
COL749: Computational Social Choice Spring 2025

Assignment 2

Total points: 100 Deadline: February 15 (Saturday)

1. [20 points] Given below is a list of cake-cutting subroutines. You are required to show how
these subroutines can be implemented using Robertson-Webb queries. Also mention the
worst-case number of queries needed by your implementation.

Specifically, you can use the following two queries:

• α← evala(X): returns the value α that agent a assigns to the (possibly non-contiguous)
piece X, and

• Y ← cuta(X,α): returns a piece Y ⊆ X such that va(Y ) = α. Here X and Y need not
be contiguous segments in [0, 1].

a) [5 points] EQUALIZE(X,Y, a): This subroutine takes as input two pieces X and Y
of the cake [0, 1] and an agent a (where, as a matter of convention, we assume that
va(X) ⩾ va(Y )), and returns two pieces X ′ and Y ′ such that there is no wastage (i.e.,
X ∪ Y = X ′ ∪ Y ′), and the returned pieces are of equal value according to agent a (i.e.,
va(X

′) = va(Y
′)). Additionally, the piece Y should be completely contained in Y ′. That

is, the equalization is done by taking something away from the more valuable piece and
adding it to the less valuable piece.

b) [5 points] EQ-DIVIDE(X, a, k): This subroutine takes as input a piece X of the cake
[0, 1], an agent a, and a positive integer k, and returns k mutually disjoint pieces
X1, . . . , Xk such that X1∪X2∪· · ·∪Xk = X and va(Xi) = va(Xj) for all i, j ∈ {1, . . . , k}.
That is, the subroutine divides the piece X into k equally valued pieces according to
agent a.

c) [5 points] SELECT({X1, . . . , Xℓ}, a, k): This subroutine takes as input ℓ piecesX1, . . . , Xℓ

of the cake [0, 1] (where ℓ is a positive integer), an agent a, and a positive integer k ⩽ ℓ,
and returns the top-k favorite pieces of agent a among X1, . . . , Xℓ. As a matter of
convention, we will assume that the returned pieces are sorted in non-increasing order of
values.

d) [5 points] TRIM({X1, X2}, a): This subroutine takes as input two pieces X1, X2 of the
cake [0, 1] and an agent a (where, for convention, we assume va(X1) ⩾ va(X2)), and
returns three pieces X ′

1, X2, T such that va(X
′
1) = va(X2) and X ′

1 = X1 \ T . That is,
agent a trims the more valuable piece X1 to make it equal in value to the less valuable
piece X2.

2. [25 points] Consider a simple undirected graph where each vertex represents an agent and
the edges denote friendships. Only friends are allowed to envy each other. A cake division
among the agents on this graph is envy-free if no pair of friends envy each other (though,

1



Assignment 2:

agents who are not friends may envy each other). Note that the model discussed in class is a
special case of this setting when the graph is complete.

Design a discrete cake-cutting protocol (in the Robertson-Webb query model) for finding an
envy-free division when the graph is a path on four vertices (see below). Prove the correctness
of your protocol and also mention the number of queries made.

Hint#1: Use the subroutines from Problem 1.

Hint#2: Revisiting the Selfridge-Conway procedure may be helpful.

a b c d

3. [35 points] Recall the envy-cycle elimination algorithm for computing an allocation satisfying
envy-freeness up to one good (EF1). A fairness notion stronger than EF1 is envy-freeness up
to any good (EFX), which states that any pairwise envy can be eliminated by removing any
good from the envied bundle. Formally, an allocation A = (A1, . . . , An) satisfies EFX if for
every pair of agents i, k and every good g ∈ Ak, we have vi(Ai) ⩾ vi(Ak \ {g}). Observe that
an EFX allocation satisfies EF1.

a) [10 points] Provide examples of instances with additive valuations where the round-robin
and envy-cycle elimination algorithms fail to return an EFX allocation.

b) [10 points] Consider the indivisible goods problem under additive valuations. Show
that when agents have identical rankings of the goods (but not necessarily identical
numerical values), an EFX allocation can be computed in polynomial time. For example,
in the instance given below, both agents rank the goods as g1 ≻ g2 ≻ g3 but have
different numerical valuations for them. Also note that the ranking of bundles need not
be identical; indeed, agent a2 prefers the bundle {g2, g3} over {g1}, while agent a1 has
the opposite preference.

g1 g2 g3
a1 11 7 2
a2 8 7 5

c) [15 points] Whether an EFX allocation always exists under additive valuations remains
an important open problem in fair division. In view of this, one can ask whether relaxations
of EFX (which, remember, is itself a relaxation of EF) always exist. Specifically, one
can consider a “multiplicative” approximation of EFX defined as follows: Given any
α ∈ (0, 1], an allocation A = (A1, . . . , An) is said to satisfy α-EFX if for every pair of
agents i, k and every good g ∈ Ak, we have vi(Ai) ⩾ α · vi(Ak \ {g}). Thus, 1-EFX is
equivalent to exact EFX, which is stronger than, say, 1

2 -EFX.

Consider a fair division problem with n agents where all valuations are additive and
integral (i.e., for every agent i and every good g, vi({g}) is a non-negative integer). Show
that a 1

2 -EFX allocation always exists.

Hint#1: Use the envy-cycle elimination algorithm. Think about what happens when

2



Assignment 2:

assigning a good g∗ to the source agent i violates 1
2 -EFX from the perspective of some

agent k. That is, there is some good g ∈ Ai such that vk(Ak) <
1
2vk(Ai ∪ {g∗} \ {g}).

Hint#2: You may find it helpful to “unassign” some of the currently allocated goods
and return them to the pool of unallocated goods.

4. [20 points] In this problem, we will focus on a subclass of additive valuations induced
by geometric sequences (e.g., 20, 21, 22, 23, . . . ). Suppose there are n agents with additive
valuations over m goods. For any agent i, we will assume that it values its most preferred
good at 2m−1, next most-preferred good at 2m−2, and so on, and its least-preferred good at
20 = 1 (thus, every agent has strictly different valuations for all m goods). See the instance
below for an example with two agents and four goods. We will call such instances geometric
additive instances.

g1 g2 g3 g4
a1 8 4 2 1
a2 4 1 8 2

a) [5 points] Show that for any geometric additive instance with indivisible goods, an
allocation is EFX if and only if any envied bundle contains exactly one good.

b) [10 points] Let us denote the n agents by a1, . . . , an and the m goods by g1, . . . , gm.
A picking sequence is an m-length ordered tuple σ := ⟨s1, s2, . . . , sm⟩ where, for every
i ∈ [m], we have si ∈ {a1, . . . , an}, and starting with s1, agents take turns according to
σ to pick their favorite remaining item. For example, consider the instance below with
three agents a1, a2, a3 and six goods g1, . . . , g6.

g1 g2 g3 g4 g5 g6
a1 8 4 2 1 32 16
a2 4 1 2 16 8 32
a3 1 2 4 8 16 32

Suppose σ := ⟨a3, a2, a2, a1, a3, a1⟩. This means that under σ, agent a3 goes first and
picks its favorite good g6. Then, agent a2 picks its favorite remaining good g4. The next
turn also belongs to a2, where it picks the good g5, and so on.

An allocation is said to be sequencible if there is an m-length picking sequence of agents
which results in that allocation. In the above example, the underlined allocation is
sequencible since it is induced by the picking sequence σ.

Show that for any geometric additive instance with indivisible goods, an allocation is
Pareto optimal (PO) if and only if it can be induced by a picking sequence.

c) [5 points] Design an algorithm that, given as input any geometric additive instance,
returns an allocation that is EFX and PO.

5. [Bonus problem for 20 points] Consider the discrete fair division problem with two agents.
An unordered partition X = {X1, X2} of the goods is said to be:

3



Assignment 2:

• balanced if the number of goods in X1 and X2 differ by at most one, and

• robust if both allocations (X1, X2) and (X2, X1) are considered EF1 by both agents.

Show that a balanced and robust partition always exists when both agents have additive
valuations.

Hint : Suppose the number of goods is even, and say agent 1’s valuations are such that
v1(g1) ⩾ v1(g2) ⩾ v1(g3) ⩾ . . . ⩾ v1(g2k). Draw a graph whose vertices are the goods, and
agent 1’s edges go from g1 to g2, g3 to g4, and so on. Draw agent 2’s edges analogously. Does
this graph contain an odd cycle? If not, what does the absence of an odd cycle imply about
the graph?

4


