COL749: Computational Social Choice

Lecture 12

Fair Allocation of Indivisible Chores

Feb 13, 2025 Rohit Vaish




The Model

Set of agents A A A

Set of indivisible items (A) © O E&

Allocation A A A
©0 wW®EE




Valuation Function

For three items (A) (B) (C)
A{}=0 A{A}=1 A{®B}=1 A{ABEC}=3

A{®}=0 A{B©C}=2
A{©}=2 A{A©}=3

Description grows exponentially with the number of items!




Additive Valuations

A{W®©}= A{W}+ A{B}+ A{©C)]}




Additive Valuations

A{B®C}= A{B}+A{B}+A{©)}
My utility is 5 @ @

A 4 2
A 0 S

Description grows linearly with the number of items.

Mine too!




Marginal Value

Marginal value of (A) for A\ with respect to {(B) (C)}

AB{BOC}= A{AB®C}-A{B ©C}




Types of Resources




Types of Resources

The item(A)is a for 4\ if for all subsets of items S
AB|[S20




Types of Resources

The item(A)is a good for A\ if for all subsets of items S
AB|[S20

E.g., an extra GB of cloud storage

Palld

2GB 5GB 15GB 10GB




Types of Resources

The item(B)is a chore for A\ if for all subsets of items S

A|sso

E.g., a dish that you forgot to wash




Types of Resources

Good for one agent, chore for another: Mixed items

E.g., service charge in restaurant bills




Types of Resources

If all items are goods for all agents: instance
If all items are chores for all agents: Instance

Otherwise: iInstance




Types of Resources

Chores




Types of Valuation Functions

Goods

00,.

**

Chores

Mixed




Types of Valuation Functions

Goods

MonotoneT

AS =2 AT

whenever S 2 T

Chores

Mixed




Types of Valuation Functions

Goods Chores

MonotoneT Monotonel

AS 2 AT AS < AT

wheneverS 2 T whenever S 2 T




Types of Valuation Functions

Goods Chores Mixed
— — (//

Monotone! | Monotone | Doubly
monotone

AS 2 AT AS = AT each agent can

partition items into

wheneverS 2 T | wheneverS 2 T goods and chores




Types of Valuation Functions

MonotoneT

Additive
goods

Chores

Monotonei

AS < AT

whenever S 2 T

Mixed
7

Doubly
monotone

each agent can
partition items into
goods and chores




Types of Valuation Functions

MonotoneT

Additive
goods

Monotone |

Additive
chores

Mixed
7

Doubly
monotone

each agent can
partition items into
goods and chores




Types of Valuation Functions

Monotone! | Monotone| Mixed

Doubly monotone

Additive Additive
goods chores

Goods Chores

Additive mixed




Types of Valuation Functions

Under additive valuations

Goods Chores Mixed

A ® © A ® © n ® ©
A B 1 2 A -1 0 -2 A 1 1 -1
A 1 0 5 A -5 -1 -1 A 2 0 -2




Fairness Notions




Envy-Freeness

[Gamow and Stern, 1958; Foley, 1967]

Each agent prefers its own bundle over that of any other agent.

My bundle @ ©

IS the best
2

My bundle
Is the best

@ Not guaranteed to exist (two agents, one good)

@ Checking whether an EF allocation exists is NP-complete




Envy-Freeness Up To One Good

[Budish, 2011]

Envy can be eliminated by removing some good in the envied bundle.

My bundle is better @ @

if (A) is removed
A 42
My bundle is better

if (C) is removed f 1

\'_'/. Guaranteed to exist and efficiently computable




Envy-Freeness Up To One Chore

[Aziz, Caragiannis, Igarashi, and Walsh; IJCA/ 2019; JAAMAS 2022]

Eliminate envy by removing some chore in the envious agent's bundle.

My bundle is better @ @

if (C) is removed
- NEE R
My bundle is better

if (A) is removed
SN

Allocation A = (A4,...,A,) is EF1 if for every pair of agents 1, k,
there exists a chore j € A; such that v;(A; \ {j}) > vi(Ax).




Envy-Freeness Up To One Item

[Aziz, Caragiannis, Igarashi, and Walsh; IJCA/ 2019; JAAMAS 2022]

Eliminate envy by removing some "good" in the envied bundle
or some "chore" in the envious agent's bundle.

My bundle is better @ @

if (A) is removed
3 -1 -1
My bundle is better

4 -2

if (A) is removed f

Allocation A = (A4,...,A,) is EF1 if for every pair of agents 1, k,
there exists an item j € A; U Ay s.t. v;(A4A; \{j}) > vi(Ax \ {j}).




The Story of EF1

MonotoneT

Additive
goods

Monotonel

Additive
chores

Mixed

Doubly monotone

Goods

Chores

Additive mixed




The Story of EF1

MonotoneT

Additive
goods




The Story of EF1

MonotoneT

Envy-cycle elimination

Additive
goods

Round-robin




The Story of EF1

Monotonei

Additive
chores

Mixed

Doubly monotone

Goods

Chores

Additive mixed




The Story of EF1

Monotonei

Additive
chores




The Story of EF1

Additive
chores




Envy-Freeness Up To One Chore

[Aziz, Caragiannis, Igarashi, and Walsh; IJCA/ 2019; JAAMAS 2022]

Eliminate envy by removing some chore in the envious agent's bundle.

My bundle is better @ @

if (C) is removed
- NEE R
My bundle is better

if (A) is removed
SN

Allocation A = (A4,...,A,) is EF1 if for every pair of agents 1, k,
there exists a chore j € A; such that v;(A; \ {j}) > vi(Ax).




For additive chores, the allocation computed by round-robin
algorithm satisfies EF1.
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For additive chores, the allocation computed by round-robin
algorithm satisfies EF1.

Fix a pair of agents (r,b). Analyze envy of r towards b.

I

First round

Second round
Third round

Last round ® -

If r precedes b: Then, by additivity, v.(A\{c}) = v.(A,).




For additive chores, the allocation computed by round-robin
algorithm satisfies EF1.

Fix a pair of agents (r,b). Analyze envy of r towards b.




For additive chores, the allocation computed by round-robin
algorithm satisfies EF1.

Fix a pair of agents (r,b). Analyze envy of r towards b.
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For additive chores, the allocation computed by round-robin
algorithm satisfies EF1.

Fix a pair of agents (r,b). Analyze envy of r towards b.

First round

b r
CI
Second round - - - ./0 C
Third round - - - /o C.

Last round C/ @ C

If b precedes r: Again, by additivity, v.(A\{c}) = v.(A\{c'"}) = v (A,).




For additive chores, the allocation computed by round-robin
algorithm satisfies EF1.

Fix a pair of agents (r,b). Analyze envy of r towards b.

First round

b r
CI
Second round - - - ./0 C
Third round - - - /o C.

Last round C/ @ C

If b precedes r: Again, by additivity, v.(A\{c}) = v.(A\{c'"}) = v (A,). H
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Additive
chores




The Story of EF1

Additive
chores

Round-robin




The Story of EF1

Monotonel

Additive
chores

Round-robin




Adapting envy-cycle elimination to chores

While there is an unallocated good
* If the envy graph has a source vertex, assign the good to that agent.

» Otherwise, resolve envy cycles until a source vertex shows up, and then
assign the good to it.




Adapting envy-cycle elimination to chores

i i chore
While there is an unallocated_geed™ chore

K
* If the envy graph has a sgg]rcfé vertex, assiin the goedto that agent.
« Otherwise, resolve envy cycles until a sasgrcé vertex shows up, and then

assign the goedto it.

chore




Adapting envy-cycle elimination to chores

While there is an unallocated chore
* If the envy graph has a sink vertex, assign the chore to that agent.

» Otherwise, resolve envy cycles until a sink vertex shows up, and then
assign the chore to it.




Adapting envy-cycle elimination to chores

While there is an unallocated chore
* If the envy graph has a sink vertex, assign the chore to that agent.

« Otherwise, resolve envy cycles until a sink vertex shows up, and then
assign the chore to it.
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Adapting envy-cycle elimination to chores

While there is an unallocated chore
* If the envy graph has a sink vertex, assign the chore to that agent.
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Adapting envy-cycle elimination to chores

While there is an unallocated chore
* If the envy graph has a sink vertex, assign the chore to that agent.
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Adapting envy-cycle elimination to chores

While there is an unallocated chore
* If the envy graph has a sink vertex, assign the chore to that agent.

« Otherwise, resolve envy cycles until a sink vertex shows up, and then
assign the chore to it.
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Adapting envy-cycle elimination to chores

While there is an unallocated chore
* If the envy graph has a sink vertex, assign the chore to that agent.

« Otherwise, resolve envy cycles until a sink vertex shows up, and then
assign the chore to it.
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Adapting envy-cycle elimination to chores

While there is an unallocated chore
* If the envy graph has a sink vertex, assign the chore to that agent.

« Otherwise, resolve envy cycles until a sink vertex shows up, and then
assign the chore to it.

n ® © O ® ® e

0 -1

Not EF1

B)E



Adapting envy-cycle elimination to chores

While there is an unallocated chore
* If the envy graph has a sink vertex, assign the chore to that agent.
» Otherwise, resolve envy cycles until a sink vertex shows up, and then

assign the chore to it.

New bundle only has "tiny" chores Not EF1

N

A -3 -10 @

The old bundle of A\ had a "large" chore to offset envy.




Adapting envy-cycle elimination to chores

While there is an unallocated chore

* If the envy graph has a sink vertex, assign the chore to that agent.

» Otherwise, resolve envy cycles until a sink vertex shows up, and then
assign the chore to it. \

Source of the problem
Resolving arbitrary envy cycles gives us no control
over the size of individual chores in the new bundle.

e

Not EF1

B)E



Adapting envy-cycle elimination to chores

While there is an unallocated chore
* If the envy graph has a sink vertex, assign the chore to that agent.

» Otherwise, resolve envy cycles until a sink vertex shows up, and then
assign the chore to it. \

e

Solutior;
Resolve top-trading envy cycle

Each agent points to its favorite envied bundle Not EF1

B)E



Top-trading envy-cycle elimination

[Bhaskar, Sricharan, and Vaish, APPROX 2021]

While there is an unallocated chore
* If the envy graph has a sink vertex, assign the chore to that agent.

« Otherwise, resolve a top-trading envy cycle until a sink vertex shows up,
and then assign the chore to it.




Top-trading envy-cycle elimination

[Bhaskar, Sricharan, and Vaish, APPROX 2021]

While there is an unallocated chore
* If the envy graph has a sink vertex, assign the chore to that agent.

« Otherwise, resolve a top-trading envy cycle until a sink vertex shows up,
and then assign the chore to it.

n ® © O ® ® e




Top-trading envy-cycle elimination

[Bhaskar, Sricharan, and Vaish, APPROX 2021]

While there is an unallocated chore
* If the envy graph has a sink vertex, assign the chore to that agent.

« Otherwise, resolve a top-trading envy cycle until a sink vertex shows up,
and then assign the chore to it.

n ® © O ® ® e

No sink




Top-trading envy-cycle elimination

[Bhaskar, Sricharan, and Vaish, APPROX 2021]

While there is an unallocated chore
* If the envy graph has a sink vertex, assign the chore to that agent.

« Otherwise, resolve a top-trading envy cycle until a sink vertex shows up,
and then assign the chore to it.

n ® © O ® ® e

No sink

@U

©F



Top-trading envy-cycle elimination

[Bhaskar, Sricharan, and Vaish, APPROX 2021]

While there is an unallocated chore
* If the envy graph has a sink vertex, assign the chore to that agent.

« Otherwise, resolve a top-trading envy cycle until a sink vertex shows up,
and then assign the chore to it.

@ @ @ @ ® ®@ Resolve

top-trading
envy cycle

@V

©F®



Top-trading envy-cycle elimination

[Bhaskar, Sricharan, and Vaish, APPROX 2021]

While there is an unallocated chore
* If the envy graph has a sink vertex, assign the chore to that agent.

« Otherwise, resolve a top-trading envy cycle until a sink vertex shows up,
and then assign the chore to it.

n ® © O ® ® ©®




Top-trading envy-cycle elimination

[Bhaskar, Sricharan, and Vaish, APPROX 2021]

While there is an unallocated chore
* If the envy graph has a sink vertex, assign the chore to that agent.

« Otherwise, resolve a top-trading envy cycle until a sink vertex shows up,
and then assign the chore to it.




Top-trading envy-cycle elimination

[Bhaskar, Sricharan, and Vaish, APPROX 2021]

While there is an unallocated chore
* If the envy graph has a sink vertex, assign the chore to that agent.

« Otherwise, resolve a top-trading envy cycle until a sink vertex shows up,
and then assign the chore to it.

Why does a top-trading envy cycle exist when there is no sink?




Top-trading envy-cycle elimination

[Bhaskar, Sricharan, and Vaish, APPROX 2021]

While there is an unallocated chore
* If the envy graph has a sink vertex, assign the chore to that agent.

« Otherwise, resolve a top-trading envy cycle until a sink vertex shows up,
and then assign the chore to it.

Why does a top-trading envy cycle exist when there is no sink?

No sink = Every vertex has an outgoing envy edge




Top-trading envy-cycle elimination

[Bhaskar, Sricharan, and Vaish, APPROX 2021]

While there is an unallocated chore
* If the envy graph has a sink vertex, assign the chore to that agent.

« Otherwise, resolve a top-trading envy cycle until a sink vertex shows up,
and then assign the chore to it.

Why does a top-trading envy cycle exist when there is no sink?

| a favorite
No sink = Every vertex has aﬂﬁoutgomg envy edge




Top-trading envy-cycle elimination

[Bhaskar, Sricharan, and Vaish, APPROX 2021]

While there is an unallocated chore
* If the envy graph has a sink vertex, assign the chore to that agent.

« Otherwise, resolve a top-trading envy cycle until a sink vertex shows up,
and then assign the chore to it.

Why does a top-trading envy cycle exist when there is no sink?

| a favorite
No sink = Every vertex has aﬂﬁoutgomg envy edge

= There is a cycle of "most envied" edges




Top-trading envy-cycle elimination

[Bhaskar, Sricharan, and Vaish, APPROX 2021]

While there is an unallocated chore
* If the envy graph has a sink vertex, assign the chore to that agent.

« Otherwise, resolve a top-trading envy cycle until a sink vertex shows up,
and then assign the chore to it.

Why does top-trading envy cycle algorithm satisfy EF1?




Top-trading envy-cycle elimination

[Bhaskar, Sricharan, and Vaish, APPROX 2021]

While there is an unallocated chore
* If the envy graph has a sink vertex, assign the chore to that agent.

« Otherwise, resolve a top-trading envy cycle until a sink vertex shows up,
and then assign the chore to it.

Why does top-trading envy cycle algorithm satisfy EF1?

Every vertex in the top-trading cycle becomes envy-free.

The problem of "new bundle with tiny chores" does not arise.




[Bhaskar, Sricharan, and Vaish, APPROX 2021]

For monotone chores, the allocation computed by the
top-trading envy-cycle elimination algorithm satisfies EF1.
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The Story of EF1

Monotonel

Top-trading envy-cycle

Additive
chores

Round-robin




The Story of EF1

Mixed

Doubly monotone

Goods

Chores

Additive mixed




The Story of EF1

Additive mixed




Envy-Freeness Up To One Item

[Aziz, Caragiannis, Igarashi, and Walsh; IJCA/ 2019; JAAMAS 2022]

Eliminate envy by removing some "good" in the envied bundle
or some "chore" in the envious agent's bundle.

My bundle is better @ @

if (A) is removed
3 -1 -1
My bundle is better

4 -2

if (A) is removed f

Allocation A = (A4,...,A,) is EF1 if for every pair of agents 1, k,
there exists an item j € A; U Ay s.t. v;(A4A; \{j}) > vi(Ax \ {j}).




For goods+chores, naive round-robin fails EF1.

n ®

1 -1

£\
A 1 -1




Double round-robin algorithm

[Aziz, Caragiannis, Igarashi, and Walsh; IJCAI 2019; JAAMAS 2022]




Double round-robin algorithm

[Aziz, Caragiannis, Igarashi, and Walsh; IJCAI 2019; JAAMAS 2022]

Partition the items into two sets: positive and negative

Positive: items with strictly positive value for at least one agent

(considered to be a "good” by at least one agent)

Negative: all other items
(considered a "chore" by all agents)




Double round-robin algorithm

[Aziz, Caragiannis, Igarashi, and Walsh; IJCAI 2019; JAAMAS 2022]
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[Aziz, Caragiannis, Igarashi, and Walsh; IJCAI 2019; JAAMAS 2022]




Double round-robin algorithm

[Aziz, Caragiannis, Igarashi, and Walsh; IJCAI 2019; JAAMAS 2022]

AB® O




Double round-robin algorithm

[Aziz, Caragiannis, Igarashi, and Walsh; IJCAI 2019; JAAMAS 2022]

allocate negative items in this order

AB® - ©




Double round-robin algorithm

[Aziz, Caragiannis, Igarashi, and Walsh; IJCAI 2019; JAAMAS 2022]

allocate negative items in this order

AB® - ©

and positive items in the opposite order




Double round-robin algorithm

[Aziz, Caragiannis, Igarashi, and Walsh; IJCAI 2019; JAAMAS 2022]

No. of negative items
is an integer multiple of n

allocate negative items in this order 44 ;610 valued items)

and positive items in the opposite order




Double round-robin algorithm

[Aziz, Caragiannis, Igarashi, and Walsh; IJCAI 2019; JAAMAS 2022]

No. of negative items
is an integer multiple of n

allocate negative items in this order 44 ;610 valued items)

Picking with skipping

and positive items in the opposite order




Double round-robin algorithm

[Aziz, Caragiannis, Igarashi, and Walsh; IJCAI 2019; JAAMAS 2022]
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[Aziz, Caragiannis, Igarashi, and Walsh; IJCAI 2019; JAAMAS 2022]
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Double round-robin algorithm

[Aziz, Caragiannis, Igarashi, and Walsh; IJCAI 2019; JAAMAS 2022]




Double round-robin algorithm

[Aziz, Caragiannis, Igarashi, and Walsh; IJCAI 2019; JAAMAS 2022]




Why does double round-robin algorithm satisfy EF17
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Why does double round-robin algorithm satisfy EF17

Fix a pair of agents (r,b). Analyze envy of r towards b.




The Story of EF1
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Double round-robin




The Story of EF1

Doubly monotone

Goods

Chores

Additive mixed
Double round-robin




Doubly Monotone Valuations




Doubly Monotone Valuations

Each agent can partition the items into "goods” and "chores”.

marginal 2 0 marginal <0




Doubly Monotone Valuations

Each agent can partition the items into "goods” and "chores”.

marginal 2 0 marginal <0

wn ® © © ©




EF1 for Doubly Monotone Valuations

Partition the items into two sets: positive and negative

Positive: items considered "good" by at least one agent

Negative: items considered "chore" by everyone




EF1 for Doubly Monotone Valuations

 Assign positive items via envy-cycle elimination
(envy graph defined w.r.t. agents who consider the item a "good")

» Assign negative items via top-trading envy-cycle elimination

[Bhaskar, Sricharan, and Vaish, APPROX 2021]

For doubly monotone items, the above algorithm
returns an EF1 allocation.




The Story of EF1
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Additive mixed
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The Story of EF1

Doubly monotone
Envy-cycle + top-trading

Goods

Chores

Additive mixed
Double round-robin




The Story of EF1

Mixed

Doubly monotone
Envy-cycle + top-trading

Goods Chores

Additive mixed
Double round-robin




The Story of EF1

| /N
Mixed

Doubly monotone
Envy-cycle + top-trading

Goods Chores

Additive mixed
Double round-robin




Next Time

Fair Rent Division




Quiz




Quiz

Prove or disprove:

For n identical agents with additive valuations over
mixed items, an EF X allocation always exists.
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