COL202: Discrete Mathematical Structures

Spring 2024

Tutorial Sheet 2

Announced on: Jan 09 (Tue)

1. A graph (or a network) is a structure consisting of a set of objects (also known as vertices or nodes) some pairs of which are connected via edges. Assume that there are no self-edges (or loops). See Figure 1 for an example.

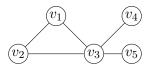


Figure 1: A graph with five vertices v_1, v_2, v_3, v_4, v_5 , five edges $\{v_1, v_2\}$, $\{v_2, v_3\}$, $\{v_1, v_3\}$, $\{v_3, v_4\}$, and $\{v_3, v_5\}$, and maximum degree four.

The *degree* of a vertex is the number of other vertices that share an edge with it.

Say we are given a set of k colors. A graph is said to be k-colorable if each vertex can be assigned one of the k colors in a way that all neighboring vertices (i.e., any pair of vertices that share an edge) have different colors. (Some of the k colors may be left unused.)

Prove via induction that any graph with maximum degree d is (d + 1)-colorable.

2. The sequence of Fibonacci numbers $\{F_n\}_{n\in\mathbb{N}\cup\{0\}}$ is defined as follows:

$$F_0 = 0$$

$$F_1 = 1$$

$$\forall n \ge 2, F_n = F_{n-1} + F_{n-2}$$

Let r be a positive real number satisfying $r^2 = r + 1$. Using induction, show that for all $n \in \mathbb{N}$, $F_n \ge r^{n-2}$.

3. Consider two collections of numbers,

$$a_1 \leq a_2 \leq \ldots \leq a_n$$
 and $b_1 \leq b_2 \leq \ldots \leq b_n$,

and suppose that you have to make n disjoint pairs of numbers, each pair consisting of one a and one b.

Prove that the sum of the products of the members of each pair is maximized when, for each $i \in \{1, 2, ..., n\}$, a_i is paired with b_i .

For example, consider the collection of numbers $1 \leq 3 \leq 10$ and $2 \leq 4 \leq 7$. One way to construct a pairing is $\{(1,4), (3,2), (10,7)\}$, which gives a sum of products equal to $1 \times 4 + 3 \times 2 + 10 \times 7 = 80$. However, a better pairing is $\{(1,2), (3,4), (10,7)\}$, which gives a

sum of products equal to $1 \times 2 + 3 \times 4 + 10 \times 7 = 84$.

- 4. Prove the following statements using induction:
 - a) The number of subsets of an *n*-element set is 2^n .
 - b) The number of ways of ranking n different objects is n!.
- 5. Prove the following using induction:
 - a) For all $n \in \mathbb{N}$ such that $n \ge 3$, the sum of internal angles of a regular *n*-gon is 180(n-2).
 - b) For all $n \in \mathbb{N}$, the last digit in the decimal expansion of 6^n is 6.
- 6. [Bonus problem: Not to be included in tutorial quiz] Imagine a board with the numbers $1, 2, \ldots, 2n$ written on it, where n is an odd natural number. Pick any two numbers i and j written on the board and erase them, and then write |i j| on the board. Continue until only one integer remains on the board. Show that this integer must be odd.

For example, if n = 3, then you start with $\langle 1, 2, 3, 4, 5, 6 \rangle$. Say you erase 1 and 3 first and add |1 - 3| = 2 on the board to get $\langle 2, 2, 4, 5, 6 \rangle$. Next, say you erase 2 and 4 to get $\langle 2, 2, 5, 6 \rangle$. Next, if you erase 2 and 5, then you get $\langle 2, 3, 6 \rangle$, and then suppose you erase 3 and 6 to be left with $\langle 2, 3 \rangle$. Finally, you must erase 2 and 3 to end up with 1, which is odd.