COL202: DISCRETE MATHEMATICAL STRUCTURES MAJOR EXAM SOLUTIONS

(a) [5 points] Prove or disprove: Every graph $G = (V, E)$ has a bipartite subgraph with at least $|E|/2$ edges.

Proof by probabilistic argument Assign each virtex to the "left" set w.p. 1/2 and "right" w. Assign each vertex to the left set w.p. 1/2 and "night" w.p. 1/2.
Independently of other vertices. Fix any edge $e = \{u, v\}.$ Define $X_e = \Gamma$ 1 if edge en is crossing $\sqrt{0}$ \sqrt{w}

(a) [5 points] Prove or disprove: Every graph $G = (V, E)$ has a bipartite subgraph with at least $|E|/2$ edges.

 $\mathbb{P}_N(X_e=1) = \mathbb{P}_N(u$ on left and v on right or vice vices) disjuint = $p_k(u|t, v)$ right) + $p_k(u)$ right, $v|t)$ independence Br (u left). R (v right) + Br (u right). Br (v left) $\frac{1}{2} + \frac{1}{2}$ Define X = 2 Xe Then IE[X] is expected number of crossing edges.

(a) [5 points] Prove or disprove: Every graph $G = (V, E)$ has a bipartite subgraph with at least $|E|/2$ edges.

PROBLEM 1 (b)

PROBLEM 1 (b)

(b) [10 points] Prove or disprove: Every graph $G = (V, E)$ where |V| is even and $|E| > 0$ has a bipartite subgraph with strictly more than $|E|/2$ edges.

PROBLEM 1 (b)

Problem 2 $[6+4+5=15 \text{ points}]$

For any $n \in \mathbb{N}$, let $[n]$ denote the set $\{1, 2, ..., n\}$. We will assume that $n \ge 3$.

A permutation σ of $[n]$ is said to be *concave* if, for every $i \in \{2, 3, ..., n-1\}$, $\sigma(i) \geq \frac{\sigma(i-1) + \sigma(i+1)}{2}$. For example, when $n = 4$, the permutation $(1, 2, 3, 4)$ is concave but the permutation $(4, 1, 3, 2)$ is not.

A permutation σ of $[n]$ is said to be *bitonic* if there exists some $i \in [n]$ such that

- for all $j \in [n-1]$ such that $j < i$, $\sigma(j) < \sigma(j+1)$, and
- for all $k \in [n-1]$ such that $k \geq i$, $\sigma(k) > \sigma(k+1)$.

For example, when $n = 4$, the permutation $(1, 2, 3, 4)$ is bitonic but the permutation $(4, 1, 3, 2)$ is not.

(a) [6 points] Prove or disprove: Every concave permutation is bitonic. Let t d
Let t be ontradiction.
any concave permutation of [n]

et σ be any concave permutation of $[n]$.
Let $i^* \in [n]$ be such that $\sigma(i^*) = n$.

Suppose , for contradiction , utation of $[n]$
at $\sigma(i^*) = n$, bitonic. Then

(i) either $\exists j < i^*$ such that $\sigma(j) \geq \sigma(j+1)$

(ii) or f \overline{x} it such that $\sigma(k) < \sigma(k)$.

(a) $\boxed{6}$ points Prove or disprove: Every concave permutation is bitonic. (i) $\exists j < i^*$ such that $\sigma(j) \geq \sigma(j+1)$ ↑ Let j be the closest index to it that satisfies case (i) -1.
-- 1.
-- 1. Obsure that $\int^{\frac{x}{t}} f(t+1) dt$ thus $\int^{t} c(t) dt$ $r(1^*)$ $r(1-1)$, $r(n+1)$
 $r(1^*+1)$ and $r(1^*+1)$ $r(1^*+2)$. Then , +1. well-defined \Rightarrow concavity violated at j^*+1 Contradiction !

(b) $[4 \text{ points}]$ Identify all concave permutations of the set $[5]$. No explanation is required. 13452 $9 \mathcal{F}$ \mathcal{F} \mathcal{G} 13542 345 $1.5.4.3.2$

(c) [5 points] How many bitonic permutations of [n] are there? Explain your reasoning.

PROBLEM 3 (b)

(b) [13 points] Given any $n \in \mathbb{N}$, consider a *random graph* $G = (V, E)$ on *n* vertices in which for any pair of vertices $u, v \in V$, the edge $\{u, v\}$ exists with probability 1/2 independently of any other pair of vertices. An *independent set* of a graph is a subset of vertices in which no two vertices are adjacent. Show that the probability that the largest independent set of the random graph G is larger than $[3\log_2 n + 1]$ is $o(n^{-\log_2 n})$, where $o(.)$ stands for little-o notation. $F(x + k) = \sqrt{3} \log x + 1$ Fix any subset of rutius $S\subseteq V$ such that $|S|=k$ \mathbb{P} r (no edge bet IPn (S is independent) = IPn (no edge between any of the kg) pairs of virtics in S) $\frac{1}{2}$ ⑪

PROBLEM 3(b)

(b) [13 points] Given any $n \in \mathbb{N}$, consider a *random graph* $G = (V, E)$ on *n* vertices in which for any pair of vertices $u, v \in V$, the edge $\{u, v\}$ exists with probability 1/2 independently of any other pair of vertices.

An *independent set* of a graph is a subset of vertices in which no two vertices are adjacent.

Show that the probability that the largest independent set of the random graph G is larger than $\lceil 3\log_2 n + 1 \rceil$ is $o(n^{-\log_2 n})$, where $o(.)$ stands for little-o notation.

Let SI, S., M. Sng. be all k-sized subsits of vertices. if Si is independent $\lfloor ct \rfloor$ $\chi_i =$ $X = \sum X_i$ Then $E[X] = \sum_{i} E[X_{i}] = \sum_{i} R_{i}(X_{i}=1) = n_{\mathcal{L}_{1}} \cdot (\frac{1}{2})$

PROBLEM 3(b)

(b) [13 points] Given any $n \in \mathbb{N}$, consider a *random graph* $G = (V, E)$ on *n* vertices in which for any pair of vertices $u, v \in V$, the edge $\{u, v\}$ exists with probability 1/2 independently of any other pair of vertices.

An *independent set* of a graph is a subset of vertices in which no two vertices are adjacent.

Show that the probability that the largest independent set of the random graph G is larger than $\lceil 3\log_2 n + 1 \rceil$ is $o(n^{-\log_2 n})$, where $o(.)$ stands for little-o notation.

 KC_{1} E $= 9C_{c}$ $(k-1)/2$ $C_k \leq n^K$ $\frac{3}{2}$ lug n $K \times 3$ log n η .

PROBLEM 3 (b)

of any other pair of vertices.

From part (a) , we have $\mathbb{P}_L(x,z) \leq E[X]$ \Rightarrow $\mathbb{P}_{x}(x,z_{1}) \leq n$ $+$ $($ from (2) $= 0 (n \frac{-\log n}{2})$ the edge $\{u, v\}$ exists with probability 1/2 independently
a subset of vertices in which no two vertices are adjacent.
e largest independent set of the random graph G is larger
where $o(.)$ stands for little-o notation.

PROBLEM 3(b)

(b) [13 points] Given any $n \in \mathbb{N}$, consider a *random graph* $G = (V, E)$ on *n* vertices in which for any pair of vertices $u, v \in V$, the edge $\{u, v\}$ exists with probability 1/2 independently of any other pair of vertices.

An *independent set* of a graph is a subset of vertices in which no two vertices are adjacent.

Show that the probability that the largest independent set of the random graph G is larger than $[3\log_2 n + 1]$ is $o(n^{-\log_2 n})$, where $o(.)$ stands for little-o notation.

Pr (since of layent independent set z K)
= Pr (there exists an independent set of since z K) $\left[\begin{array}{cc} \alpha & = & k \end{array} \right] \left[\begin{array}{c} \alpha & \alpha & \beta \\ \alpha & \alpha & \beta \end{array} \right]$ \leq \mathbb{R} $\left(\frac{1}{n}\right)$ $\left(\begin{matrix} \text{ {{\rm flug}} } & A \subseteq B \implies \text{ {{\rm Ph}(A)} \leq B(B) } \end{matrix}\right)$ $=$ 1 $\left(\frac{1}{2} \right)$ $\frac{1}{\sqrt{2}}\left(\frac{1}{n}e^{-\frac{1}{2}n} \right)$ f rom (3) ac duived

PROBLEM $3(6)$ [13 pts] * Computing expected value of indicati variables -³ pts **PROBLEM 3 (b)** [13 pts]
* Computing expected value of indicative variables opts * Finishing the proof by observing that the bound on IPr(XX1) Finishing the proof by observing that the bound on $lh(Xz1)$
gives a bound on the derived probability $\frac{2}{3}$ $-2pts$

PROBLEM 4 (A)

PROBLEM 4 (A)

(a) [5 points] Let a, b, c, d, and m be positive integers. Prove or disprove: If $a \equiv b \pmod{m}$, $c \equiv d \pmod{m}$, and $gcd(c, m) = 1$, then $a \cdot c^{-1} \equiv b \cdot d^{-1} \pmod{m}$, where c^{-1} and d^{-1} are the multiplicative inverses (mod m) of c and d, respectively. Thus, $c \cdot (ac^{-1} - bd^{-1})$ (mod m.) $\equiv a-b \pmod{m} \equiv 0 \pmod{m}$ Since cland m are sulatively prime we have $ac^{-1} = bd = 0$ (mod m) as desired.

PROBLEM 4 (b)

(b) [5 points] Let a, b, c, d , and m be positive integers such that b and m are relatively prime. Prove or disprove: If $b^a \equiv 1 \pmod{m}$, $b^c \equiv 1 \pmod{m}$, and $d = \gcd(a, c)$, then $b^d \equiv 1 \pmod{m}$. How does your answer change if you are not given that b and m are relatively prime?

Proof by using
$$
gcd - spec
$$
 equivalence and part (a)

\n
$$
d = gcd (a, c) \implies \exists \text{ integers } \alpha, \beta \text{ such that } d = \alpha a + \beta c
$$
\nWithout loss of generality, α 70 (com arbitrary a, β)

\nThus, the must have that $\beta \le 0$.

\n
$$
\beta = 1 \pmod{m} \implies \beta = 1 \pmod{m} \implies \beta
$$
\n
$$
b = 1 \pmod{m} \implies \beta c = 1 \pmod{m} \implies \beta
$$
\n
$$
c = 1 \pmod{m} \implies \beta c = 1 \pmod{m} \implies \beta c = 1 \pmod{m}
$$

PROBLEM 4 (b)

(b) [5 points] Let a, b, c, d, and m be positive integers such that b and m are relatively prime. Prove or disprove: If $b^a \equiv 1 \pmod{m}$, $b^c \equiv 1 \pmod{m}$, and $d = \gcd(a, c)$, then $b^d \equiv 1 \pmod{m}$. How does your answer change if you are not given that b and m are relatively prime?

Observe that ged (5°) m) = 1 . This is because $\begin{array}{l} \n\mathsf{p} \mathsf{c} \equiv 1 \pmod{\mathsf{m}} \quad \text{and} \quad \text{gcd}(1, \mathsf{m}) = 1 \quad \text{(perb} \text{not } \mathsf{b}, \mathsf{m} \text{ and } \mathsf{b} \text{ is prime}) \n\end{array}$ By applying part (a) , we can divide \bigcirc by \bigcirc to get b^{ina} $+\beta c \equiv | (mod m)$ or $6^d \equiv 1 \pmod{m}$ as desired.

PROBLEM 4 (C)

- (c) [5 points] Let b, p, and n be positive integers. Prove or disprove: If p is a prime such that $p|(b^n-1)$, then:
	- either $p|(b^d-1)$ for some proper divisor d of n (a proper divisor of n is any positive divisor of *n* excluding *n* itself),
	-

 $\begin{array}{|l|} \hline \circ\text{ or }p\equiv 1\pmod n.\ \hline \text{Prop}\quad \text{big} \quad \text{Eulab} \quad \text{theorem} \quad \text{and} \quad \text{post} \quad \text{(b)}. \hline \end{array}$ p is prime \Rightarrow $b = 1$ (mod p) by Ender's thm since $\phi(p) = p + \frac{p}{p+1}$. p is prime \Rightarrow b = Let $d =$ $gcd(n, p-1)$. By part (b) , be $\equiv 1 \pmod{p}$

PROBLEM 4(C)

(c) [5 points] Let b, p, and n be positive integers. Prove or disprove: If p is a prime such that $p|(b^n-1)$, then:

- either $p|(b^d-1)$ for some proper divisor d of n (a proper divisor of n is any positive divisor of n excluding n itself),
- or $p \equiv 1 \pmod{n}$.

If $d = n$, then $gcd(n, p-1) = n$ => n/p-1 \Rightarrow $p \equiv 1 \pmod{n}$. $If \, d \leq$ $p^2 - b^2 - 1$ for some divisor $d \le n - n$
by proper divisor ↳ ⑭

