· · · · · ·	COLS	202:	DIS CRETE	MATHEMATICAL	STRUCTURES
			· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	
			the second sector of the		
			TID	1 C TION	
	• • • • •				
	T	-	2024	ROHIT	VAISH
	21		,		

• •	So:		FA	R	 • ·			••••	0	• •		• •	•	•	• •	•	• •	•		• •
		• •		•	• •			• •		• •						•	• •			
•	Par Dar Thank				• •					• •		• •								
	TROPOSITION								•	• •	•		•							
	A statement that is either											• •								
	TRUE & EALCE	• •	• •		• •	• •	•	• •	•	• •	•	• •	•	•	•••	•		•	• •	• •
•		• •			• •			• •		• •		• •		•	• •			•	• •	• •
	AXIOMC		• •									• •								• •
		• •	• •	•	• •	• •		• •	•	• •	•		•	:		•	• •	•	• •	• •
6	Assumptions / propositions																			
0	that we "accepted" as TRUE		• •									• •	•	•		•		•		• •
0	· · · · · · · · · · · · · · · · · · ·										•									
K					• •					• •		• •			• •					
0	· · · · · · · · · · · · · · · · · · ·			•		• •		• •	•	• •	•		•	•		•	• •			• •
	LOGICAL DEDUCTIONS																			
		• •	• •		• •	• •		• •	•	• •		• •		•	• •		• •		• •	• •
	A collection of surles for			•	• •	• •		• •	0		•	• •		•	• •	•	• •	•	• •	• •
	proving men book the								•		0	• •								
	prove propositions	• •	• •		• •	• •	•			• •		• •				•		•		• •
	hing provinusly known ones.	• •		•	· ·	• •		· ·	•	· ·	•	• •	•	•	· ·	•	• •	•	· ·	• •

• •	So	FAR	· · · · · · · · · · · · · · · · · · ·
	PROPOSITION A statement that is either TRUE of FALSE	Propositional	Colculus
		¬þ	Negation
0.6	ASSUMPTIONS / Propositions that are "accepted" as TRUE	þ [∨] v	Disjunction/Or
PRO	LOGICAL DEDUCTIONS	þ ∧γ	Conjandtm/And
	A collection of kulee for proving new propositions Using previously known one	þ⇒91	Implication/If-Then

· · ·	So	FAR
	PROPOSITION	
· · · ·	A statement that is either TRUE or FALSE	
		Consistency and completenecs
00 F	AXIOMS Assumptions / Propositions that are "accepted" as TRUE	Gödel's Incompleteness Theorem
PR(LOGICAL DEDUCTIONS	
	A collection of surles for	

· · ·	So	FAR	
	PROPOSITION A statement that is either TRUE or FALSE	Modus Ponens p, p	,⇒qv V
0 £	AXIOMS Assumptions / Propositions that we "accepted" as TRUE	Modus Tollens p=7 T	q,79 Þ
PR01	LOGICAL DEDUCTIONS	Chain Rule $p = \frac{1}{2} q $, $p = \frac{1}{2} q $, $p = \frac{1}{2} q $	$q_{j} \Rightarrow h$ $\overline{q} h$
	A collection of rules for proving new propositions Using previously known one.	Contrapositive $p = \frac{1}{7}$	2 27β

	So	FAR
	PROPOSITION	PROOF EMPLATES
	A statement that is either TRUE or FALSE	By Case Analysis
5	AXIOMS Assumptions / Propositions that an "accurated" or Terre	By Contradiction
PROC	LOGICAL DEDUCTIONS	By picture 🔨
	A collection of kulee for proving new propositions Using previously known one	By induction (Today)

· · · · · · · · · ·	· · · · · · · · · · · · · ·	INDUCTION A	XIOM	
L	et P(n)	be a predicate.	· · · · · · · · · · · · · · · · ·	
	-f P(0) is	TRUE and	· · · · · · · · · · · · · · ·	
+	tnelNU	{03, P(n) :	$\Rightarrow P(n+1)$	is True
+ t	tn E IN U hen tn E	$\{0\}, P(n);$ $[N \cup \{0\}, P(n)];$	$\Rightarrow P(n+1)$ s True	es True

	INDUCTION A7	IOM	
Suppose	P(O) is TRUE.	ard	
	$P(0) \Rightarrow P(1)$ is TRUE	and	
	$P(I) \Rightarrow P(2)$ is TRUE	ard	
Then,	$\forall n \in \mathbb{N} \setminus \{0\} P(n)$	is TRUE	
	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · ·

. .	INDUCTION AX		
Suppose	P(O) is TRUE	and 7	P(1) is TRUE
. .	$P(0) \Rightarrow P(1)$ is TRUE	and	(modus ponens)
	$P(I) \Rightarrow P(2) \text{ is TRUE}$	ard	
Then,	$\forall n \in \mathbb{N} \ v \{ 0 \} P(n)$	is TRUE	

	INDUCTION AXIOM
Suppose	P(0) is TRUE and To P(1) to Tent
	$P(0) \Rightarrow P(1)$ is TRUE and (modus ponens)
	$P(1) \Rightarrow P(2)$ is TRUE and] $\Rightarrow P(2)$ is TRUE (module formula)
· · · · · · · · · · · · · · ·	
Then,	$\forall n \in \mathbb{N} \cup \{0\} P(n) $ is $TR \cup E$.

	INDUCTION AXIOM
Suppose	P(0) is TRUE and 7 P(1) is TRUE
· · · · · · · · · · · · · · · ·	$P(0) \Rightarrow P(1)$ is TRUE and (modus ponens)
. .	$P(I) \Rightarrow P(2)$ is TRUE and] $\Rightarrow P(2)$ is TRUE (module prime)
	$\downarrow \rho(3)$ is TRUE
Then,	$\forall n \in \mathbb{N} \ v \{ 0 \} \ P(n) \ is \ TR v \in \mathbb{N}$

			1202			
There	top M	NEN				
In Cham -						
	🧛		. .	and the second	n (n +)	
	1.	「レナる	. T	TN	3	i i comencia de la c
					2	

There in :	For M nenveog	
	1+2+3+	-+n = n(n+1)
		2
		· · · · · · · · · · · · · · · · · · ·
	/ m	
	· · · · · · · · · · · · · · · · · · ·	
		· · · · · · · · · · · · · · · · · · ·
	· · · · · · · · · · · · · · · · · · ·	
	· · · · · · · · · · · · · · · · · · ·	
	• • • • • • • • • • • • • • • • • • • •	
	l = 1	1 < i < n
		- T = 1 =

Theorem :	For all 1 1+	n e IN U [0] 2 + 3 + -	- + n = ?	n (n +1) 2	· ·
Proof :	By	induction.	6 Always	mention	this.
	· · · · · · · · · ·				
	· · · · · · · · · ·			· · · · · · · · ·	· · · · · · · · · · · ·
		· · · · · · · · · · · ·			
· · · · · · · · · · · ·					· · · · · · · · · · · ·

Therem	For all	neNV{0}		
· · · · · · · · · ·	1+	2+3+	$+ n = \frac{n(n+1)}{2}.$	· · · · · · · · · · · · ·
Proof	: By	induction.	- Always mention	this,
Let	P(n) be	the proposition	n that	· · · · · · · · · · · ·
· · · · · · · · · · ·	 .	+ 2 + 3 + - ·	$+n=\frac{n(n+1)}{2}$	• • • • • • • • • • • •
				· · · · · · · · · · · · · ·
		· · · · · · · · · · · · · · ·
· · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · ·

These : F	or all new usos		
	1+2+3+	$+ n = \frac{n(n+1)}{2}$	
Proof :	By induction. K	Always mention	this.
Let P((n) be the propositing $1+2+3+\cdots$	m + n = n(n+1)	• • • • • • • • • • • • • • • • • • •
We wav * 7	H to show that : P(o) is TRUE, H n e N u {0},	and $P(n) \Rightarrow P(n+1)$.	

•	•	1	he	- - 			•	ł		r		, JJ , JJ	ľ	1		Ŀ	1	j	V	ł	0	z	•	•	· · ·	•	•	· · ·	•	· · ·	•	•	· ·	•	•	· · ·	•	•	•	· ·	•	•	· ·
•	•	•	· ·	•	•	· ·	•	•	•	•	1		+		2		F		3	-	•		-	- - - -	-	F .	1	1			n	(1	n + 2	H		•	•	•	•	· ·	•	•	• •
•	•	•	Pi		۰f	• •	· ·	•	•	ß		e Se	•	C		50		•	•	P	(0		•	ìs	•		TR.	v (•	•	· ·	•	•	· ·	•	•	•	· ·	•	•	· ·
•	•	•	· ·	•		· ·	•	•	•	• •	•	•	•	• •	· ·	•	•	•	•	••••	•	•	•	•	· ·	•	•	••••	•	• •	•	•	· ·	•	•	• •	•	•	•	• •	•	•	•••
•	•	•	•••	•	•	· ·	•	•	•	• •	•	•	•	• •	· ·	•	•	•	•	· ·	•	•	•	•	· ·	•	•	••••	•	••••	•	•	••••	•	•	••••	•	•	•	• •	•	•	•••
•	•	•	• •	•	•	•••	•	•	•	• •	•	•	•		· ·	•	•	•	•	••••	•	•	•	•	• •	•	•	• •	•		•	•	• •	•	•	•••	•	•	•		•	•	•••
•	•	•	· ·	•	•	• •	0	•	•	• •	0	•	•	• •	· ·	•	•	0	•	· ·	0	0	•	•	· ·	•	0	· ·	•	••••	•	0	· ·	0	•	••••	•	•	•	· ·	•	•	• •
•	•	•	• •	•	•	• •	0	•	•	• •	0	•	•	• •	• •	•	•	0	•	• •	•		•	•	•••	•	•	• •	•	• •	•	•	• •	•	•	• •	•	•	•	• •	•	•	• •
		•	• •	•		· ·		•	•	• •		•	•	• •		•	•	•		• •			•	•	• •	•	•	• •	•	• •		•		•				•		• •	•	•	• •

· ·		Г	v			•		F 6	h		,J		1		E	1	1	V	{ {	0	3	•	· · ·	•	•	•	· · ·	•	· · ·	•	•	· ·	•	•	· · ·	-	•	•	· ·	· ·	•	•	•
• •	· ·	•	· ·	•	•	• •	•	•	•	1		+		2		ł		3	+	•	•		· · ·	+		n	i i	5	•	n	6	n + 2	H -		•	•	•	•	· ·		•	•	•
• •	· ·	F	? ^	- - 	f	•	•	•	ß		Se		<u>С</u>		56		•	•	P	(0)	•	Ĵ	ו בו ג	•			v (•	•	· · ·	•	•	· · ·		•	•	· ·	· ·	•	•	•
• •		•	• •	•	•	• •	F		•	n		-0			•	•	l	+	- 2	L	+		•	•	•	-	\vdash	n		= (• •	•	•	• •	•	•	•	· ·		•	•	•
· ·		•	· · ·	•	•	· · ·	•	•	•	· ·	•	•	•	· ·	•	•	•	•	· · ·	•	•	•	· · ·	•	•	•	· · ·	•	• •	•	•	· · ·	•	•	· · ·		•	•	· ·		•	•	•
• •	· ·	•	• •	•	•	• •	•	•	•	• •	•	•	•	• •	•	•	•	•	· ·	•	•	•	· ·	•	•	•	· ·	•	• •	•	•	•	•	•	• •	•	•	•	• •	• •	•	•	•
• •		•	• •	•	•	• •	•	•	•	• •	•	•	•	• •	•	•	•	•	· ·	•	•	•	• •	•	•	•	• •	•	• •	•	•	• •	•	•	• •		•	•	• •	· · ·	•	•	•
											•								· ·					•			• •	•			•	• •						•			•	•	

Theurom !	For M nell 1+2+	v{o} 3 + +	n = n(n)	<u>번</u>).
Proof :	Base Case:	P (0) is	TRUE	
1	Fir n=0, l	+2+·	+n =0	(convention)
· · · · · · · · · · · ·				
· · · · · · · · · · · · ·	· · · · · · · · · · · · · · · ·	· · · · · · · · · · · ·	· · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·
· · · · · · · · · · · · · ·				
· ·		· · · · · · · · · · · · · ·	· ·	. .

There For	い neNV{o} L+2+3+	$-+n=\frac{n(n)}{2}$	번).
Proof : Ba	se Case: P(0)	is true	· · · · · · · · · · · · · · · · · · ·
Fir n	=0, 1+2+	+n =0	(convention)
	n(n+1)	= 0(0+1) = 0	
· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·
	· · · · · · · · · · · · · · · · · · ·		

These :	For all n	envios		
· · · · · · · · · · · ·	1+2	-+3+	$+ n = \frac{n(n)}{2}$	
Proof	: Base Ca	se: P(0) i	s True	
· · · · · · · · · · · ·	Fir n=0,	1+2+-	- + n = 0	(convention)
· · · · · · · · · · · ·		$\frac{n(n+1)}{2} =$	0(0+1) = 0	
	There forse,	P(0) is T#	NE.	
· · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·		

Theorem :	For all n		<u>}</u>	n (n+1)	
· · · · · · · · · · · ·				2	· · · · · · · · · · · · · · · · · · ·
Proof :	Inductive	Step :	tne IN Ujo	} P(n) ⇒	P(n+1) is TRUE.
· · · · · · · · · · ·					
				· · · · · · · · ·	

There :	For M ne 1+2	- N U {0	3		n (1	n+1)	· · · · · ·	· · · · · · · · · · ·
Proof :	Inductive	Step :	tne	-IN U {0	Ρ(2- n) ⇒	P(n+1) is TRUE.
Recall :	p 9	₽₹	7 Y	· · · · · ·		· · · · · ·	· · · · · ·	
· · · · · · · · · · · · · · · ·	T T	T	· · · · · ·			· · · · ·	· · · · · ·	
· · · · · · · · · · · · · · ·	T F F T	F T	· · · · · ·			· · · · ·	· · · · · ·	· · · · · · · ·
	P P	Т				· · · · ·	· · · · · ·	

Theorem !	For Mne	- M U {0}	m (n +1)	
· · · · · · · · · · · · · ·	1+2	+ 3 + +	$f n = \frac{n(n+1)}{2}$	••••••
Proof :	Inductive	Step: tne	- IN U {O} P(n) ⇒	P(n+1) is TRUE
Recall :	þ v	₽₹₽	If P(n) is	False,
	ΤΤ	T	we me dome	•••••
	Т F F т	F		
	P P	T		

There :	For Mne	N V {0}	
· · · · · · · · · · · · · · · · · · ·	1+2+	- 3 +	$F n = \frac{n (n + 1)}{2}$
Proof :	Inductive .	Step : tnc	$-IN \cup \{0\} P(n) \Rightarrow P(n+1) \text{ is True.}$
Recall :	þ v	₽₹¶	If P(n) is FALSE,
· · · · · · · · · · · ·	ТТ	Т	we me dome
. .	TF	F	So, let's assume PID is TRUE
· · · · · · · · · · · · ·	FT	T	and show P(n+1) is TRUE.
· · · · · · · · · · · ·		· · · · · · · · · · · · ·	

•	The	num: For	Mne 1+2+	N U {0} - 3 + -	+ n =	n(n+1)	
•	P	roof: I	nductive	Step : t	$n \in IN \cup \{0\}$	$P(n) \Rightarrow P(n+1)$ is TRU	E.
•	· · · · ·	Assame	P(n) is	TRVE	for the pur	pose of induction,	· ·
•	· · · · ·	i.e.,	+ 2 +	+1	$n = n(n + \frac{1}{2})$		• •
•	· · · ·	· · · · · · · · · ·	· · · · · · · · · ·	· · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·	• •
0	· · · · ·		· · · · · · · · · · · ·	· · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·	• •
•	· · · · ·	· ·		· · · · · · · · · ·		· ·	• •

Then : For all nen l	1 {o}
1+2+3	$+ + n = \frac{n(n+1)}{2}$
Proof: Inductive Ste	P: \forall n G IN U{O} P(n) ⇒ P(n+1) is TRUE
Assame P(n) is TR	.VE for the purpose of induction,
i.e., 1+2+-	$+n=\frac{n(n+1)}{2}$
Need to show the	+ P(n+1) is TRUE, i.e.,
1+2+-	-+(n+1) = (n+1)(n+2).

These : For	M ne NU lo	3	
· · · · · · · · · · · · · · · · · · ·	1+2+3+	+ n =	$\frac{n(n+1)}{2}$
Proof : Ir	iductive Step:	tnelNujoj	$P(n) \Rightarrow P(n+1)$ is TRUE.
Assame i.e.,	P(n) is TRUE $1+2+-\cdots$	for the punt $+n = n \ln t$	pose of induction,) Does Not mean
Need to	show that	2 $P(n+1)$ is TR	We are aschning what we want to prove UE, i.e.,
	+2+	$+(n+1) = (\underline{r})$	$\frac{(n+2)}{2}$

Theorem :	For all nerv U 1+2+3	{o} + + n =	n (n+1) 2-	• • • • • • • • • • • • • • • • • • • •
Proof :	Inductive Step	the IN u los	P(n) ⇒	P(n+1) is TRUE.
	1+2+	+(n+1)		· · · · · · · · · · · · · · ·
· · · · · · · · · · · ·			· · · · · · · · ·	· · · · · · · · · · · · · ·
· · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·		· · · · · · · · ·	· · · · · · · · · · · · · ·
· · · · · · · · · · · · ·			 	· · · · · · · · · · · · · · ·
· · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·		· · · · · · · · ·	· · · · · · · · · · · · ·

There :	For M neN U {0} 1+2+3+	+ n =	<u>n (n t</u>	<u>!</u>)	
Proof	: Inductive Step :	tnelNujo	} P(n)	→ P (n+1)	is True.
· · · · · · · · · · ·	1+2+ +1	n + (n+1)	· · · · · · ·	· · · · · · · · ·	· · · · · ·
· ·	$= \frac{n(n+1)}{2} + (n$	+1) (Since	P(n) is T	kue)
	= (n+1)(n+2).	. .		· · · · · · · · · · ·	
			· · · · · · ·		

These in !	For MneNV{0}
	$1+2+3++n=\frac{n(n+1)}{2}$
Proof :	Inductive Step: #nGINU{0} P(n) ⇒ P(n+1) is TRUE.
	1+2++n+(n+1)
	$= \frac{n(n+1)}{2} + (n+1) (Since P(n) is True)$
· ·	= (n+1)(n+2).
7	$h_{vs}, \forall n \in (N \cup \{0\}) P(n) \Rightarrow P(n+1).$

•			T L		• •	h '	U L) () ()	•	•	•		G	n		A 1	n K	Ĵ		۰ ۲	'e	+	•	0	f	•	r r		•		D 1	۰ ۲ ۲	- 1	٧ı	9	-	ł	•	L	i	ł			۰ ۵			•			•	•	•	•	•	•
				7 2) U	, л		J		•		•	0	l	۲. ۲				•			•		J	Ċ		-				•	ę) I		J	•		4		26	20	h	•	0	H	hC	እ	•		•	•	0		
		•																		-					-												•																•		
		•																						•												•																			
		•																						•												•	•																		
		•		•	•	•	•	•						•				•	•	•				•													•	•	•												•	•			•
		•		•				•	•		•			•			•	•	•	•				•	•												•		•												•	•	•		
	•	•		•	•	•	•	•	•	•	•		•				•	•	•	•				•	•					•	•						•	•	•						•	•						•			
		•	•	•		•		•	•										•					•	•												•		•																
			•	•	•	•	•	•																•													•		•																
	0	•			•	•	•	•			•						•	•						•												•	•	•																	
														•																									•													•			
								•						•				•	•	•																		•													•	•			•
		•		•	•	•	•	•	•	•	•		•	•			•	•	•					•	•	•		•		•						•	•	•	•												•	•			•
		•	•	•	•	•	•	•	•		•		•					•	•					•	•	•		•		•						•	•	•	•																
		•	•	•			•	•	*																•											•	•	•	•																
		•	•	•	•	•	•	•	•	•						,								•	•	•										•	•	•	•																

Theohem (Absand)	: In all	any set Ulemen	of n n Is one	equal to	integen Cach	s, other
Proof :	By	induction			· · · · · · · · ·	
let	P(n)	be the	staten	nent of 1	the the	ilem.
· · · · · · · · · · ·	· · · · · ·	· · · · · · · · · ·	· · · · · · ·	· · · · · · · · · ·	· · · · · · ·	· · · · · · · · · · · · · · · · · ·
· · · · · · · · · · ·	· · · · · ·	· · · · · · · · · ·	· · · · · · ·	· · · · · · · · · ·	· · · · · · ·	· · · · · · · · · · · · · · · · · ·
· · · · · · · · · · · ·	· · · · · ·	· · · · · · · · · ·	· · · · · · ·	· · · · · · · · ·	· · · · · · ·	· · · · · · · · · · · · · · · · · · ·
· · · · · · · · · · · ·	· · · · · ·	· · · · · · · · · ·	· · · · · · ·	· · · · · · · · · ·	· · · · · · ·	· · · · · · · · · · · · · · · · ·
· · · · · · · · · · ·	· · · · · ·	· · · · · · · · · ·		· · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·

Theorem (Absund)	: In all	any set Jenem	of n r	on-negati equal	ive integer to each	s, other	· · · ·
Proof :	By	induction	m		
let	P(n)	be the	state	ment of	the th	cifem.	· · · ·
Bar	Case !	P (0)	is Tr	LVE be	canse		· · · ·
· · · · · · · · · · · ·	· · · · · · · ·	· · · · · · · · · ·	· · · · · · · ·	· · · · · · · · · ·	· · · · · · · · · · ·		
	· · · · · · · ·	· · · · · · · · ·	· · · · · · · ·	· · · · · · · · ·	· · · · · · · · · ·		

Theorem :	In any set of n non-negative integers,
(Absnnd)	all elements are equal to each other.
Proof :	By induction.
let 1	P(n) be the statement of the thesem.
Base Co	se: P(0) is TRUE because in a set with
· · · · · · · · · · · · · ·	Zero elements, all elements are equal
	to each other.

Theohem : (Absund)	In any set of n non-negative integers, all elements are equal to each other.													
Proof :	Inductive Step	the INU jog	$P(n) \Rightarrow P(n+1).$											

Theorem : I (Absand)	in any set of n non-negative integers, all elements are equal to each other.
Proof: 1	admutive Step $\forall n \in N \cup \{0\} P(n) \Rightarrow P(n+1).$
Consider	any set S of n+1 non-negative integers.
	$S = \{a_1, a_2, a_3,, a_{n+1}\}$
· · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·
· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·
· · · · · · · · · · · · · · · ·	

Theohem: In any set of n non-negative integers, (Absand) all elements are parely by all of the set all elements are equal to each other. Proof: Inductive Step the INU 203 P(n) => P(n+1). Consider any set S of n+1 non-negative integers. $S = \{a_1, a_2, a_3, -\cdots, a_{n+1}\}$ Then, by induction hypothesis : for $S \setminus \{a_{n+1}\}$: $a_1 = a_2 = a_3 = - - - = o_n$

Theorem : (Absord)	In any set of n non-negative integers, all elements are equal to each other.
Proof : Consid	Inductive step. In G IN U }03 P(n) ⇒ P(n+1). der any set S of n+1 non-negative integeus.
	$S = \{a_1, a_2, a_3,, a_{n+1}\}$
Then,	by induction hypothesis:
for s	$s \setminus \{a_{n+1}\}$: $a_1 = a_2 = a_3 = = o_n$
fr s	$a_1 = a_3 = = a_{n+1}$

Theorem : (Absord)	In any set of n non-negative integros, all elements are equal to each other.
Proof: Consid	Inductive Step. In & IN v }03 P(n) ⇒ P(n+1). der any set S of n+1 non-negative integens.
· ·	$S = \{a_1, a_2, a_3,, a_{n+1}\}$
Then,	by induction hypothesis:
for s	$S \setminus \{a_{n+1}\}$: $a_1 = a_2 = a_3 = = o_n$
fn S	$S \setminus \{a_1\} : \qquad a_2 = a_3 = = a_{n+1}$

Theohem: In any set of n non-negative integers, (Absand) all allocate and and allocate and alloc all elements are equal to each other. Proof: Inductive Step the INU 203 P(n) => P(n+1). Consider any set S of n+1 non-negative integers. $S = \{a_1, a_2, a_3, -- , a_{n+1}\}$ Then, by induction hypothesis : PROBLEM for $S \setminus \{a_{n+1}\}$: $a_1 = a_2 = a_3 =$ $a_{1} = a_{3} =$ $---=a_{n+1}$ fr S \ {a, } :

Theohem: In any set of n non-negative integers, (Absand) all elements are equal to each other. Proof: Inductive Step the INU 203 P(n) => P(n+1). Consider any set S of n+1 non-negative integers. $S = \{a_1, a_2, a_3, --, a_{n+1}\}$ Then, by induction hypothesis: $P(I) \Rightarrow P(2)$. for $S \setminus \{a_{n+1}\}$: $a_1 = a_2 = a_3 = - - - = a_{n+1}$ for $S \setminus \{a_1\}$: $a_2 = a_3 = - - - = a_{n+1}$

Theorem : (Absund)	In any set of n non-negative integers, all elements are equal to each other.	•
Proof : Consid	Inductive Step. $\forall n \in N \cup \{0\} P(n) \Rightarrow P(n+1)$. Ler any set S of $n+1$ non-negative integers.	
Then, for s for s	$S = \{a_1, a_2\}$ $P(0BLEM : We never proved$ $P(1) \Rightarrow P(2)$ $P(1) \Rightarrow P(2)$ $P(1) \Rightarrow P(2)$ $P(1) \Rightarrow P(2)$	

Theorem :	In any set of n non-negative integers,
(Absord)	all elements are equal to each other.
Proof :	Inductive Step $\forall n \in N \cup \{0\} P(n) \Rightarrow P(n+1).$
Consid	der any set S of n+1 non-negative integers.
Then,	$S = \{a_1, a_2\}$ by induction hypothesis : PROBLEM : We never proved $P(I) \Rightarrow P(2)$.
for s	$S \setminus \{a_{n+1}\}$: a_1 No reason to infor $a_1 = a_2$
for s	$S \setminus \{a_1\}$: a_2

Theorem : (Absund)	En any set of n non-negative i all elements are equal to	ntegus, each other.
Bug: We	proved P (0) is TRUE	and
	$P(0) \Longrightarrow P(1)$	$\operatorname{net} P(l) \Longrightarrow P(2)$
· · · · · · · · · · · · · · · · · ·	$P(2) \Rightarrow P(3)$	
· · · · · · · · · · · · · · · · · · ·	$P(3) \Rightarrow P(4)$	

Theorem :	In any set of n non-negative integers,											
(Absand)	all elements are equal to each other.											
	· · · · · · · · · · · · · · · · · · ·											
· · · · · · · · · · · · · ·												
Thedrem :	If every pair of non-negative integers are equil,											
(Not absend)	thun for any n 7,2, any n-sized set of											
	non-negative integers has all elements equal.											

•		• •	•	•	• •	•	•	• •		•	•	•	A	•	-	Ti		i. K I	[_		•	P		7	· 7	· •	ſ	-	• •		• •	•			•	•	• •		•	• •
	•				• •			• •					, ,			• 1		ļν	Ч			•	V		- 6		- 5		• •								• •			• •
	•				•	•							•			•		• •		•		• •						•	• •	•					•		• •			• •
•	•	• •			• •			• •					•			• •		•				• •				• •		•	•	•	• •			• •			• •			• •
•	•	• •			• •			• •					•			• •		•				• •				• •			•	•	• •			• •			• •			• •
	•	• •			• •		•	•	•			•	• •		•	• •	•	• •				•			•	• •		•	• •	•	• •		•	• •			• •			• •
	•	• •			• •			• •					• •		•	• •		• •				• •				• •		•	• •		• •		•	• •		•	• •			• •
	•				• •			•					•			• •		•				•				• •			• •					• •			• •			• •
	•				• •			•					•			• •		•				•				• •			• •					• •			• •			• •
	•	• •			• •		•	• •	•				• •		•	• •		• •				• •				• •		•	• •	•	• •			• •			• •			• •
•	•	• •			• •			• •					• •			• •		• •				• •				• •		•	• •	•	• •		•	• •			• •	•		• •
					• •			• •					• •			• •		• •				• •				• •			• •				•			•	• •			• •
	•	• •			• •			• •					• •			• •		• •				• •				• •		•	• •		• •						• •			• •
•	•	• •			• •			• •					• •			• •		• •				• •				• •			• •		• •			• •			• •			• •
					• •			• •					• •			• •		• •											• •								• •			• •
					• •			• •										• •										•					•	• •		•				• •
					• •											• •		• •																		•				• •
					• •								• •			• •		• •								• •			• •		• •						• •			• •
													• •					• •													• •			• •						• •

A TILING PUZZLE Given: A 2x2 grid with missing square

		A TILING	PUZZLE	
· · · ·	Given	$A 2^{n} x 2^{n}$	grid with	missing Square
· · · ·	Want :	Tile it using	"L" shaped	trominos/tiles
· · · ·		n=/	n=2	
· · · ·	· · · · · · · · · · · · ·			. .
· · · ·				
· · · ·				

	A TILING	PUZZLE	
Given :	$A 2^{n} \times 2^{n}$	grid with	missing Square
Want :	Tile it using	"L" shaped	trominos/tiles
	N=1	n=2	
· · · · · · · · · · · · · · · · · · ·			
. .			. .

· · · · ·		A TILING	PUZZLE	
· · · · ·	Given :	$A 2^{n} x 2^{n}$	grid with	missing Square
· · · · ·	Want :	Tile it using	"L" shaped	trominos/tiles
· · · · ·		n=1	n=2	· ·
· · · · · ·	· · · · · · · · · · · · · ·	441		
· · · · ·	· · · · · · · · · · · · ·			

Theohem: Any 2×2 grid with a missing	center square
con be tiled using trominos.	

Any 2×2 grid with a missing center square The con be tiled using thominos. All of Center squares

Any 2×2 grid with a missing center square Theore con be tiled using trominos. Proof : By induction. P(n): Any 2×2 grid with a missing center square con be tiled using traminos.

Theohem	Any 2x2 Con be -	n grid with tiled using -	a missing Utrominos.	center square
Proof P(n)	: By induc : Any $2^{n} \times 2^{n}$ Con be $\pm t$	tion. grid with a led using t	missing (ominos.	enter sqnær
Base		Lu Zu	no tiles s	suffice!
 · · · · · · · · · · · · · · · · · · ·			· ·	

Theohem :	Any 2°×2° grid with a missing center square con be tiled using transmos.
Proof :	By induction.
P(n) :	Any 2×2 grid with a missing center square
· · · · · · · · · · · · · · · ·	con be tiled using traminos.
Induction step	
$\begin{array}{c} n+1 & n+1 \\ 2 & \chi & 2 & g_T \end{array}$	

Any 2x2 grid with a missing center square Theore con be tiled using thominos. By induction. Proof : P(n): Any 2×2 grid with a missing center square can be tiled using traminos. Induction step ~2~~~2~ n+1 n+1 2 x 2 grid 2

Any 2x2 grid with a missing center square Theore con be tiled using thominos. By induction. Proof : P(n): Any 2×2 grid with a missing center square con be tiled using trominos. Induction step ~2~~~2~ n+1 n+1 2 x 2 grid 2

Any 2×2 grid with a missing center square Theohem con be tiled using thominos. By induction. Proof : P(n): Any 2×2 grid with a missing center square con be tiled using traminos. Induction step : ~2~~~2~ How to apply the 2 n+1 n+1 2 × 2 grid induction hypothesis? 21'

Any 2×2 grid with a missing center square Theohem con be tiled using thominos. By induction. Proof : P(n): Any 2x2 grid with a missing center square con be tiled using traminos. Induction step : -2-----How to apply the 21 n+1 n+1 2 × 2 grid induction hypothesis? 2 Modify it

Any 2x2 grid with a missing center square Theohem con be tiled using thominos. By induction. Proof P(n): Any 2×2 grid with a missing conter square con be tiled using traminos. Induction step : -2-----How to apply the 2 n+1 n+1 2 × 2 grid induction hypothesis? 2 Modify it

Any 2×2° grid with a missing center square Theohe con be tiled using traminos. Proof : By induction. P(n): Any 2×2 grid with of missing center square con be tiled using traminos.

Any 2x2° grid with a missing center square Theohe con be tiled using traminos. By induction. Proof : P(n): Any 2×2 grid with of missing conter square con be tiled using trominos. Induction step ~2~~~2~ n+1 n+1 2 x 2 grid 2

Any 2x2° grid with a missing center square Theohe con be tiled using trominos. By induction. Proof : P(n): Any 2×2 grid with of missing conter square con be tiled using trominos. Induction step ~2~~~2~ n+1 n+1 2 x 2 grid 21

Any 2x2° grid with a missing center square Theohe con be tiled using traminos. By induction. Proof : P(n): Any 2×2 grid with of missing conter square con be tiled using trominos. Induction step ~2~~~2~ n+1 n+1 2 × 2 grid 2

Any 2"x 2" grid with a missing center square Theoher con be tiled using thominos. By induction. Proof P(n): Any 2×2 grid with & missing carton square con be tiled using trominos. Induction step n+1 n+1 2 × 2 grid 277

Any 2×2 grid with a missing center square Theoher con be tiled using trominos. By induction. Proof P(n): Any 2×2 grid with × missing conter square con be tiled using trominos. Takenway: Induction step ~2~~~2~ $P(n) \Longrightarrow P(n+1)$ 21 0 n+1 n+1 2 × 2 grid Assume T Something Stronger prove 2] something stronger