

Problem 1 [24 points]

Consider the following variant of the Towers of Hanoi problem: There are *four* pegs numbered $1, 2, 3, 4$ from left to right. There are *n* discs of distinct sizes arranged on peg 1 in increasing order of their sizes from top to bottom. The objective is to move all n discs to peg 4 while following the same rules as in the three-peg problem, namely,

- only the topmost disc on each peg can be moved, and
- a larger disc cannot be placed on top of a smaller disc.

Your goal is to design an algorithm for the four-peg problem that is asymptotically faster than the three-peg algorithm discussed in class. You may find it helpful to read the problem statements of all three parts (a) , (b) , and (c) before starting to write your solution.

For $n = 1$, a single move suffices. $(\begin{array}{ccc} 0 & 1 & \longrightarrow \\ 0 & 1 & \longrightarrow \end{array})$ $\mathfrak{r}(\mathfrak{t}^{\tau})$ For $n=2$, three moves suffice move suffra
Small disc : peg 1 -> peg 2 large disc : p_{9} 1 \rightarrow pg 4 small disc : p eg 1 \rightarrow peg 4
peg 2 \rightarrow peg 4

PROBLEM 1(a)

(a) I u points beschoe your algorithm for the four-peg problem.
For $n \times 3$, $f(x + 1 \le k \le n)$ (We will late show that $k = 2$ works) 1. Recursively move the top n-k discs from peg 1 to peg 2 (keeping the bottom ^k discs fixed) allowing the use of all four pegs. 2. Recursively more the k discs on peg ¹ to beg ⁴ by using leansively move the k disce on peg 1 to peg 4
the three-peg algorithm for pegs 1,3, and 4. 3. Recursively move the n-k discs on big 2 to big 4 (keeping
the bottomk discs on big 4 fixed) using all four bigs.

PROBLEM 1(a)

(a) [10 points] Describe your algorithm for the four-peg problem.

Let $T_i(n) = N_0$ η moves made by the algorithm when = No of moves made by the algorithm when
Starting with n discs on peg 1 in the 4-peg problem. $T_2(n) =$ PROBLEM 1 (b)
Derive a bound on the number of moves taken by your algorithm as a
ot need to provide a matching lover bound.)
No inf moves made by the algorithm
arting Lith n drives on $\beta q 1$ in the

 β
 γ
 γ
 γ
 $3 - p q p$ We know that T $\frac{1}{3}$ $(n) = 2 -1$

 $T_{4}(n)$ = **PROBLEM 1(b)**
a bound on the number of moves taken by your algorithm as a
to provide a matching lower bound.)
 $T_{4}(n-k) + T_{3}(k) + T_{4}(n-k)$
Step 1 Step 2 Step 3 $Step 1$ Step 2 Step 3 = $2 \tau_{4}(n-k) + T_{3}(k)$ $\frac{1}{2}$ $\frac{1}{2}$ $T_{4}(n-k) + 2^{k}$ \div $[$ $]$ \cdot $]$ Note that K=1 recovers the 3-peg Towns of Hanvi rememe. We need an asymptotically faster algorithm.

(b) [12 points] Derive a bound on the number of moves taken by your algorithm as a function of n . (You do not need to provide a matching lower bound.)

 Say $k=2$. By the plug-and-ching method: $T_q(n) = 2T_q(n-2) + 2$ 1 $\frac{p}{2}$ 2 $\left[2\right] \frac{1}{4}(n-4) + 2\left[1 + 2\right]$ $2\frac{2}{4}(n-4) + 2 - 1 = 1$

Chron 2
 $\frac{2}{4}(n-4) + 2 + 2 - 2 = 1$ ↑ $2\left(2\right) \left(2\right) \left(1-6\right) + 2\left(1 + 2\right) + 2\left(1 - 1\right)$: $= 12$ π_{4} $(n-2i) + 2 + 2 + 2 + 2 + 2 = 2 - 2 - 2 - 2$

(b) [12 points] Derive a bound on the number of moves taken by your algorithm as a function of n . (You do not need to provide a matching lower bound.)

 $T_{4}(n) = 2^{l}$ $T_{4}(n-2i) + 2^{l} + 2 + 2^{l} + \cdots + 2^{l} - 2^{l} - 2^{l} - 2^{l}$ If n is even, $i = \frac{n_2 - 1}{n}$ 3 $T_4(n) = 2$ $T_4(2) + 2 + 2 + 2 + 2 - 2$ M_2 M_2 | $3\frac{1}{2}$ \overline{O} If n is odd, $i = (n-1)$ $+\frac{n+1}{2}$ $\frac{n-1}{2}$ $\frac{n-3}{2}$ + 2 + 2 + $2 \pi (1) +$

 V exify : T_{4} (n) = beinve a bound on the number of moves taken by your algorithm as a function
t need to provide a matching lower bound.)
 $\frac{3}{2}$ $\frac{n_2}{2}$ $+\frac{n_2}{2}$ $+\frac{n_2}{2}$ -2 -2 $\frac{n_3}{2}$ even m (by) induction) Fox even n:, P(n) : -2 -2 for even! Bau Can $n =$ 2 T_q(2) = 2 t_q(2-2) + 2 $1 = 3$ $\left(\begin{array}{c} \text{sinc} \\ \text{Tq} & \text{or} \end{array}\right)$ $\frac{3}{2}$ + 2 + 2 - 2 = 2 = 2 $3\frac{3}{4}$

 V_{cyl} : T_{4} (n) = $\frac{3}{2}$ Induction Step . Will PROBLEM 1(b)

a bound on the number of moves taken by your

to provide a matching lower bound.)
 $\frac{n_2}{2} + \frac{n_2}{2} + \frac{n_2}{2} - \frac{1}{2} - \frac{1}{2}$

1)

1)

1)
 $\frac{1}{2}$ $\frac{n_2}{2}$ + 2

1)

2

1)

2

1

1) $+2+2-2-2$
show $P(n) \Rightarrow P(n+2)$. $T_4(n+2) = 2T_4(n) + 2$ 1 .
= $2\left[\frac{3}{2}\frac{n_2}{2} + \frac{n_2}{2} + \frac{n_2}{2}\right]$ $\frac{1}{2}$ - 2^{2} + 2-1 $\frac{1}{2}$ $1 - n/2$
3 . 2 + 2 + 2 - 2 + 2 <u>r</u> 1 which satisfies P(n⁺ 2) .

(b) [12 points] Derive a bound on the number of moves taken by your algorithm as a function of *n*. (You do not need to provide a matching lower bound.)
\n
$$
\frac{n-1}{2} + \frac{n+1}{2} + \frac{n-1}{2} + \cdots + \frac{n}{n-1}
$$
\n(b) i-100 d in the interval of *n* and *n* and *n*,
$$
P(n) = 2 + \frac{n+1}{2} + \cdots + \frac{n-1}{2} + \cdots
$$
\n(by induction)
\n
$$
\frac{n}{2} + \frac{n+1}{2} + \frac{n-1}{2} + \cdots + \frac{n-1}{2} + \cdots
$$
\n
$$
\frac{n}{2} + \frac{n+1}{2} + \cdots + \frac{n-1}{2} + \cdots
$$
\n
$$
\frac{n}{2} + \frac{n+1}{2} + \cdots + \frac{n-1}{2} + \cdots
$$
\n
$$
\frac{n}{2} + \frac{n+1}{2} + \cdots + \frac{n-1}{2} + \cdots
$$
\n
$$
\frac{n}{2} + \frac{n+1}{2} + \cdots + \frac{n-1}{2} + \cdots
$$
\n
$$
\frac{n}{2} + \frac{n+1}{2} + \cdots
$$
\n
$$
\frac{n}{2} + \
$$

(b) [12 points] Derive a bound on the number of moves taken by your algorithm as a function of n . (You do not need to provide a matching lower bound.)

 $V_{\text{evo}}f_{\text{y}}$: $T_{\text{y}}(n) = \frac{2}{2} + \frac{2}{2} + \frac{n}{2} - \frac{1}{2} - 2$ for add n Induction $St\psi$. Will show $P(n) \implies P(n+2)$. $T_{4}(n+2) = 2T_{4}(n) + 2$ 1 $= 2T_4(v) + 2$
 $= 2\left[\frac{n-1}{2^2} + 2 + \frac{n+1}{2^2} - 2 - 2\right]$ $2\left[\begin{array}{ccc} \frac{n-1}{2} & \frac{n+1}{2} & \frac{n-1}{2} \\ 2 & +2 & +2 \end{array}\right] - 2 - \begin{array}{ccc} 0 & 7 & 2 \\ -2 & +2 & -1 \end{array}$ n+3 $= 2\left[\frac{n-1}{2^2} + 2^2 + 2^2 - 2 - 2 \right] + 2$
 $= 2\left[\frac{n+1}{2^2} + 2^2 - 2 - 2 \right] + 2$ 1 h Thich satisfies $P(n+z)$.

PROBLEM 1(C)

(c) [2 points] Show that your algorithm is asymptotically faster than the algorithm for the three-peg problem. Specifically, show that the number of moves taken by your algorithm is little-o (o) of that of the three-peg algorithm discussed in class.

 $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ (n) For even η $\lceil \cdot \rceil$ γ \sim as $n \rightarrow \infty$ $14(m)$ $\vert \cdot \vert_2$ |n| $0\left(\mathbb{T}_{3}(\mathfrak{n})\right)$

