore to that agent.
- Otherwise, resolve a top-trading envy cycle until a sink vertex shows up, and then assign the chore to it.

[Bhaskar, Sricharan, and Vaish, APPROX 2021]

While there is an unallocated chore

- If the envy graph has a sink vertex, assign the chore to that agent.
- Otherwise, resolve a top-trading envy cycle until a sink vertex shows up, and then assign the chore to it.

[Bhaskar, Sricharan, and Vaish, APPROX 2021]

While there is an unallocated chore

- If the envy graph has a sink vertex, assign the chore to that agent.
- Otherwise, resolve a top-trading envy cycle until a sink vertex shows up, and then assign the chore to it.

[Bhaskar, Sricharan, and Vaish, APPROX 2021]

While there is an unallocated chore

- If the envy graph has a sink vertex, assign the chore to that agent.
- Otherwise, resolve a top-trading envy cycle until a sink vertex shows up, and then assign the chore to it.

[Bhaskar, Sricharan, and Vaish, APPROX 2021]

While there is an unallocated chore

- If the envy graph has a sink vertex, assign the chore to that agent.
- Otherwise, resolve a top-trading envy cycle until a sink vertex shows up, and then assign the chore to it.

Why does a top-trading envy cycle exist when there is no sink?

[Bhaskar, Sricharan, and Vaish, APPROX 2021]

While there is an unallocated chore

- If the envy graph has a sink vertex, assign the chore to that agent.
- Otherwise, resolve a top-trading envy cycle until a sink vertex shows up, and then assign the chore to it.

Why does a top-trading envy cycle exist when there is no sink?

No sink ⇒ Every vertex has an outgoing envy edge

[Bhaskar, Sricharan, and Vaish, APPROX 2021]

While there is an unallocated chore

- If the envy graph has a sink vertex, assign the chore to that agent.
- Otherwise, resolve a top-trading envy cycle until a sink vertex shows up, and then assign the chore to it.

Why does a top-trading envy cycle exist when there is no sink?

a favorite
No sink ⇒ Every vertex has arr outgoing envy edge

[Bhaskar, Sricharan, and Vaish, APPROX 2021]

While there is an unallocated chore

- If the envy graph has a sink vertex, assign the chore to that agent.
- Otherwise, resolve a top-trading envy cycle until a sink vertex shows up, and then assign the chore to it.

Why does a top-trading envy cycle exist when there is no sink?

a favorite
No sink ⇒ Every vertex has arr outgoing envy edge

⇒ There is a cycle of "most envied" edges

[Bhaskar, Sricharan, and Vaish, APPROX 2021]

While there is an unallocated chore

- If the envy graph has a sink vertex, assign the chore to that agent.
- Otherwise, resolve a top-trading envy cycle until a sink vertex shows up, and then assign the chore to it.

Why does top-trading envy cycle algorithm satisfy EF1?

[Bhaskar, Sricharan, and Vaish, APPROX 2021]

While there is an unallocated chore

- If the envy graph has a sink vertex, assign the chore to that agent.
- Otherwise, resolve a top-trading envy cycle until a sink vertex shows up, and then assign the chore to it.

Why does top-trading envy cycle algorithm satisfy EF1?

Every vertex in the top-trading cycle becomes envy-free.

The problem of "new bundle with tiny chores" does not arise.

[Bhaskar, Sricharan, and Vaish, APPROX 2021]

For monotone chores, the allocation computed by the top-trading envy-cycle elimination algorithm satisfies EF1.

Monotone '

Envy-cycle elimination

Additive goods

Round-robin

Monotone ↓

Additive chores

Round-robin

Mixed

Monotone '

Envy-cycle elimination

Additive goods

Round-robin

Monotone ↓

Top-trading envy-cycle

Additive chores

Round-robin

Mixed

Monotone '

Envy-cycle elimination

Additive goods

Monotone

Top-trading envy-cycle

Additive chores

Round-robin

Mixed

Goods Chores

Additive mixed

Monotone 1

Envy-cycle elimination

Additive goods

Round-robin

Monotone

Top-trading envy-cycle

Additive chores

Round-robin

Mixed

Envy-Freeness Up To One Item

[Aziz, Caragiannis, Igarashi, and Walsh; IJCAI 2019; JAAMAS 2022]

Eliminate envy by removing some "good" in the envied bundle or some "chore" in the envious agent's bundle.

Allocation $A = (A_1, ..., A_n)$ is EF1 if for every pair of agents i, k, there exists an item $j \in A_i \cup A_k$ s.t. $v_i(A_i \setminus \{j\}) \ge v_i(A_k \setminus \{j\})$.

For goods+chores, naive round-robin fails EF1.

[Aziz, Caragiannis, Igarashi, and Walsh; IJCAI 2019; JAAMAS 2022]

Partition the items into two sets: positive and negative

Positive: items with strictly positive value for at least one agent (considered to be a "good" by at least one agent)

Negative: all other items (considered a "chore" by all agents)

[Aziz, Caragiannis, Igarashi, and Walsh; IJCAI 2019; JAAMAS 2022]

allocate negative items in this order

[Aziz, Caragiannis, Igarashi, and Walsh; IJCAI 2019; JAAMAS 2022]

allocate negative items in this order

and positive items in the opposite order

[Aziz, Caragiannis, Igarashi, and Walsh; IJCAI 2019; JAAMAS 2022]

allocate negative items in this order

No. of negative items is an integer multiple of n (add zero valued items)

and positive items in the opposite order

[Aziz, Caragiannis, Igarashi, and Walsh; IJCAI 2019; JAAMAS 2022]

allocate negative items in this order

No. of negative items is an integer multiple of n (add zero valued items)

and positive items in the opposite order

Picking with skipping

Why does double round-robin algorithm satisfy EF1?

Why does double round-robin algorithm satisfy EF1?

Fix a pair of agents (r,b). Analyze envy of r towards b.

Fix a pair of agents (r,b). Analyze envy of r towards b.

 \dots r \dots b \dots

Fix a pair of agents (r,b). Analyze envy of r towards b.

. . . . <u>b</u> r

Monotone 1

Envy-cycle elimination

Additive goods

Round-robin

Monotone

Top-trading envy-cycle

Additive chores

Round-robin

Monotone '

Envy-cycle elimination

Additive goods

Monotone

Top-trading envy-cycle

Additive chores

Round-robin

Doubly Monotone Valuations

Each agent can partition the items into "goods" and "chores".

marginal ≥ 0

marginal ≤ 0

Doubly Monotone Valuations

Each agent can partition the items into "goods" and "chores".

marginal ≥ 0

marginal ≤ 0

-

-

-

+

+

_

+

+

+

+

-

+

_

+

_

EF1 for Doubly Monotone Valuations

Partition the items into two sets: positive and negative

Positive: items considered "good" by at least one agent

Negative: items considered "chore" by everyone

EF1 for Doubly Monotone Valuations

- Assign positive items via envy-cycle elimination (envy graph defined w.r.t. agents who consider the item a "good")
- Assign negative items via top-trading envy-cycle elimination

[Bhaskar, Sricharan, and Vaish, APPROX 2021]

For doubly monotone items, the above algorithm returns an EF1 allocation.

Monotone '

Envy-cycle elimination

Additive goods

Round-robin

Monotone

Top-trading envy-cycle

Additive chores

Round-robin

Monotone 1

Envy-cycle elimination

Additive goods

Round-robin

Monotone

Top-trading envy-cycle

Additive chores

Round-robin

Monotone 1

Envy-cycle elimination

Additive goods

Round-robin

Monotone

Top-trading envy-cycle

Additive chores

Round-robin

Monotone 1

Envy-cycle elimination

Additive goods

Round-robin

Monotone

Top-trading envy-cycle

Additive chores

Round-robin

Next Time

Fair Rent Division

Quiz

Prove or disprove:

For n identical agents with additive valuations over mixed items, an EFX allocation always exists.

References

Double round-robin algorithm

Haris Aziz, Ioannis Caragiannis, Ayumi Igarashi and Toby Walsh "Fair allocation of indivisible goods and chores" Autonomous Agents and Multiagent Systems, 36(3), 2022 pg 1-21 https://link.springer.com/article/10.1007/s10458-021-09532-8

Top-trading envy-cycle elimination

Umang Bhaskar, A R Sricharan, and Rohit Vaish "On approximate envy-freeness for indivisible chores and mixed resources"

APPROX 2021

https://drops.dagstuhl.de/opus/volltexte/2021/14694/