COL749: Computational Social Choice

#### Lecture 10

### Towards Stronger Fairness Guarantees

#### The Model

Set of agents







Set of indivisible items







Allocation











### Envy-Freeness [Gamow and Stern, 1958; Foley, 1967]

Each agent prefers its own bundle over that of any other agent.

### Envy-Freeness [Gamow and Stern, 1958; Foley, 1967]

Each agent prefers its own bundle over that of any other agent.



### Envy-Freeness [Gamow and Stern, 1958; Foley, 1967]

Each agent prefers its own bundle over that of any other agent.



- Not guaranteed to exist (two agents, one good)
- Checking whether an EF allocation exists is NP-complete

### Envy-Freeness Up To One Good

[Budish, 2011]

Envy can be eliminated by removing some good in the envied bundle.

#### Envy-Freeness Up To One Good

[Budish, 2011]

Envy can be eliminated by removing some good in the envied bundle.



#### Envy-Freeness Up To One Good

[Budish, 2011]

Envy can be eliminated by removing some good in the envied bundle.





Guaranteed to exist and efficiently computable

#### Algorithms for finding an EF1 allocation



















I donut think this is fair!





Why are you sad?
Aren't you envy-free up to a car?

















### Envy-Freeness Up To Any Good

[Caragiannis, Kurokawa, Moulin, Procaccia, Shah, and Wang, EC 2016, TEAC 2019]

Envy can be eliminated by removing any good in the envied bundle.

### Envy-Freeness Up To Any Good

[Caragiannis, Kurokawa, Moulin, Procaccia, Shah, and Wang, EC 2016, TEAC 2019]

Envy can be eliminated by removing any good in the envied bundle.



Allocation  $A = (A_1, ..., A_n)$  is EFX if for every pair of agents i, k and for every good  $j \in A_k$ , we have  $v_i(A_i) \ge v_i(A_k \setminus \{j\})$ .

- Allocate the goods in non-increasing order of values.
- Each new good is assigned to the least-happy agent.

- Allocate the goods in non-increasing order of values.
- Each new good is assigned to the least-happy agent.







- Allocate the goods in non-increasing order of values.
- Each new good is assigned to the least-happy agent.

g<sub>1</sub>







- Allocate the goods in non-increasing order of values.
- Each new good is assigned to the least-happy agent.



- Allocate the goods in non-increasing order of values.
- Each new good is assigned to the least-happy agent.



- Allocate the goods in non-increasing order of values.
- Each new good is assigned to the least-happy agent.



- Allocate the goods in non-increasing order of values.
- Each new good is assigned to the least-happy agent.



- Allocate the goods in non-increasing order of values.
- Each new good is assigned to the least-happy agent.



- Allocate the goods in non-increasing order of values.
- Each new good is assigned to the least-happy agent.



[Plaut and Roughgarden; SODA 2018; SIDMA 2020]

For identical agents with monotone valuations over goods, an EFX allocation always exists.

# For identical agents with monotone valuations over goods, an EFX allocation always exists.

Leximin++: Allocation that lexicographically maximizes



[Plaut and Roughgarden; SODA 2018; SIDMA 2020]

# For identical agents with monotone valuations over goods, an EFX allocation always exists.

Leximin++: Allocation that lexicographically maximizes



[Plaut and Roughgarden; SODA 2018; SIDMA 2020]

Finding an EFX allocation can take exponential-in-#goods value queries even for two identical agents with submodular valuations.







Always exists [Plaut and Roughgarden; SODA 2018, SIDMA 2020]

identical valuations result + "cut and choose"

Exists for two "types" of agents [Mahara, ESA 2021]





Always exists [Plaut and Roughgarden, SODA 2018, SIDMA 2020]

identical valuations result + "cut and choose"

Exists for two "types" of agents [Mahara, ESA 2021]







Exists for additive [Chaudhury, Garg, and Mehlhorn, EC 2020]

iteratively allocate goods + sophisticated update rules + potential argument





Always exists [Plaut and Roughgarden, SODA 2018, SIDMA 2020]

identical valuations result + "cut and choose"

Exists for two "types" of agents [Mahara, ESA 2021]







Exists for additive [Chaudhury, Garg, and Mehlhorn, EC 2020]

iteratively allocate goods + sophisticated update rules + potential argument













Always exists [Plaut and Roughgarden, SODA 2018, SIDMA 2020]

identical valuations result + "cut and choose"

Exists for two "types" of agents [Mahara, ESA 2021]







Exists for additive [Chaudhury, Garg, and Mehlhorn, EC 2020]

iteratively allocate goods + sophisticated update rules + potential argument









Exists for "2 value" additive instances

[Amanatidis, Birmpas, Filos-Ratsikas, Hollender, and Voudouris, IJCAI 2020, TCS 2021; Garg and Murhekar, SAGT 2021]

### Fairness via Charity



### EFX-with-charity

[Caragiannis, Gravin, and Huang, EC 2019; Chaudhury, Kavitha, Mehlhorn, and Sgouritsa, SODA 2020, SICOMP 2021]

A partition  $(A_1, \ldots, A_n, P)$  into n+1 bundles satisfies EFX-with-charity if

- the partial allocation  $(A_1, \ldots, A_n)$  is EFX,
- $\blacksquare$  no agent envies the pool P of unallocated items, and
- |P| < n.

### EFX-with-charity

[Caragiannis, Gravin, and Huang, EC 2019; Chaudhury, Kavitha, Mehlhorn, and Sgouritsa, SODA 2020, SICOMP 2021]

A partition  $(A_1, \ldots, A_n, P)$  into n+1 bundles satisfies EFX-with-charity if

- the partial allocation  $(A_1, \ldots, A_n)$  is EFX,
- $\blacksquare$  no agent envies the pool P of unallocated items, and
- |P| < n.

For monotone valuations, an EFX-with-charity allocation always exists.

$$S = \{a,b,c,d\}$$





















[Chaudhury, Kavitha, Mehlhorn, and Sgouritsa, SODA 2020, SICOMP 2021]

A partition  $(A_1, \ldots, A_n, P)$  into n+1 bundles satisfies EFX-with-charity if

- the partial allocation  $(A_1, \ldots, A_n)$  is EFX,
- $\blacksquare$  no agent envies the pool P of unallocated items, and
- |P| < n.

[Chaudhury, Kavitha, Mehlhorn, and Sgouritsa, SODA 2020, SICOMP 2021]

A partition  $(A_1, \ldots, A_n, P)$  into n + 1 bundles satisfies EFX-with-charity if

- the partial allocation  $(A_1, \ldots, A_n)$  is EFX,  $\leftarrow$  always maintain this
- $\blacksquare$  no agent envies the pool P of unallocated items, and
- |P| < n.

[Chaudhury, Kavitha, Mehlhorn, and Sgouritsa, SODA 2020, SICOMP 2021]

A partition  $(A_1, \ldots, A_n, P)$  into n+1 bundles satisfies EFX-with-charity if

- the partial allocation  $(A_1, \ldots, A_n)$  is EFX,  $\leftarrow$  always maintain this
- $\blacksquare$  no agent envies the pool P of unallocated items, and
- |P| < n.



[Chaudhury, Kavitha, Mehlhorn, and Sgouritsa, SODA 2020, SICOMP 2021]

Start with everything unallocated (i.e., all goods in the pool P).



Trivially EFX

[Chaudhury, Kavitha, Mehlhorn, and Sgouritsa, SODA 2020, SICOMP 2021]

Start with everything unallocated (i.e., all goods in the pool P).



Trivially EFX

As long as one of the following rules is applicable, apply it.

- Rule 1
- Rule 2
- Rule 3

[Chaudhury, Kavitha, Mehlhorn, and Sgouritsa, SODA 2020, SICOMP 2021]

Start with everything unallocated (i.e., all goods in the pool P).



As long as one of the following rules is applicable, apply it.



[Chaudhury, Kavitha, Mehlhorn, and Sgouritsa, SODA 2020, SICOMP 2021]

Start with everything unallocated (i.e., all goods in the pool P).



As long as one of the following rules is applicable, apply it.



Otherwise, return the current allocation.

[Chaudhury, Kavitha, Mehlhorn, and Sgouritsa, SODA 2020, SICOMP 2021]

Start with everything unallocated (i.e., all goods in the pool P).



As long as one of the following rules is applicable, apply it.



Otherwise, return the current allocation. 

EFX-with-charity

# Achieving EFX-with-charity [Chaudhury, Kavitha, Mehlhorn, and Sgouritsa, SODA 2020, SICOMP 2021]

Start with everything unallocated (i.e., all goods in the pool P).

As long as one of the following rules is applicable, apply it.

- Rule 1
- Rule 2
- Rule 3

Otherwise, return the current allocation.

[Chaudhury, Kavitha, Mehlhorn, and Sgouritsa, SODA 2020, SICOMP 2021]

Rule 1: If an unallocated good can be given to an agent while maintaining EFX, then do so.

[Chaudhury, Kavitha, Mehlhorn, and Sgouritsa, SODA 2020, SICOMP 2021]

Rule 1: If an unallocated good can be given to an agent while maintaining EFX, then do so.















Rule 1: If an unallocated good can be given to an agent while maintaining EFX, then do so.



[Chaudhury, Kavitha, Mehlhorn, and Sgouritsa, SODA 2020, SICOMP 2021]

Rule 1: If an unallocated good can be given to an agent while maintaining EFX, then do so.



# Achieving EFX-with-charity [Chaudhury, Kavitha, Mehlhorn, and Sgouritsa, SODA 2020, SICOMP 2021]

Start with everything unallocated (i.e., all goods in the pool P).

As long as one of the following rules is applicable, apply it.

- Rule 1
- Rule 2
- Rule 3

Otherwise, return the current allocation.

[Chaudhury, Kavitha, Mehlhorn, and Sgouritsa, SODA 2020, SICOMP 2021]

[Chaudhury, Kavitha, Mehlhorn, and Sgouritsa, SODA 2020, SICOMP 2021]









[Chaudhury, Kavitha, Mehlhorn, and Sgouritsa, SODA 2020, SICOMP 2021]











[Chaudhury, Kavitha, Mehlhorn, and Sgouritsa, SODA 2020, SICOMP 2021]











[Chaudhury, Kavitha, Mehlhorn, and Sgouritsa, SODA 2020, SICOMP 2021]



[Chaudhury, Kavitha, Mehlhorn, and Sgouritsa, SODA 2020, SICOMP 2021]



[Chaudhury, Kavitha, Mehlhorn, and Sgouritsa, SODA 2020, SICOMP 2021]



[Chaudhury, Kavitha, Mehlhorn, and Sgouritsa, SODA 2020, SICOMP 2021]



# Achieving EFX-with-charity [Chaudhury, Kavitha, Mehlhorn, and Sgouritsa, SODA 2020, SICOMP 2021]

Start with everything unallocated (i.e., all goods in the pool P).

As long as one of the following rules is applicable, apply it.

- Rule 1
- Rule 2
- Rule 3

Otherwise, return the current allocation.

[Chaudhury, Kavitha, Mehlhorn, and Sgouritsa, SODA 2020, SICOMP 2021]

Rule 3: If  $|P| \ge n$ , then resolve a cycle of most envious agents.

[Chaudhury, Kavitha, Mehlhorn, and Sgouritsa, SODA 2020, SICOMP 2021]















[Chaudhury, Kavitha, Mehlhorn, and Sgouritsa, SODA 2020, SICOMP 2021]



[Chaudhury, Kavitha, Mehlhorn, and Sgouritsa, SODA 2020, SICOMP 2021]



[Chaudhury, Kavitha, Mehlhorn, and Sgouritsa, SODA 2020, SICOMP 2021]



[Chaudhury, Kavitha, Mehlhorn, and Sgouritsa, SODA 2020, SICOMP 2021]









[Chaudhury, Kavitha, Mehlhorn, and Sgouritsa, SODA 2020, SICOMP 2021]



[Chaudhury, Kavitha, Mehlhorn, and Sgouritsa, SODA 2020, SICOMP 2021]

Rule 3: If  $|P| \ge n$ , then resolve a cycle of most envious agents.



[Chaudhury, Kavitha, Mehlhorn, and Sgouritsa, SODA 2020, SICOMP 2021]



[Chaudhury, Kavitha, Mehlhorn, and Sgouritsa, SODA 2020, SICOMP 2021]



[Chaudhury, Kavitha, Mehlhorn, and Sgouritsa, SODA 2020, SICOMP 2021]



[Chaudhury, Kavitha, Mehlhorn, and Sgouritsa, SODA 2020, SICOMP 2021]



[Chaudhury, Kavitha, Mehlhorn, and Sgouritsa, SODA 2020, SICOMP 2021]



[Chaudhury, Kavitha, Mehlhorn, and Sgouritsa, SODA 2020, SICOMP 2021]



[Chaudhury, Kavitha, Mehlhorn, and Sgouritsa, SODA 2020, SICOMP 2021]



[Chaudhury, Kavitha, Mehlhorn, and Sgouritsa, SODA 2020, SICOMP 2021]

Rule 3: If  $|P| \ge n$ , then resolve a cycle of most envious agents.



[Chaudhury, Kavitha, Mehlhorn, and Sgouritsa, SODA 2020, SICOMP 2021]



[Chaudhury, Kavitha, Mehlhorn, and Sgouritsa, SODA 2020, SICOMP 2021]



[Chaudhury, Kavitha, Mehlhorn, and Sgouritsa, SODA 2020, SICOMP 2021]



[Chaudhury, Kavitha, Mehlhorn, and Sgouritsa, SODA 2020, SICOMP 2021]



[Chaudhury, Kavitha, Mehlhorn, and Sgouritsa, SODA 2020, SICOMP 2021]



# Achieving EFX-with-charity [Chaudhury, Kavitha, Mehlhorn, and Sgouritsa, SODA 2020, SICOMP 2021]

Start with everything unallocated (i.e., all goods in the pool P).

As long as one of the following rules is applicable, apply it.

- Rule 1
- Rule 2
- Rule 3

Otherwise, return the current allocation.

[Chaudhury, Kavitha, Mehlhorn, and Sgouritsa, SODA 2020, SICOMP 2021]

Start with everything unallocated (i.e., all goods in the pool P).

As long as one of the following rules is applicable, apply it.

- Rule 1
- Rule 2
- Rule 3

Otherwise, return the current allocation.

#### If the algorithm terminates:

- EFX among main agents (invariant)
- No envy towards pool (Rule 2)
- |P|<n (Rule 3)
- ⇒ EFX-with-charity

[Chaudhury, Kavitha, Mehlhorn, and Sgouritsa, SODA 2020, SICOMP 2021]

Why does the algorithm terminate?

[Chaudhury, Kavitha, Mehlhorn, and Sgouritsa, SODA 2020, SICOMP 2021]

#### Why does the algorithm terminate?

Rule 1: If an unallocated good can be given to an agent while maintaining EFX, then do so.

Rule 2: If any agent envies the pool P, then give a minimal envied subset of P to the most envious agent (and return old bundle to P).

[Chaudhury, Kavitha, Mehlhorn, and Sgouritsa, SODA 2020, SICOMP 2021]

#### Why does the algorithm terminate?

Rule 1: If an unallocated good can be given to an agent while maintaining EFX, then do so.

Social welfare ‡ , |P| ↓

Rule 2: If any agent envies the pool P, then give a minimal envied subset of P to the most envious agent (and return old bundle to P).

Social welfare ↑, |P| 1↓

Rule 3: If  $|P| \ge n$ , then resolve a cycle of most envious agents.

Social welfare ↑, |P| ↑

[Chaudhury, Kavitha, Mehlhorn, and Sgouritsa, SODA 2020, SICOMP 2021]

#### Why does the algorithm terminate?

Rule 1: If an then

Potential function

 $\phi(A) = m \cdot \sum_{i} v_i(A_i) - |P|$ 

Rule 2: If any to the

most envious agent (and return old bundle to P). m = no. of goods

ent while maintaining EFX,

subset of P



#### EFX-with-charity in polynomial time

#### Reminders

Mid-semester feedback (due Feb 9)

Assignment 1 is out (due Feb 15)

#### **Next Time**

Mid-term presentations Feb 10 (Monday)



### Quiz

Quiz

Construct an instance with two agents where no EFX allocation is Pareto optimal.