

 $Claim: 10.61 2903 -003$ ⁴⁶⁴ ⁺ ²⁶⁴ is divisible by ¹⁰⁹⁷ $\lceil \gamma \mathfrak{v} \circ \dagger \rceil$ (by modular arithmetic) Observe : 1897 $=$ $7\sqrt{271}$ prime $+64 + 26$ is dependent to the contract of the $2903 \equiv 5$ (mod 7) 2903 = 193 (mod 271) $W03 = 5$ (mod 7)
464 = 2 (mod 7) Washington 464 = 193 (mod 271) $464 = 193$ (mod 271) $261 \equiv 2$ (mod 7) 261 = 261 (mod 271)

Claim. $\forall n \in \mathbb{N}$ 2903 - 803 - 464 + 261 is divisible by 1897 Prof (by modular arithmetic) Observe $7 x 271$ b r ime 1897 $2903 = 5 \pmod{7}$ $2903 = 193$ (mod $271)$ $B03^{n} \equiv 5^{n} \pmod{7}$ $B03^{n} \equiv 261^{n}$ (mvd 271) $464 = 193$ (mod 271) $464^{n} \equiv 2^{n} (mod 7)$ $261 = 261$ (mod 271) $261^{n} \equiv 2^{n} (mod 7)$

Claim. Un en 2903 - 803 - 464 + 261 is divisible by 1897 Prof (by modular arithmetic) 1897 $=$ 7 x 27 Observe: brime $2903 = 5$ (mod 7) $2903 = 193$ (mod 271) $B93^{n} \equiv 261^{n} \pmod{271}$ B 03ⁿ = 5^{n} (mod 7) $464 = 193$ (mod 271) $464^{\circ} \equiv 2^{\circ} \pmod{7}$ $261 = 261$ (mod 271) 261 = 2^{n} (mod 7) 271 $2903 - 803 - 464$ $+ 261$ $7 | 2903 - 803 - 464ⁿ + 26|$

Claim: $\forall n \in \mathbb{N}$ 2903 - 803 - 464 + 261 is divisible by 1897 Prof (by modular avithmetic) $11897 = 75 \times 271$ Observe: $2903 = 5$ (mod 7) $2903 = 193$ (mod 271) $B93^{n} \equiv 261^{n} \pmod{271}$ B 03ⁿ = 5 (mod 7) $464 = 193$ (mod 271) $464^{n} \equiv 2^{n} \pmod{7}$ $261 = 261$ (mod 271) $261^{n} \equiv 2^{n} (mod 7)$ \Rightarrow 7×271 $2903^{9} - 803^{9} - 464^{9} + 261^{9}$ 图

PROBLEM 1 [15 points] Identifying the application of Congruence - $-$ 3 pts Identifying the need for $1097 = 271 \times 7 - 4$ pts PROBLEM 1 [15 points]
[duntifying the application of congrunce $\frac{1}{27! \times 7}$
Correctly computing congrundes $\frac{1}{27! \times 7}$ -4 pts $\begin{array}{rcl} \text{Identity} & \text{the need for} & 1897 = 271 \times 7 \end{array}$ - nth power of congruences - 1 pts Adding congrunces and finishing the proof -3 pts

 $Claim : $\forall n \ge 4$ n \vdash prime \Leftrightarrow $(n-1)! \equiv -1 \pmod{n}$$ Suppose n is prime.

Claim $\pm n \ge 4$ n is prime $\iff (n-1)! \equiv -1 \pmod{n}$ Suppose n is prime. $x(n-2) \times (n-1)$ $(m-1) = 1 \times 2 \times 3 \times 3$ Idea \sim \sim each of these has a unique Inverse (mod n) in 92,3, 1, 1, 1-2}

 $Claim$ + $\frac{1}{2}$ + n is prime \iff (n-1)! = -1 (mod n) Suppose n is prime. $\mathbb{R} \times \mathbb{C}$ (n-2) \times (n-1) $Big (n-1)$ = \cdots $\sqrt{2}$ $\sqrt{3}$ $\sqrt{2}$ each of these has a unique Inverse (mod n) in 523, 1, 1-23 $(n-2)$ $(n-1) \equiv n-1$ $(m\cdot d \cdot n)$ $Thun$, $\|.\|.\|2.\|3.$ $\equiv -1 \pmod{n}$ pair up with inverses.

 $Claim : Hn \ge 4$ n is prime $\iff (n-1)! \equiv -1 \pmod{n}$ Lemma : Each μ \in $\{2, 3, \ldots, (n-2)\}$ has a unique invuer (mod n) $in \{2, 3, \ldots, (n-2)\}$ if n is prime.

 $Claim: Hnz4$ n is prime \iff $(n-1)! \equiv -1 \pmod{n}$ Lemma : Each μ \in $\{2, 3, \ldots, (n-2)\}$ has a unique invuer (mod n) $in \{2, 3, \ldots, (n-2)\}$ if n is prime. $Prove$ of $lumma$: $gcd(h,n) = 1 \implies inwave$ exists $\exists v' s.t. u \neq l (mod n)$

 $Cl_{\mathfrak{A}|\mathfrak{m}}$: $\forall n \geq 4$ n is prime \iff $(n-1)! \equiv -1 \pmod{n}$ Lemma : Each μ \in $\{2, 3, \ldots, (n-2)\}$ has a unique invuer (mod n) $in \{2, 3, \ldots, (n-2)\}$ if n is prime. $Prove$ of $lumma$: $gcd(h,n) = 1 \implies inwave$ exists $\exists v' s.t. u \neq l (mod n)$ $Then$, $w'(mod n)$ \in $\varepsilon \in \{2, 3, \ldots, (n-2)\}$ is the desired inverse. i
M from division theorem

 $Clain$: $\forall n \ge 4$ n is prime $\iff (n-1)! \equiv -1 \pmod{n}$ Lemma : Each μ \in $\{2, 3, \ldots, (n-2)\}$ has a unique invuer (mod n) $in \{2, 3, \ldots, (n-2)\}$ if n is prime. $Prove$ of $lumma$: $gcd(h,n) = 1 \implies inwave$ exists $\exists v' s.t. u \neq l (mod n)$ $Then$, $w'(mod n)$ \in $\varepsilon \in \{2, 3, \ldots, (n-2)\}$ is the desired inverse. i
M from division theorem Note: $\mathcal{H}(\mathsf{mod}\;n) \neq 1$ and $\mathcal{H}(\mathsf{mod}\;n) \neq n-1$.

 $Claim: Hn \geq 4$ n is prime $\iff (n-1)! \equiv -1 \pmod{n}$ Lemma : Each μ \in $\{2, 3, \ldots, (n-2)\}$ has a unique invuer (mod n) $in \{2, 3, \ldots, (n-2)\}$ if n is prime. Proof of Comma : Why unique ?

 $Clain$: $\forall n \geq 4$ n is prime \iff $(n-1)! \equiv -1 \pmod{n}$ Lemma : Each μ \in $\{2, 3, \ldots, (n-2)\}$ has a unique invuer (mod n) $in \{2, 3, \ldots, (n-2)\}$ if n is prime. Proof of Comma : Why unique ? Inty unique?
If J distinct $n', n'' \in \{1, 2, ..., (n -$ 1) } that are inverses (mod n) of h, then $r.n' \equiv 1 \pmod{n}$ and μ - $\mu'' \equiv | \pmod{n}$ $p(x) = P(x)$
 $p(x - y') \equiv 0$ (mod n)

 $Clain$: $\forall n \ge 4$ n is prime $\iff (n-1)! \equiv -1 \pmod{n}$ Lemma : Each μ \in $\{2, 3, \ldots, (n-2)\}$ has a unique invuer (mod n) $in \{2, 3, \ldots, (n-2)\}$ if n is prime. Proof of Comma : Why unique? Inty unique?
If J distinct $n', n'' \in \{1, 2, ..., (n -$ 1) } that are inverses (mod n) of h, then $\mathcal{H}.\mathcal{H}' \equiv 1 \pmod{n}$ and μ - $\mu'' \equiv | \pmod{n}$ Not possible for $m = 0$ (mod n) Not possible for
 $p_{\alpha}(u - u'') \equiv 0$ (mod n) prime n m

PROBLEM 2 [15 points] Pairing argument for prime n -Opts Using pairing humma to prove theorem - 3 Its Proof for non-prime n - 4 pts

Let A be any doubly stochastic matrix.

Let A be any doubly stochartic matrix. Construct a bipartite graph $G = (RUC, E)$ Lows Columns Edge (h_i, c_j) exists if $A_{ij} \ge 0$. μ_i or

Claim: Graph G = (RUC, E) admits a perfect matching Kone Columne \mathcal{C} . The set of \mathcal{C} \overline{D} σ

Let $\Lambda =$ smallest nonzero entry in A P = permutation matrix guaranted by claim $A' = A -$ JP ("peding off" P)

Let λ = smallest non-zero entry in A P = permutation matrix guaranted by claim $A' = A -$ JP ("peding off" P) Observe : 1 A has equal now and column sums ② Hall's theorem can still be applied to Al n
/ \circledS # zero entries in $A >$ # zero entries in A .

Let λ = smallest nonzero entry in A P = permutation matrix guaranted by claim $A' = A -$ JP ("peding off" P) Observe : 1 A has equal now and column sums ② Hall's theorem can still be applied to Al $\overline{3}$ # zero entries in A $>$ # zero entries in A . The "peeling off" procedure must terminate in $\leq n$ steps \boxtimes

PROBLEM 4(a) [5 points] Identifying proof by contradiction. -1 pt Identifying the correct conditions for P and Q - 3 pts Identifying priof by contradiction.
Identifying the court conditions for Pond Q
Identifying the blocking pair 1 pt

Claim : Men point to more preferable partner between ^P and Women in the same less in the $\frac{1}{\sqrt{2}}$ Then, if m points to w, then w points to m. Froof : Only need to consider men/women with different partners in P and Q . S uppose $m \rightarrow w$ but in $\rightarrow m'$ $\rightarrow W$ but $W \rightarrow W'$

Claim : Men point to more preferable partner between ^P and Women in the same less in the $\frac{1}{\sqrt{2}}$ Then, if m points to w, then w points to m. Froof : Only need to consider men/women with different partners in P and Q . Suppose $m \rightarrow w$ but $w \rightarrow m'$ \rightarrow W but W \rightarrow m' Production of the production Q \mathfrak{O} m , $\frac{1}{2}$, ⑲ m & m [/]

PROBLEM 4(b) [5 points] Identifying proof by contradiction - ¹ pt Identifying the correct conditions for P and Q - 3 pts Identifying the blocking pain- $\overline{}$ 1 pt

Claim : Strategic manipulation is possible under DA algorithm Vain: Strategic manipulation is possible when DA algorithm. $w_3 > w_1 > w_2$ (m) (w_1) : $m_1 > m_2 > m_3$ $W_1 > W_2 > W_2$ (m_2) (W_2) $m_1 > m_2 > m_3$ $m_1 > w_2 > w_3$ (m_3) $m_2 > m_1 > m_3$ DA matching for original preferences: (m_1, w_3) , (m_2, w_1) , (m_3, w_2)

Claim : Strategic manipulation is possible under DA algorithm. Proof : $w_3 > w_1 > w_2$ (m) : $m_1 > m_2 < m_3 > m_3 > m_2$ $W_1 > W_2 > W_2$ (m_2) (w_2) $m_1 > m_2 > m_3$ $m_1 > w_2 > w_3$ (m_3) $m_2 > m_1 > m_3$ $(\mathsf{M}_{1}, \mathsf{N}_{3})$, $W_1 > W_2 > W_2$ (M₂) $W_1 > W_2 > W_3$
 $W_1 > W_2 > W_2$ (M₃) $W_2 > W_1 > W_3$
 $W_3 > W_1 > W_3$
 $W_4 > W_2 > W_3$ (M₃, M₃), (M₃, W₃), (M₃, W₂)

modified (M₁, W₁), (M₃, W₃), (M₃, W₂)

PROBLEM 4(c) [5 points] Construction of original and modified instances -4 pts Explaining how the modified instance is better - 1 pt