	COL 202:	DIS CRETE	MATHEMATICAL	STRUCTURES
		· · · · · · · · · · · · · · · · · · ·		
		FCT	011 25	
• • • •				
			U = 4	
		· · · · · · · · · · · · · · · · · · ·		
• • • •				
			· · · · · · · · · · · · · · · · · · ·	
	.			VAICH
		2 2024		

Problem 1 [24 points]

Consider the following variant of the Towers of Hanoi problem: There are *four* pegs numbered 1, 2, 3, 4 from left to right. There are *n* discs of distinct sizes arranged on peg 1 in increasing order of their sizes from top to bottom. The objective is to move all *n* discs to peg 4 while following the same rules as in the three-peg problem, namely,

- only the topmost disc on each peg can be moved, and
- a larger disc cannot be placed on top of a smaller disc.

Your goal is to design an algorithm for the four-peg problem that is *asymptotically faster* than the three-peg algorithm discussed in class. You may find it helpful to read the problem statements of all three parts (a), (b), and (c) before starting to write your solution.

(a) [10 points] Describe your algorithm for the four-peg problem. For n=1, a simple move suffices. (prg 1 \rightarrow prg 4) For n=2, three moves suffree Small disc : prg 1 -> prg 2 large disc : prg 1 -> prg 4 small disc : prg 2 -> prg 4

		•			•				1 1	n :											• •								•		
		• •			• •				·	٥٢	· A	Λ	t	F	M	۱.	. 4	1	۷,	١			•							٠	•
		• •			• •		•		•	4	-9	b		C		l.	•	- (U.		• •		•					•	• •		•

(a) [10 points] Describe your algorithm for the four-peg problem.
For n73, fix 1 < K < n (We will later show that K=2 works.)
1. Recursively move the top n-k discs from peg 1 to peg 2 (keeping
the bottom k discs fixed) allowing the use of all four pegs.
2. Rewsively move the k discs on peg 1 to peg 4 by using
the three-peg algorithm for pegs 1,3, and 4.
3. Recursively move the n-k discs on prog 2 to prog 4 (keeping the bottom k discs on prog 4 fixed) using all four progs.

(a) [10 points] Describe your algorithm for the four-peg problem.

PROBLEM 1 (a) [10 points]	
The algorithm should be well-defined for all n 7,0 -	-2pts
Clear distinction between steps that use 3 jegs and those that use 4 prgs.	4 pts
The algorithm should concertly solve the 4 peg problem (a formal priof of correctness is not necessary as long as correctness is evident from the description)*	— 4 þts
* In general, you should provide a proof of concertain	CC,

Let $T_i(n) = No \ rf$ moves made by the algorithm when starting with n discs on peg 1 in the 4-peg problem. $|_{2(n)} =$ - 3- þeg þroblem. We know that $T_3(n) = 2 - 1$.

(b) [12 points] Derive a bound on the number of moves taken by your algorithm as a function of n . (You do not need to provide a matching lower bound.)	· · · · · ·
$T_4(n) = T_4(n-k) + T_3(k) + T_4(n-k)$	
Styl Step 2 Step 3	· · · · · ·
$= 2 T_4(n-k) + T_3(k)$	
$= 2 T_4 (n-k) + \frac{k}{2} - 1$	
Note that k=1 recovers the 3-peg Towers of Hanvi new	rence.
We need an asymptotically faster algorithm.	

Say k=2. By the plug-and-change method: $T_4(n) = 2T_4(n-2) + 2 - 1$ $\lim_{n \to \infty} 2\left[2T_4(n-4) + 2 - 1\right] + 2 - 1$ $\frac{Ching}{2} = \frac{2}{2} T_4(n-4) + \frac{3}{2} + \frac{2}{2} - 2 - 1$ $P_{1ng} = 2\left[2T_{4}(n-6) + 2 - 1\right] + 2 + 2 - 2 - 1$ $2^{t}T_{4}(n-2i) + 2^{t+1} + 2^{t} + 2^{t} + 2^{t} + 2^{t} - 2^{t} -$

even, i= n/2-1: 3 $T_{4(n)} = 2 T_{4}(2) + 2 + 2 + 2 + - + 2$ $n_2 n_2 - 1$ $\frac{3}{2} \frac{1}{2} +$ n is odd, $i = (n-1)^{n-1}$ $T_4(n) = 2 T_4(1)$

 $T_4(n) = \frac{3}{2} \frac{n_2}{2} +$ - 2

by	induction) · · · tor ·	even n.	, · · P((n))·		n), =, ,	as above.
		/			· · · · • ·		

San can

$$n = 2$$
 $T_4(2) = 2T_4(2-2) + 2-1 = 3 \left(\frac{since}{T_4(0) = 0} \right)$

$$\frac{3}{2} \frac{2}{2} + \frac{1}{2} + \frac{1}{2} - \frac{1}{2} - \frac{1}{2} = 3$$

(b) [12 points] Derive a bound on the number of moves taken by your algorithm as a function of n. (You do not need to provide a matching lower bound.)

Verify: $T_4(n) = \frac{3}{2} \frac{n_2}{2} + \frac{n_2}{2} + \frac{n_2}{2} + \frac{n_2}{2} - \frac{1}{2} - \frac{1}{2}$ Induction Step Will show $P(n) \Rightarrow P(n+2)$ $T_4(n+2) = 2T_4(n) + 2 - 1$ $= 2 \left[\frac{3}{2} \frac{n_{2}}{2} + \frac{n_{2}}{2} + \frac{n_{2}}{2} + \frac{n_{2}}{2} - \frac{1}{2} - \frac{1}{2} \right] + \frac{2}{2} - \frac{1}{2} - \frac{1}{2} - \frac{1}{2} + \frac{2}{2} - \frac{1}{2} - \frac{1}{2} + \frac{1}{2} - \frac{1}{2} -$ $3 - 2 + 2^{2} + 2 - 2 - 2 + 2^{-2}$ Which satisfies P(n+2).

(b) [12 points] Derive a bound on the number of moves taken by your algorithm as a function of n. (You do not need to provide a matching lower bound.)	
Verify: $T_4(n) = \frac{n-1}{2} + \frac{n+1}{2} + \frac{n-1}{2} - \frac{1}{2} = 0$ for odd n	
(by induction) For odd n, P(n) - Ty(n) = as above.	· · ·
Ban can $n=3$ $T_4(1) = 2T_4(3-2) + 2-1 = 5 (since T_4(1)=1)$	
$2 + 2 + 2 - 2 - 2^{\circ} = 5 $	· · · ·

(b) [12 points] Derive a bound on the number of moves taken by your algorithm as a function of n. (You do not need to provide a matching lower bound.) Verify: $T_4(n) = 2 + 2 + 2 - 2 - 2$ for odd n Induction Step Will show $P(n) \Rightarrow P(n+2)$. $T_4(n+2) = 2T_4(n) + 2-1$ $= 2 \left[2^{\frac{n-1}{2}} + 2^{\frac{n+1}{2}} + 2^{\frac{n-1}{2}} - 2^{\frac{1}{2}} - 2^{\frac{1}{2}} - 2^{\frac{n}{2}} \right] + 2^{-1}$ which satisfies P(n+2).

PROBLEM 1 (b) [12 poin	
Correct recurrence	- 4 pts
Guessing closed form via plug-and-chang	— 4 pts
Verification via induction for even n	- 2 pts
Verification via induction fin odd n	- 2 þts

(c) [2 points] Show that your algorithm is asymptotically faster than the algorithm for the three-peg problem. Specifically, show that the number of moves taken by your algorithm is little-o (o) of that of the three-peg algorithm discussed in class.

3 2 2 $\frac{1}{2} + 2$ (m)for even 3 12/11/ 14 m for or 12 11 (KS $o\left(T_{2}(n)\right)$ both

· · · · · · · · · · · · · · · · · · ·	· ·	P	LOBLEM	1(c) [2 points]]
· · · · · · · · · · · · · · · · · · ·	Demonstration	for e	Win N		1 pt
· · · · · ·	Demonstration	for	n bbc	· · · · · · · · · · · · · · · · · · ·	1 pt
· · · · ·	· · · · · · · · · · · · · ·		· · · · · · · · · ·	· · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · ·
	· · · · · · · · · · · · · ·			· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·
· · · · ·	· ·				
· · · · ·		· · · · · · · · ·	· · · · · · · · · · ·	· ·	· · · · · · · · · · · · · · · · · · ·
· · · ·		· · · · · · · ·			

An eligant solution proposed by Sanjay L (PH1)
1. Recursively move $\lfloor n/2 \rfloor$ discs from prog 1 to prog 2 (keeping the bottom $\lceil n \rceil$ discs fixed) using three progs $(1, 2, 3)$.
2. Recursively move the $\lceil n \rceil$ disce on peg 1 to peg 4 by using the three-peg algorithm for pegs 1, 3, and 4.
3. Reconstructly more the $\left[\frac{n}{2}\right]$ discs on prog 2 to prog 4 (keeping the bottom $\left[\frac{n}{2}\right]$ discs on prog 4 fixed) using the progs 2, 3, 4.
moves = 2 -1 + 2 -1 + 2 -1