COL 202: DIS CRETE MATHEMATICAL STRUCTURES

LECTURE 28

MAR 20, 2024 | ROHIT VAISH

Problem 1 [16 points]

Let G = (V, E) be a simple undirected graph such that $|V| \ge 3$. Prove or disprove:

If every vertex of G has degree at least |V|/2, then G has a Hamiltonian cycle.

Proof: (by a 'path extension' argument)

Claim 1: G is connected

Proof of Claim 1: If G is not connected, then I vertex sets

 V_0 and V_1 st. $V_0 \cup V_1 = V$, $V_0 \cap V_1 = \emptyset$ and

no vertex in vo is connected to a vertex in V1.

If $|V_0| \leq \frac{\eta}{2}$, then $deg(v) \neq \frac{\eta}{2}$ for $v \in V_0$ is not possible.

Otherwise $|V_1| \leq \frac{\eta}{2}$, $V \in V_1$

Let P = V, V2 -- VK be the longest path in G.

Then, all neighbors of V, and VK must belong to P (Otherwise P can be made longer)

(otherwise P can be made longer)

We will show that Hamiltonian cycle can be derived from P.

Claim 2: $\exists i \in \{1, 2, ..., K\}$ s.t. $\{v_i, v_k\}$ and $\{v_i, v_{i+1}\}$ are edge.

various in P that are adjacent to = deg (V1) = deg (VI)

votices in P that are immediately to = deg (vi)
The left of a votex adjacent to
$$V_i$$

None of these vertices should be adjacent to V_k .

=> # vertices in P Z/ deg(vi) + deg(vk) + 1 / Vk itself $\frac{n}{2} + \frac{n}{2} + 1 > n$

Claim 3: The cycle C= (V1,..., Vi, Vk, Vk+,..., Vi+1, V1) is Hamiltonian.

Porof of Claim 3: (by contradiction)

Suppose G/C is non empty

G is connected (Claim 1) => I v & G/C adjacent to some vj.

Then, the path from V to V; along with the path around C is longer than P.

Claim 3 provs the theorem.

PROBLEM 1 [16 points]

Mentioning the proof technique 3 pts] Proving that G is connected -Defining longut path P Deriving cyclicity condition from P [8 pts] [3 pts] Demonstrating Hamiltonian cycle -

Problem 2 [4x2=8 points]

For each of the following, draw an example of the object described or explain why such an object cannot exist.

- (a) A simple undirected graph where no two vertices have the same degree.
- (b) A simple undirected graph that has an Euler tour but no Hamiltonian cycle.
- (c) A simple undirected graph that has a Hamiltonian cycle but no Euler tour.
- (d) A simple undirected graph G = (V, E) where $|V| \ge 3$ and every vertex has degree at least |V|/2 such that G does not have a Hamiltonian cycle.

(a) Thm: In any simple graph, at least two vertices must have the same degree.

Proof: (by Pigeonhole principle)

Degree can take value in § 0, 1, 2, -, n-13.

** If k72 vertices have degree 0, we are done.

If k=1 vertices have degree 0, then the hemaining n-1 vertices have degree in \(\begin{align} 1, 2, \ldots, n-2, n-1 \\ \end{align*}.

If k=0 vertices have degree 0, then the hemaining n vertices have degree 0, then the hemaining n vertices have degree in \(\begin{align} 1, 2, \ldots, n-2, n-1 \end{align*}.

(b) Simple graph with Euler town but no Hamiltonian cycle.

(C) Simple graph with Hamiltonian cycle but no Eules town.

(d) Simple graph G = (V, E) with |V| = 73 and each vertex has degree at least |V| = 10 but no Hamiltonian cycle.

PROBLEM 2 (8 points)

Each part worth 2 points

Binary grading.