· · · · ·	COL 202:	DIS CRETE	MATHEMATICAL	STRUCTURES
• • • •				
	· · · · · · · · · · · · N		Colution	C · · · · · · · · · · · · · · · · · ·
	· · · · · · · · · · · ·	INJOK ENT	THE SULVIION)
• • • •				
• • • •				
• • • •				
0 0 0 0				
• • • •				

PROBLEM 1(G)

(a) [5 points] Prove or disprove: Every graph G = (V, E) has a bipartite subgraph with at least |E|/2 edges.

Proof by probabilistic argument Assign each vertex to the "left" set N.p. 1/2 and "night" W.p. 1/2. independently of other vertices. Fix any edge $e = \{u, v\}$. Define $X_e = \begin{bmatrix} 1 & \text{if edge e} \end{bmatrix}$ crossing 10 7w

PROBLEM 1(G)

(a) [5 points] Prove or disprove: Every graph G = (V, E) has a bipartite subgraph with at least |E|/2 edges.

Pr(Xe=1) = Pr(U on left and v on night on vice vusa) disjont = Pr (u left, v right) + Pr (u night, v left) independence Br. (u left). Br. (v night) + Br. (n night). Br. (v left) $\frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} = \frac{1}{2}$ Define X 2 Xe 5 Then IE[X] is expected number of crossing edges.

PROBLEM 1(Q)

(a) [5 points] Prove or disprove: Every graph G = (V, E) has a bipartite subgraph with at least |E|/2 edges.

By linearity of expectation:	· · · ·
$\mathbb{E}[X] = \sum \mathbb{E}[Xe]$	· · ·
$= \underline{E} $	· · · ·
X is a random variable whose expectation is <u>LET</u> .	· · · ·
=> IPr (X Z/ [E]) > 0 <- probabilistic method	· · ·
=> I a vertex partition with at least <u>IEI</u> crocsing edges.	

(b) [10 points] Prove or disprove: Every graph $G = (1)$ a bipartite subgraph with strictly more than $ E /2$ edg	(V, E) where $ V $ is even and $ E > 0$ has ges.
Proof by probabilistic argument.	
Let $ V = 2n$.	
We will divide V into two sets, say 1	A and B, of size n each
No. of equipartitions = $2n C_n$.	
Fix an edge $e = \{u, v\}$.	

(b) [10 points] Prove or disprove: Every graph G = (V, E) where |V| is even and |E| > 0 has a bipartite subgraph with strictly more than |E|/2 edges.

Let us count the number of partition	rs in which e is crossly
(I) If u e A and ve B	picking n-1 ventices other than u
The number of such partitions is 21	n-2 K C n-1
(I) If ue B and ve A	
The number of such partitions is 21	n-2 C n-1

(b) [10 points] Prove or disprove: Every graph $G = (V, E)$ where $ V $ is even and $ E > 0$ has a bipartite subgraph with strictly more than $ E /2$ edges.
Define Xe as in part(a).
Suppose each equipartition is chosen uniformly at random.
$\Pr\left(X_{e}=1\right) = \frac{2 \cdot \frac{2n-2}{n-1}}{\frac{2n}{n}} = \frac{n}{2n-1} \neq \frac{1}{2}.$
Desired bipartite subgraph exists by the same argument. As in part (a).

PROBLEM 1(0) [5 pts]	
* Montion "We will prove the statement"	- 0.5 pts
* Mention proof technique	- 0.5 pts
* Mention the experiment (rondom partitioning)	0.5 pts
* Correctly define indicate handom variables and their sum	— 1 pt
* Commuter compute expected values	-⊥pt
* Apply probabilistic method to finish the prof	— 1,5 pts

PROBLEM 1(6) [10 pts]	
* Montion "We will prove the statement"	- 1 pt
* Mention proof technique	- 1 pt
* Mention the experiment (roundom pontitioning)	1. 1. 1 . pt 1. 1
* Concertly define indicate pandom variables	
and their snm	- 1 pt
* Commuter compute expected values	· 4 pts
(should be strictly more than $ E _2$)	· · · · · · · · · · · · · · ·
* Apply probabilistic method to finish the prof	— 2 pts

Problem 2 [6+4+5=15 points]

For any $n \in \mathbb{N}$, let [n] denote the set $\{1, 2, \ldots, n\}$. We will assume that $n \ge 3$.

A permutation σ of [n] is said to be *concave* if, for every $i \in \{2, 3, ..., n-1\}, \sigma(i) \ge \frac{\sigma(i-1)+\sigma(i+1)}{2}$. For example, when n = 4, the permutation (1, 2, 3, 4) is concave but the permutation (4, 1, 3, 2) is not.

A permutation σ of [n] is said to be *bitonic* if there exists some $i \in [n]$ such that

- for all $j \in [n-1]$ such that $j < i, \sigma(j) < \sigma(j+1)$, and
- for all $k \in [n-1]$ such that $k \ge i$, $\sigma(k) > \sigma(k+1)$.

For example, when n = 4, the permutation (1, 2, 3, 4) is bitonic but the permutation (4, 1, 3, 2) is not.

(a) [6 points] Prove or disprove: Every concave permutation is bitonic.	
Proof by contradiction.	
Let J be any concave permutation of [n].	
Let $i^* \in [n]$ be such that $\sigma(i^*) = n$.	
On find that that the is not bitomic. T	hen
Suppose, Ter Contradiction, Irad U is not strategic ,	
(i) either $\exists j < i^*$ such that $\sigma(j) \ge \sigma(j+1)$	
Suppose, for contradiction, that $\sigma(j) \ge \sigma(j+1)$ (i) either $\exists j < i^*$ such that $\sigma(j) \ge \sigma(j+1)$ (ii) or $\exists k = \pi i^*$ such that $\sigma(k) < \sigma(k+1)$.	

(a) [6 points] Prove or disprove: Every concave permutation is bitonic.
(i) $\exists j < i^*$ such that $\sigma(j) ? \sigma(j+1)$
het j' be the closert index to it that satisfies case (i).
Observe that $j^* \neq i^* - 1$; thus $j^* < i^* - 1$.
Then, $\sigma(j^*) > \sigma(j^*+1)$ and $\sigma(j^*+1) < \sigma(j^*+2)$.
=> Concavity violated at j*+1. Well-defined
Contradiction!

(a) [6 points] Prove or disprove: Every concave permutation is bitonic.
(ii) $\exists k 7 i^{*}$ such that $\sigma(k) < \sigma(k+1)$.
Let k be the index closest to it that satisfies case (ii)
Then, $k^* \neq i^*$, and thus $k^* \geq i^*$.
We have $\sigma(k^{*}) \leq \sigma(k^{*}+1)$ and $\sigma(k^{*}) \leq \sigma(k^{*}-1)$
⇒ concavity violated at k [#] . well-defined Contradiction.
Therefore, or must be bitonic.

(b) [4 points] Identify all concave permutations of the set [5]. No explanation is required. 2 4 5 2 2_ 5_ 4 2 4 5 3 5 4 2 15432

(c) [5 points] How many bitonic permutations of $[n]$ are there? Explain your reasoning.	· · · · · ·
There are 2° bitonic permutations	· · · · · ·
Obsure	· · · · · ·
1 must always be at one of extremes of any bitomic permutation	
(2) After eliminating 1, the hemaining permutation of {2,3,,n} is also bitanic.	
Recursince: $f(n) = 2 f(n-1) \Longrightarrow f(n) = 2^{n-1}$.	· · · · · · ·
verta ad mondion nord react agreements	

PROBLEM 2(a) [6 pts]	
* Montion "We will prove the statement."	- 1 pt : 1
* Mention proof technique	1 pt
* Correctly derive contradiction for the left of the peak	. 2 pts
* Correctly derive contradiction for the hight of the peak	2 pts
	· ·

· · · ·	· · · · ·	PROBLEM 2(b) [4 pts]		· · · · ·	
· · · · · · · · · · · · · · · · · · ·		0.5 pt for each correct answer	 	· · · · ·	
 . .<	· · · · · ·	-0.5 pt for each incorrect answer	 	· · · · · ·	
 	· · · · · ·	Minimum marks $: 0/4$	 	
 	· · · · · ·	(even if the Solution Consists of more inc answers than correct ones)	<i>ound</i>		

	Prol	SLEM $2(c)$	[5 pts]	
* Muntion	n the corrut ansi	~v~		1 pt
* Making	the pelevant obs	ervations.	· · · · · · · · · · · · · · · · · · ·	1 pt
* Cornert	- he currence	· · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	2 pts
* Verify	via induction	· · · · · · · · · · · · · · · ·		1 pt
	.	. .		

(a) [2	points] Prove that for any non-negative random variable X ,
	$\Pr(X \ge 1) \leqslant \mathbf{E}[X].$
For any	This meanly is a special case of what's called Markov's inequality; $B(X7K) \leq \frac{ E X }{K}$
Ìf	$ P_{r}(X_{7}k) = p$, then $ E[X]_{7}k \cdot p$.
	The desired inequality follows when k=1.

(b) [13 points] Given any $n \in \mathbb{N}$, consider a random graph $G = (V, E)$ on n vertices in which for any pair of vertices $u, v \in V$, the edge $\{u, v\}$ exists with probability 1/2 independently of any other pair of vertices.	• •	• •	• •	• •	· ·	•
An <i>independent set</i> of a graph is a subset of vertices in which no two vertices are adjacent.	• •	• •	• •	• •		•
Show that the probability that the largest independent set of the random graph G is larger than $\lceil 3 \log_2 n + 1 \rceil$ is $o(n^{-\log_2 n})$, where $o(.)$ stands for little-o notation.	• •	• •	• •	• •	• •	•
$\mathbf{E}_{\mathbf{N}} = \mathbf{E}_{\mathbf{N}}$	• •	· ·	• •	• •		•
$\Gamma(X \ K = 1.5 \ \log n + 1.1)$	• •	• •	• •	• •		•
Fix any subset of vertices SEV such that [S]=	- k	· · ·		· · ·	· · ·	•
IPr (S is independent) = IPr (no edge between an pairs of vertices in	4 Q 7	f s	the)	- - - - - - -	<u>د</u> ح	-
$= \left(\frac{1}{2}\right)^{k_{c_{2}}} \qquad \qquad$	· · ·		· · ·	· · ·	· · ·	

	 (b) [13 points] Given any n ∈ N, consider a random graph G = (V, E) on n vertices in which for any pair of vertices u, v ∈ V, the edge {u, v} exists with probability 1/2 independently of any other pair of vertices. An independent set of a graph is a subset of vertices in which no two vertices are adjacent. Show that the probability that the largest independent set of the random graph G is larger than [3log₂ n + 1] is o (n^{-log₂n}), where o(.) stands for little-o notation. 	
Let	S1, S2,, Sngk be all k-sized subsits of	vertius.
let	$X_i = \begin{bmatrix} 1 & if Si is independent \\ 0 & 0 \end{bmatrix}$	
let	$\chi = \sum_{i=1}^{n} \chi_i$	Kr
Then	$IE[X] = \sum_{i} IE[X_i] = \sum_{i} IR_i(X_i=i) = {n \choose k} \cdot \left(\frac{1}{2}\right)$ by linewity of expectation weing D	

(b) [13 points] Given any $n \in \mathbb{N}$, consider a random graph G = (V, E) on n vertices in which for any pair of vertices $u, v \in V$, the edge $\{u, v\}$ exists with probability 1/2 independently of any other pair of vertices. An independent set of a graph is a subset of vertices in which no two vertices are adjacent. Show that the probability that the largest independent set of the random graph G is larger than $\lceil 3 \log_2 n + 1 \rceil$ is $o(n^{-\log_2 n})$, where o(.) stands for little-o notation. KC = "G (K-1)/2 since "G ≤ n

ince k 7 3 log.n

 $\left(1,\frac{3}{2}\right) \log n$

(b) [13 points] Given any $n \in \mathbb{N}$, consider a random graph G = (V, E) on n vertices in which for any pair of vertices $u, v \in V$, the edge $\{u, v\}$ exists with probability 1/2 independently of any other pair of vertices. An *independent set* of a graph is a subset of vertices in which no two vertices are adjacent. Show that the probability that the largest independent set of the random graph G is larger than $\lceil 3 \log_2 n + 1 \rceil$ is $o(n^{-\log_2 n})$, where o(.) stands for little-o notation. From part (a), we have PR (X.7/1) < IE[X] $\Rightarrow \operatorname{Pr}(X \mathbb{Z}^{1}) \leq n^{-K_{2}}$ (from 2) $= o\left(n^{-\log n}\right)$

(b) [13 points] Given any $n \in \mathbb{N}$, consider a random graph $G = (V, E)$ on n vertices in which for any pair of vertices $u, v \in V$, the edge $\{u, v\}$ exists with probability 1/2 independently of any other pair of vertices.	
An <i>independent set</i> of a graph is a subset of vertices in which no two vertices are adjacent.	
Show that the probability that the largest independent set of the random graph G is larger than $\lceil 3 \log_2 n + 1 \rceil$ is $o(n^{-\log_2 n})$, where $o(.)$ stands for little-o notation.	
· · · · · · · · · · · · · · · · · · ·	
\mathcal{D} $\left(- \mathcal{D} \right) $	
The (Sike of largert independent set 2 N)	
same	_ CVWS
$- P \left(\mu \right) = 5 \mu \left(\mu \right) + 6 \mu \left(\rho \right) $	7 k)
- In There exists an independent set of state	<i>i</i> - /
	· · · · · · · · · · · · · · · · · · ·
n = 10	(\mathbf{k})
$x \leq x$ [ft (a.)(a	· • • • • • • • • • • • • • • • • • • •
(hung A C.B.	$\implies \mathcal{P}_{\mathcal{H}}(A) \leq \mathcal{P}_{\mathcal{H}}(B)$
-1 $P_{\rm h} = \left(X - Z_{\rm h} \right)$ and -1 $P_{\rm h} = \left(X - Z_{\rm h} \right)$	
= $0\left(n^{-1}\left(\frac{1}{2}\right)^{1}\right)$ from (3) as duived.	

•	· · ·		•	· · ·	· ·	-	•	· · ·	•	•	•	•	•	•	• •	• •	· · ·	P	R	0 (BI	LE			3) }		2	-	Þ-	2]	•	•	•	· ·		•	•	· ·	•	•	•
•	· · ·	*	•	•	Pr	() }	N Ì	ng	•	+	h	L	•	ìr	12	91	\sim	Ji	.fr (•		fr	~	•	ol	l.	k		7/	0	•	•	•		•	•	•			ی، ا	•	Þt		•	•
•	· ·	*	•	•	S	ν.	0S	†i	ti	~t	י זי	و ل	•	•	K	11	=	•	•	•	•	•	· ·	•	•	· · ·	•	•	•	· ·	•	•	•		•	•	•	•	0	• • 5	- - - - - - - - - - - - - - - - - - -	st	•	•	•
•	· ·	•	•	•	• •	•	•	· ·	•	•	•	•	•	•	• •	· ·	· ·	•	•	•	•	•	• •	•	•	• •	•	•	•	• •	•	•	• •	•	•	•	•	• •	•	•	•	• •	•	•	•
•	· ·	•	•	•	•••	•	•	· ·	0	•	•	•	•	•	• •	• •		0	0	•	•	•	••••	0	•	••••	•	•	•	· ·	•	•	•		•	•	•			•	•	• •	•	•	•
•	· ·	•	•	•	•••	•	•	• •	•	•	•	•	•	•	• •	• •		•	•	•	•	•	•••	•	•	• •	•	•	•	•••	•	•	• •		•	•	•			•	•	• •	•	•	•
		•			 • •		0	• •		0	0					• •		0	0				• •	0		• •		•		• •												• •			
•	• •		•	•	• •	•	•	• •	•	•	•	•	•	•	•	• •	· ·	•	•	•	•	•	• •	•	•	• •	•	•	•	• •	•	•	•		•	•	•	• •		•	•	• •	•	•	•
•	· ·	•	•	•	· ·	•	•	• •	•	•	•	•	•	•	•	• •	• •	•	•	•	•	•	••••	•	•	••••	•	•	•	· ·	•	•	•		•	•	•	• •		•	•	•••	•	•	•
•		•	•				•		•	•	•	•	•	•				•	•	•	•			•			•		•	• •	•	•			•	•	•				•	• •	•	•	•

PROBLEM 3 (6) [13 pts] * Computing expected value of indicator variables - 3 pts * Deriving $o\left(\frac{1}{n^{\frac{1}{2}n}}\right)$ bound on Pr(X Z 1) — P pts * Finishing the proof by observing that the bound on IPr (X71) gives a bound on the desired probability ____ 2 pts

PROBLEM 4 (A)

(a) [5 points] Let a, b, c, d , and m be positive integers. Prove or disprove: If $a \equiv b \pmod{m}$, $c \equiv d \pmod{m}$, and $\gcd(c, m) = 1$, then $a \cdot c^{-1} \equiv b \cdot d^{-1} \pmod{m}$, where c^{-1} and d^{-1} are the multiplicative inverses (mod m) of c and d , respectively.	•	· ·		· ·
Proof by using standard properties of congruence.	•	• •	•	
Obsurve:	•	• •	•	
(1) $gcd(c,m) = 1$ and $C \equiv d(mod m) = 7$ $gcd(a(m)) = 1$.	•	• •		
(2) By D, C and d'are well-defined.	•	• •		
Then, $c.(ac^{-1}-bd^{-1}) \pmod{m}$	•	• •		• •
$\equiv acc^{+} - bcd^{+} \pmod{m}$	•	• •		
$\equiv a.1 - b.1 \pmod{m}$ [Note: $c \equiv d \pmod{m}$ and $dd \equiv$	-1 fr	nol	m)	
$\equiv a-b \pmod{m}$ $\downarrow \Rightarrow cd^{-1} \equiv 1 \pmod{m}$	•	• •		· ·

PROBLEM 4 (A)

(a) [5 points] Let a, b, c, d, and m be positive integers. Prove or disprove: If $a \equiv b \pmod{m}$, $c \equiv d \pmod{m}$, and $\gcd(c, m) = 1$, then $a \cdot c^{-1} \equiv b \cdot d^{-1} \pmod{m}$, where c^{-1} and d^{-1} are the multiplicative inverses (mod m) of c and d, respectively. Thus, $c.(ac^{-1}-bd^{-1}) \pmod{m} \equiv a-b \pmod{m} \equiv 0 \pmod{m}$ Since c and m are helatively prime we have $ac' - bd' \equiv 0 \pmod{m}$ as desired.

PROBLEM 4 (b)

(b) [5 points] Let a, b, c, d, and m be positive integers such that b and m are relatively prime. Prove or disprove: If $b^a \equiv 1 \pmod{m}$, $b^c \equiv 1 \pmod{m}$, and $d = \gcd(a, c)$, then $b^d \equiv 1 \pmod{m}$. How does your answer change if you are not given that b and m are relatively prime?

Proof by using
$$gcd - spc$$
 equivalence and part (a).
 $d = gcd(a, c) \Rightarrow \exists integers \alpha, \beta such that $d = \alpha a + \beta c$.
Without loss of generality, $\alpha 7/0$ (can achieve by adding
enough copies of a')
Thus, we must have that $\beta \leq 0$.
 $b^{\alpha} \equiv 1 \pmod{m} \Rightarrow b^{\alpha} \equiv 1 \pmod{m} \longrightarrow 0$
 $b^{c} \equiv 1 \pmod{m} \Rightarrow \overline{b}^{c} \equiv 1 \pmod{m} \longrightarrow 0$$

PROBLEM 4 (b)

(b) [5 points] Let a, b, c, d , and m be positive integers such that b and m are relatively prime. Prove or disprove: If $b^a \equiv 1 \pmod{m}$, $b^c \equiv 1 \pmod{m}$, and $d = \gcd(a, c)$, then $b^d \equiv 1 \pmod{m}$. How does your answer change if you are not given that b and m are relatively prime?
Observe that $gcd(b^{-\beta c}, m) = 1$. Thus is because
$=\beta C$ $b \equiv 1 \pmod{m}$ and $gcd(1,m) = 1$. (De not need to assume that b, m are red prime)
By applying part(a), we can divide () by (2) to get
$b^{\alpha+\beta c} \equiv 1 \pmod{m}$
or $b^d \equiv 1 \pmod{m}$ as desired.

PROBLEM 4 (C)

- (c) [5 points] Let b, p, and n be positive integers. Prove or disprove: If p is a prime such that $p|(b^n 1)$, then:
 - either $p|(b^d 1)$ for some proper divisor d of n (a proper divisor of n is any positive divisor of n excluding n itself),
 - or $p \equiv 1 \pmod{n}$.

Proof by neing Euler's theorem and part (b). p is prime $\implies b^{p-1} \equiv 1 \pmod{p}$ by Euler's then since $\Phi(p) = p-1$. Given $b^n \equiv 1 \pmod{p}$. Let d = ged(n, p-1). By part (b), $b^d \equiv (\mod p)$

PROBLEM 4 (C)

- (c) [5 points] Let b, p, and n be positive integers. Prove or disprove: If p is a prime such that $p|(b^n-1)$, then:
 - either $p|(b^d-1)$ for some proper divisor d of n (a proper divisor of n is any positive divisor of n excluding n itself),
 - or $p \equiv 1 \pmod{n}$.

•	Ŀ	f	0	(=	n N	· ·	s 1		Hh	S	•	•	g	id.		η	· · · ·	þ-	-1 `) =	-γ	۲ ۲	. -	· ·	7	•	n	l	þ			•	• •	•	•	•	· ·		•	•
•	· ·	· ·	•	· ·	•	• •		•	· ·	•	•	•	· ·	•	•	· ·	•	•	· ·	•	· ·	•		\Rightarrow)) ,	•) - -			(Y	n0 -	d	ι 1 1) }	•	•	· ·		•	•
•		-f	i L	t <	۲ ۲)))	, , , , , ,	•	· ·	þ		•	b	-	•	· ·	•	fo	r Y	2	.0 YY	nĽ	•	0	liv	2í1	ነጚ	•	d	2 2 2	n M	•			•	n M	· ·		•	•
•	· ·	••••	-	· ·	•	• •		•	· · ·	•	-	•	· · ·	-	•	· ·	•	•	· ·	•	· ·		י אר י	••••	þr	۱þ			Ji	vi.	244		· ·		•	•	· ·	· •	•	•
•	•••	• •	•	· ·	•	• •		•		•	•		• •	•	•	••••	•	•	· ·	•		•	•	••••	•		•	•			•	•	••••	•	•	•	P	5	•	•

PROBLEM 4 (a) [5 pts]	· ·
* Mentioning "We will prove the statement"	— 0.5 pt
* Observing that c' and d' are well-defined	1 pt
* Observing that $C(ac^{-1}-bd^{-1}) \equiv 0 \pmod{m}$	— 2.5 pts
* Using relative primality of c and m to finish the priof	- 1 pt

* Mentioning "We will prive the statime	nt" 0.5 p
* Invoking gcd-spc equivalence, and ob	Curina
that $\alpha = 0$ and $\beta \leq 0$	d 2 pts
* Observing that part(a) can be used	+0
divide the congrumences in (1) and (2)	l·s βts
t Stating that relative primality of 6 and	dm — 1 pts
is not needed.	

X	Mentioning "We will prive the statement"	0.5 pt
*	Using Euler's theorem	1 pt
¥	Using part (b) -	<u> </u>
r r	Case analysis for $d=n$ and $d < n$ —	2.pts