COL	202:	DIS CRETE	MATHEMATICAL	STRUCTURES
			FILLE O L	
		e e e e e e e 🗲 e e e e	e a ser 👝 e ser a ser e ser e	
		· · · · · · · · F-·O L_F	REATIONRS	
	14			VAICH CHARLEN
	MAK 0	6.2024		

SEVEN BRIDGES OF KÖNIGSBERG

SEVEN BRIDGES OF KÖNIGSBERG

SEVEN BRIDGES OF KÖNIGSBERG

SEVEN BRIDGES OF KÖNIGSBERG Return to starting point after crossing each bridge exactly once.

SEVEN BRIDGES OF KÖNIGSBERG Return to starting point after crossing each bridge exactly once.

SEVEN BRIDGES OF KÖNIGSBERG starting point after Return to su crossing each

SEVEN BRIDGES OF KÖNIGSBERG tarting point after Return 7. Crossing each

SEVEN BRIDGES OF KÖNIGSBERG tarting point after Return 70, Crossing each

SEVEN BRIDGES OF KÖNIGSBERG STUCKI tarting point after Return TV. Crossing each

SEVEN BRIDGES OF KÖNIGSBERG tarting point after Return 7. Crossing each

SEVEN BRIDGES OF KÖNIGSBERG Return ... crossing each tarting point after

SEVEN BRIDGES OF KÖNIGSBERG Return r. crossing each tarting point after

SEVEN BRIDGES OF KÖNIGSBERG Return nting point after hvidge exactly me crossing each

SEVEN BRIDGES OF KÖNIGSBERG Return to starting point after crossing each bridge exactly once.

SEVEN BRIDGES OF KÖNIGSBERG Return to starting point after crossing each bridge exactly once.

SEVEN BRIDGES OF KÖNIGSBERG · · /.

 SEVEN REIDGES	OF KONIGEREN	26	
 JEVEN UNUQUE	VF RVINGSDE	• • • • • • • •	
	∑ · · · · · · · · · · · · · · · · · · ·		
 and the second			
 · · · (· <mark>/</mark> ·) · · · · · · · · · · · ·			
 	🖌 x) x x x x x x x x x x x x x	• • • • • • •	
 · · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · ·	• • • • • • •	
 · · · · · · · · · · · · · · · · · · ·		• • • • • • •	
 · · · · · · · · · · · · · · · · · · ·		• • • • • • •	

· · · · · · · · · · · · · · ·	SEVEN BRIDGES OF	KÖNIGSBERG
	· · · (· D ·) · · · · · · · · · · · · · · · ·	
		Bitth of an and
		Grath themy
		<mark>.</mark>

SEVEN BRIDGES OF KÖNIGSBERG odd digen D odd digen odd degree B C odd digu

Seven	BRIDGES OF KÖNIGSBERG
· · · · · · · · · · · · · · · · · · ·	Odd digen
odd degree B	Dod digen
The entry and exit.	
edges should be paired	
Desired walk not possible with odd degree	C odd digree
vertias	

SEVEN BRIDGES OF KÖNIGSBERG odd digen odd digen D odd degree B Short if all vertices have even digree? Is such a walk always possible?

SEVEN BRIDGES OF KÖNIGSBERG odd digen odd digen D odd degree B what if all vertices have even digree? Is such a walk always possible?

SEVI	IN BRIDGES OF	KÖNIGSBERG
		in august
	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·
	🖌	
even degre		
		Stat if all vertice
		I I I I I I I I I I I I I I I I I I I
		Later States the prove that an 2
		Te sach a walk
	e a a a a a a a a a a a a construction of the second second second second second second second second second se	digrel aligned bacsilde 2
		U

SEVEN BRIDGES OF KÖNIGSBERG even dique D) even dique even degree B what if all vertices have even digner? Is such a walk C) even digree always possible?

•	•	•	· · ·	•	•	•	· · ·	•	•	•	•	•	•	•	• • •		E	U	L	E		2	•	T	01	JR			•	•	•	· · ·	•	•	•	• •		•	•	•	•	· · ·	•	•	•	· ·	•
•	•	•	A		t	Ōh	ĸ	•	ÌS	•	۵ ۸	· ·	C	λο	Ç •	d		h	IP	ų	¢ C		Hh	ot	• • • • •	V	١Ì	it	2	•	er	1U (y J		l U	tr	Ŕ	•	at		te	ast	- - - -	on (Ce.	· ·	•
	•	•	• •	•		•		•		•	•		•	•	•			•	•	•	•		•	•	•					•	•	• •	•	•	•			•		•	•		•		•	• •	•
•	•	•		•				•	•	•	•	•	•	•	• •		•	•	•	•	•	•	•	•	•				•	•	•		•		•			•	•	•			•				
	•																																								•						
	•	•	• •				• •																		•	•						• •				•				•	•				•	• •	•
•	•	•	• •				• •			•			•	•	•								•	•		•						• •			•	•				•	•				•	• •	•
•	•	•	• •				• •				•		•		-										•	•						• •				•					•				•	• •	
	•	•	• •	•	•		• •	•	•				•	•	•			•	•		•	•	•	•	•	•			•			• •			•	•		•		•	•	• •	•		•	• •	
	•	•	•				• •				•						•				•				•	• •						• •				• •		•		•	•				•	• •	
•	•		• •		•		• •		•			•	•	•	•				•		•	•	•	•	•	•				•		• •			•	•					•	• •	•		•	• •	
		•	• •								•														•							• •									•	• •			•	• •	
•			• •			•	• •		•				•						•	•			•	•	•							• •			•							• •	•			• •	
•	•	•	• •										•	•	•																			•							•						

· · ·		. .	Euler t	ōv r		
· · ·	A town	is a closed	would that	visits every	vertix at lea	st once
· · ·	An Euler	r towr is	a towr	that travuus	erry ed	ge
• •	exactly	on ce.				
• •	· · · · · · · · · · · · ·			· · · · · · · · · · · · · · · · · · ·		
· ·		· · · · · · · · · · · ·		· · · · · · · · · · · · · · · ·		
· ·	· · · · · · · · · · ·	· · · · · · · · · · · ·				

EULER TOUR
A town is a closed walk that visits every vertex at least once.
An Ewler town is a town that travuse every edge
exactly once.
a closed walk that visits every vorter at least once and every edge exactly once.
· · · · · · · · · · · · · · · · · · ·

When does a graph admit an Enler town?

• • • • •	•		•	•		· · ·	ľ	η	h	۰ ۲	• • • • • • • • •			lo)و	6	• • • • • •	A	-		ς γ Γ	ГQ	ŕ	h	•	0 0 0 0	r Y v	nī	ł	· · · · ·	0-1	· · · · · · · · · · · · · · · · · · ·	•	F	- - - -	ا ب د		· · · · · · · · ·] c)~	Z				•	•	•			•
• • • • •	•	Ţ	برد						· · ·	Ą	•		, , , , ,)))	ŝ	e	لے الے	te	d	•]]	(A	\$) }	λ	· · ·	٠ ٠	hy hy		Qr		Ē	_ _ _ _	راو	۰ ۲	-+	0 U	2 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	_	Ì.	ſ	C	P	Ľ	0 0 1	nlı (f	ì /	<u> </u>	•
•	•	•				• •			•	U	ر ۱	U. • (y	•	V	٩ ٩	J-	CX ·	, 	.r	\ ው	<u>ې</u>	•	С~ 1	r	ι.	. •	2	/L	M,	•	ω	J		_ `	•	•	•			•	•	•	•	•					•
	•				•						•			•	•		•	•	•	•	•	•		•	•	•	•	•				•	•	• •			•	•				•	•	•	•	•	•	• •		
									•																																									
									•																																									
		•										•	•				•		•			•		•	•	•	•										•						•			•		•		
•		•	•	•	•				•	•	•	•	•			•	•	•	•			•			•	•	•						•		•		•				•		•	•	•	•		•		•
	•				•	• •						•			•							•		•		•		•						• •		•	•	•							•		•			
									•																																									
			•	•								•															•																					•		

•		ſh	į	01	h			•	•	, 	f	•	C	, 0	ή	Ń	U	t	سر	d	•	0 0 0	e P Y	a A	ßÌ	۰ ۲	-	hc	hs	•	0 0	n	•	E	- - - -	Je	R	-{	-01 -01	ראי איר		ìÌ	f	- 0	'n	L	0	nl (y	ì†	<u>^</u>	• •
•	•	•	•	•	•	•	•	•	•		ىرى	je	ļ.	ч 1	•	v	er	t	Ex.	•	ł	م ب م	ડ	•	0	N			و ا	رب ۱	Ņ		0	te	gi	-U		•	•	•	•	•	•	• •			•	•	•	•	•	••••
													୍ର୍	J																					Ĭ																	
		•																																																		
		•																																																		
																																															•					
		•	•				•	•		•	•																								•								•				•					
•				•	•		•					•	•																			•	•	•	•	•											•			•	•	
•	•	•	•	•	•	•	•	•	•	•	•	•		•												•	•									•	• •						•	• •			•					• •
			•	•	•		•					•	•	•	•		•															•	•	•	•	•					•		•				•	•			•	• •
•	•			•	•	•	•	•	•	•		•							•							•	•			•	•	•				•	• •					•	•	• •			•	•			•	• •
•		•	•	•	•		•			•	•	•		•																						•	• •				•		•	• •			•	•			•	• •
•	•			•	•	•	•	•	•	•		•	•																	•			•	•	•	•	• •						•	• •								• •
	•	•	•	•	•		•	•	•	•	•	•																•		•		•			•	•	• •														•	• •
•	•	•	•	•			•		•		•	•		•			•									•	•							•			• •					•								•		
•						•		•		•																				•				•			• •															

· ·	T	h	0)	ų			•	A	5	C	0	ήγ	رو	J	te	d d	•	g	Ya	ß}	•	h	Q	- - - - -	0 01 1		E	- - - -	ler		Ho	~~ ~	•	i.	f-	0.r		0γ	rly J	î î	f-	
· ·	•	•	•	· ·	•	•	•	e 1	У Ч	ц (y J		re	rt.	ex		h	os	· ·	0r	€ M N	· ·	e	ЛЛ Г	• • •	· ·	de	gr		•	· ·	•	•	· ·	•	•	· ·	•	•	· ·	•	
• •	•	* "Local information Individual degrees													N	•	•	q	1 1 1	¥	· ·	V	د ع	•	. <u>)</u> (e M	do	60	ω	γ γ · ·	•	, γ\	f	μ	m,	ati	ÌØr	٦	· ·	•	• •	
• •	•	•	•	• •	1 1 1	nd	นัง	າ ດີ	ł In	ol		Jr.	p	us	•	•	•	•		•	•	• •		•	2 () ()	bi	67	J J	· · ·	łv	• ¥ • ⊥ • •	5	ר א ע ו		u	+	hi	(gn	οβ	h	
• •	0	•	•	• •	•	•		• •	•		•	•	•	• •	•	•	•	•	• •	•	•	• •		•	•	• •		•	• •	•	• •	0	•	• •	•	0	• •	0	•	• •		• •
		•					•	• •	•	•	•	•			•	•				•	•	• •		•	:	• •	•	•		•		•	•	• •		•	• •	•	•			
• •			•	•		•	•	• •	•		•	•		• •				•	• •			• •			•	• •		•	• •	•	• •	•	•	• •		•	• •			• •		• •
• •		•	•	•		•	•	• •	•		•	•		• •		•	•		• •		•	• •		•		• •		•	• •	•	• •	•	•	• •		•	• •		•	• •	•	• •
							•	• •				•										• •				• •		•			• •		•	• •			• •					• •
• •		•	•	•		•		•	•		•			• •		•		•			•	• •			•	•			•		• •	•		• •		•	• •			• •		• •
	•		•					• •																•	•	• •	•		• •		• •			• •			• •					

	Theo	hum :	A ca	nnected	graph he	as an Ei	nler town	if and only if	
• •	· · · ·	· · · · · ·	every	vertex f	ros hn	even deg			•
· · ·	×	"Loca	rl Inf	ermation	give	NS " 31	obal in	Armation	
		ind	ivi drol	digness		ability	to that	ver the graph	
· · ·	*	Do	not r	red to	know he	ow the	nodes are	connected	•
· ·									
	· · · ·	· · · · · ·	· · · · · ·	· · · · · · · · ·	· · · · · · · · ·	· · · · · · · · ·	· · · · · · · · · ·		

Theorem: A connected graph has an Enler town if and only if
every vertex has an even degree.
* Local Information gives us "global" information
individual digues ability to traverer the graph
* Do not need to know how the modes are connected
* Easy to check if a graph has an Ewler town. s polynomial time

•		ß	رو	.01	h		N	•	•		Ą	•		C	γ	n,	و	J	te	d		(F	(ß	h	•	h	J.S	د ا	0	in	•	Ē	- - -	Je	ال بر ا	-	-01	ۍ بر	L	•	if	_ 0	5 5 5	d	0	nl (¥	ÌŢ	4		
•	•		•	•	•	•	•	•	•	•	ė	Ņ	U	у		Ŵ	e.	t	v	 (.	ł	٦¢	ও		b	Ň	۰ ۱	•	e	\mathcal{N}_{1}	Ņ	٨		te	gi	-U			•	•	•	•	0						•	•			
•	•) T		0	F	•	•) (-	· · · · · · · · ·		7		Û		Si	nf)0,	Se		(9		=-{	ُ ۷	, , , , , ,	E	,) - ,) - ,) -	•	h	rs N	•	2	n	•	ł	2	nli	ۍ م	· ·	-{-	0 0 0	ہ مر	•			· · ·	•	•	•	• •	
																																				•							•	•	•	•			٠	٠		• •	
			•									•																																									
			•																																								•	•									
•	•	•	•	•	•	•	•		•				•			•										•							•	•		•	•				•		•	•	•	•		•				• •	
•	•	•	•	•	•	•	•	•	•	•	•	•	•										•	•		•				•	•		•	•	•	•	•			•	•	•	•	•							•	• •	
			•																																								•	•									
•	•	•	•	•	•	•	•		•				•													•					•		•				•				•		•	•							•	• •	
•	•	•	•	•	•	•	•	•	•	•	•												•	•					•	•			•		•		•						•	•		•					•	• •	
	•	•	•	•	•	•	•	•		•	•																								•		•						•	•							•	• •	
																														•				•			•			•		•		•							•	• •	
	•			•		•	•	•		•	•													•																	•												

Theorem	: A connected	graph has an	Enler town	if and only if
	every vertex	has an even	degree .	
froof :	(===) Suppose	G = (V, E) has	an Enler	towr.
· · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	$V_1 - V_2$	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·
· · · · · · · · · ·	V_0		· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · ·
· · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · ·	· 1 · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · ·
· · · · · · · · · ·	N _K			· · · · · · · · · · · · · · · · ·
· · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	~ V _k -1	· · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · ·
· · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·
	· · · · · · · · · · · · · · · · · · ·			· · · · · · · · · · · · · · · · · ·

Theorem : A co	nnected	graph has	, an Eul	er town	if ar	d only	ìf
erry	vertex h	as an e	vin degre	L	· · · · · ·	· · · · ·	· · · · · ·
frof: (⇒)	Suppose	G = (V, E)	has an	Enler	towr.	· · · · ·	· · · · · ·
· · · · · · · · · · · · · · · · · · ·		V ₁ - V	S2	· · · · · · ·	· · · · · ·	· · · · ·	· · · · · ·
	V _e	· · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·		· · · · · ·	· · · · ·	
· · · · · · · · · · · · · · · · · · ·	$\sum_{i=1}^{n} \frac{1}{V_{k}} = 1$	· · · · · · · · · ·		· · · · · · ·	· · · · · ·	· · · · · ·	· · · · · ·
· · · · · · · · · · · · · · · · · · ·		- v _{k-1} -		· · · · · · ·	· · · · · ·	· · · · ·	· · · · · ·
Every edge in	- 2í I	traversed	exactly	once	\Rightarrow	· · · · ·	· · · · · ·
	· · · · · · · ·	· · · · · · · · ·		· · · · · · ·	· · · · · ·	· · · · ·	

Theorem: A connected graph has an Euler town if and only if every vertex has an even deque Proof: (=>) Suppose G=(V, E) has an Euler tour. $V_1 - V_2$ V_o í VK Every edge in E is traversed exactly once => $deg(v) = 2 \times \# times V appeare in the town V_0, ..., V_{k-1}, V_k$

		ĥ	Ľ) ())	n			 	- 0 0	ŀ	7	•	C	0 ^	ń.V	ر و ر	E	t		Ĺ	•	g	γî		ĥ	• • • •	h	Q.	7	0	un	•	E	50).	<u> </u>	-+•	0 V 0	بر بر ا	· ·	i4	<u>n</u>	Сr	d d	0	nl (Ŧ	ì†	2	
•	•	0	•	•	•	• •	• •	• •	0	Ę	ۍ ا	ji	ļ		1	re	ž	te	X	•	h	ŻS	•	ĺ	hr	2	• •	e	\mathcal{N}_{1}	Ŵ	٦	Ċ	te	gr	L L		•	•			•	•	•	•		• •	•	•		• •
•	•	f) T				· · ·	•				- 			F	ō)-			î 7	Ų	- (1	√ 1	E	; ; ;		• •	0	10	BN	m	r L	•	d		f C	1)	· · · ,	ΪS	•	ور	ľ.		4	for		ol	J	v e	£ \)
•	•	0	•	•	•	• •	• •	• •	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	• •	••••	•	•	•	•	•	•	•	• •	•	•	•	•		•	•	•	•		• •	•	•		• •
•	•	0	•	•	•	• •	• •	• •	•			•		•	•		•	•	•	•	•	•				• •	• •	•	•	•	•	•	•	•		•	•	•			•	•	•	•			•	•		
•	•	0									•	•		•	•	•	•	•	•	•	•	•					• •	•		•	•	•	•	•	• •	•	•	•			•	0	•	•	•		0	0		
•	•	0	•	•	•	• •			•			•		•	•		•	•	•	•		•	•	•		• •	• •				•	•	•	•	• •		•	•	•			•	•	•			•	•	•	
•	•	0	•	•	•	• •		• •	0		•	•	•	•	•	•	•	•	•	•	•	•		•		• •	• •			•	•	•	•	•	· ·	•	•	•	•	· ·	•	•		0		• •		•	• •	
•	•		•	•	•	• •			•			•			•			•	•	•		•	•	•		• •	• •	•	•	•	•	•	•	•		•	•	•	•		•	•	•	•		• •	•	•		
•	•	0	•	•	•	• •			•								•		•	•		•	•	•		• •	• •			•	•	•	•	•	• •	•	•	•	•		•	•	•	•			•	•	•	
•	•	•	•	•	•	• •	• •		•	•		•	•	•	•	•	•	•	•	•	•	•		•	•	•	• •			•	•	•	•	•	• •	•	0	•	•		•	0	•	0	•		•	•		
•	•	0	•	•	•	• •	• •	• •	0	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	• •	• •				•	•	•	•	• •		•	•	•			•	•	•	•		•	•	• •	
		•							•							•	•					•					• •			•	•	•				•	•	•				•	•	•		• •	0	•		

Theorem : A	t connected gr	aph has an En	ler town if and only if
e	every vertex has	an even dege	μ,
Prof: (<	=) For $G = (V, E)$	E), assume dy	(v) is even for all vev.
Let W =	\mathcal{N}_{0} $$ \mathcal{N}_{1} $$ \mathcal{N}_{1} $$ $$ \mathcal{N}_{1} $$ $$ \mathcal{N}_{1} $$ $$	- V _k be the	longest walk that
travenus	any edge at	most once	(well-defined)
· · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·	
· · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·		
	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·

Theorem :	Ac	onnecte	d graft	has an	Enler-	town if an	d only if	
· · · · · · · · · · · ·	every	verter	i has a	n erm	degree.			
Proof :	(\neq)	For E	t = (V, E)	, Assume	dy (v)	is even f	n all vev	•
Let W	= V ₀ -	- v _i -		V _K be	the lon	geet walk	that	•
trave	urs Qu	ny edge	e at r	nost one	ر د (well - defer	red	
Obs 1: Any	us an edge	ny edge in E	e at r that is	nost on c incident	to V _K	well-defèr is covered	red) by W	•
trave Obs 1 : Any	us ar edge	ry edg in E	e at r that is	nost on i incident	to V _K	well-defin is covered	red) by W	
Obs 1 : Any	us an edge	ny edg in E	e at r that is	nost on a	to V _K	well-defèr is covered	red) by W	

Theorem: A connected graph has an Euler town if and only if
every vertex has an even degree.
Proof: (\Leftarrow) For $G = (V, E)$, assume dy (v) is even for all $v \in V$.
Let $W = V_0 - V_1 - \cdots - V_K$ be the longest walk that
travenus any edge at most once. (well-defined)
Obs 1: Any edge in E that is incident to V/ is covered by W.
(Otherwise W may be extended — not possible)
· · · · · · · · · · · · · · · · · · ·
· · · · · · · · · · · · · · · · · · ·

Theorem: A connected graph has an Ewler town if and only if
every vertex has an even degree.
Proof: (\Leftarrow) For $G = (V, E)$, assume dy (v) is even for all $v \in V$.
Let $W = V_0 - V_1 - \cdots - V_k$ be the longest walk that
travenus any edge at most once (well-defined)
Obs 1: Any edge in E that is incident to VK is covered by W.
(Otherwise W may be extended — not possible)
$0bs 2; V_0 = V_K$
· · · · · · · · · · · · · · · · · · ·

Theorem: A connected graph has an Euler town if and only if
every vertex has an even degree.
Proof: (\Leftarrow) For $G = (V, E)$, assume deg (v) is even for all $v \in V$.
Let $W = V_0 - V_1 - \cdots - V_K$ be the longest walk that
travenus any edge at most once (well-defined)
Obs 1: Any edge in E that is incident to V _K is covered by W. (Otherwise W may be extended — not possible)
Obs 2: $V_0 = V_K$ (Otherwise V_K has odd no of edges in $W \Longrightarrow$ odd degen)

Theorem: A connected graph has an Enler town if and only if
every vertex has an even degree.
Proof: (<) For G=(V, E), assume dy (v) is even for all vev
Let $W = V_0 - V_1 - V_1$ be the longest head that
t
havenus any edge at most once.
We now want to show that W is an Enler teur.
We now want to show that W is an Enler teur.
We now want to show that W is an Enler teur.
We now want to show that W is an Enler teur.

Theorem: A connected graph has an Euler town if and only if
every vertex has an even degree.
Proof: (\Leftarrow) For $G = (V, E)$, assume dy (v) is even for all $v \in V$.
Let $W = V_0 - V_1 - \cdots - V_k$ be the longest walk that
traveurs any edge at most once
Suppose W is not an Enler towr.
· · · · · · · · · · · · · · · · · · ·

Theorem: A connected graph has an Euler town if and only if
every vertex has an even degree.
Proof: (\Leftarrow) For $G = (V, E)$, assume dy (v) is even for all $v \in V$.
Let $W = V_0 - V_1 - \cdots - V_k$ be the longest walk that
traveurs any edge at most once.
Suppose W is not an Ewler towr.
=> Those is an edge, say e, in E such that e is not in W

Theorem: A connected graph has an Euler town if and only if
every vertex has an even degree.
Proof: (\Leftarrow) For $G = (V, E)$, assume dy (v) is even for all $v \in V$.
Let $W = V_0 - V_1 - \cdots - V_k$ be the longest walk that
traverus any edge at most once.
Suppose W is not an Euler town.
=> Thue is an edge, say e, in E such that e is not in W
but I a verter V; in W such that e is adjacent to V

Theorem: A connected graph has an Enler town if and only if
every vertex has an even degree.
Proof: (\Leftarrow) For $G = (V, E)$, assume dy (v) is even for all $v \in V$.
Let $W = V_0 - V_1 - \cdots - V_k$ be the longest walk that
traveurs any edge at most once.
Suppose W is not an Ewler towr.
=> Thue is an edge, say e, in E such that e is not in W
but I a vertex V; in W such that e is adjacent to V > http?

Theorem: A connected graph has an Enler town if and only if
every vertex has an even degree.
Proof: (\Leftarrow) For $G = (V, E)$, assume dy (v) is even for all $v \in V$.
Let $W = V_0 - V_1 - \cdots - V_k$ be the longest walk that
traverus any edge at most once.
Suppose W is not an Ewler town.
=> Thue is an edge, say e, in E such that e is not in W
but I a vertex V; in W such that e is adjacent to V > Lity? Connectedness of graph G

Theorem : A conv	nected gra	ph has an	Enler town	if and only if
every	vertex has	an evin	degree.	
Proof : (<=) F	for $G = (V, E)$), Assume	dy (v) is t	even for all vev.
Let $W = V_0 -$	ν _ι	– V _K be	the longest	walk that
traverus any	edge at	most onc		
$W = v_1 - v_2$	· · · · · · · · · · · ·	· · · · · · · · ·	· · · · · · · · · · · · ·	· · · · · · · · · · · · · · · ·
			· · · · · · · · · · · · ·	
v _k v _k				
	· · · · · · · · · · ·	· · · · · · · · · ·	· · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·

Theorem : A conv	rected gr	aph has an	Enler-tour	if and only if
every	vertex has	an even	degree	· · · · · · · · · · · · · · ·
Proof : (<=) F	or $G = (V, E)$), Assume	dy (v) is	even for all vev.
Let $W = V_0 - V_0$	Vi	— V _K be	the longest	walk that
traverus any	edge at	most onc	L.	
$W = V_1 - V_2$		· · · · · · · · · · ·	· · · · · · · · · · · ·	· · · · · · · · · · · · · ·
V _o	$\frac{1}{2}$ \mathcal{U}	· · · · · · · · · · · ·	· · · · · · · · · · · · ·	
v _k ~ v _{k-1} - /		· · · · · · · · · · · ·	· · · · · · · · · · · · ·	

Theorem: A connected graph has an Euler town if and only if every vertex has an even degree Proof: (\Leftarrow) For G = (V, E), assume deg (v) is even for all $v \in V$. Let $W = V_0 - V_1 - \cdots - V_K$ be the longest walk that traverus any edge at most once $W = V_1 - V_2$ Vieu vk ~ v_{k-1} - /

Theorem: A connected graph has an Enler town if and only if every vertex has an even degree. Proof: (\Leftarrow) For G = (V, E), assume deg (v) is even for all $v \in V$. Let $W = V_0 - V_1 - \cdots - V_k$ be the longest walk that traverus any edge at most once. W $V_1 - V_2$ Can make W longer! $\mathcal{U} - \mathcal{V}_{i} - \mathcal{V}_{i+1} - \mathcal{V}_{k} - \mathcal{V}_{i}$ $\frac{v_{k}}{v_{k}} = \frac{v_{i}}{v_{k-1}}$

Theorem: A connected graph has an Enler town if and only if every vertex has an even degree. Proof: (\Leftarrow) For G = (V, E), assume dy (v) is even for all $v \in V$. Let $W = V_0 - V_1 - \cdots - V_k$ be the longest walk that traverus any edge at most once. W $V_1 - V_2$ Can make W longer! V_0 V_k V_{k-1} $V_i = 0$ $V_i = 0$ $U - V_i - V_{i+1} - V_k - V_i$ Contradiction ! >> W must be an Enlertour.

Theorem: A connected graph has an Enler town if and only if every vertex has an even degree. Proof: (\Leftarrow) For G = (V, E), assume dy (v) is even for all $v \in V$. Let $W = V_0 - V_1 - \cdots - V_k$ be the longest walk that traveurs any edge at most once $W = V_1 - V_2$ Can make W longer! Vo $\mathcal{U} - \mathcal{V}_{i} - \mathcal{V}_{i+1} - \mathcal{V}_{K} = \mathcal{V}_{0} - \mathcal{V}_{i}$ $\frac{11}{V_{k}} = \frac{V_{i}}{V_{k-1}} = \frac{1}{V_{i}}$ Contradiction ! >> W must be an Enlertour. the

	• •							1		• •																				• •						• •		
						 	Λ.			•											_																	
							1	KI I		Δ	DD	1 1	^	λ	T	10		1		กเ			E	()		: D		T		۱) (
	• •	•					-V	IN .	I	$[\Lambda]$		レ		'n	L	1.1	<i>.</i> .	E		VI		• •	C	U	L C		- .	1	UL	/ r	ب						•	1
				•										• •				•						•	•		•								•	• •		1
																									• •											• •		
	• •							1		• •			•	• •			•	•				• •			• •			•		• •	•					• •		1
	• •			•						• •				• •				•				• •		•	•		• •			• •						• •		•
	• •									• •			•	• •				•	-			• •			• •		• •			• •			•			• •		
					•					• •												•			•		•	•		• •	•		•			• •		1
	• •			•						• •				• •				•	-			• •			• •		• •			• •			•			• •		•
										• •				• •				•	-						• •					• •						• •		
	• •	•		•						• •			•	• •				•							• •					• •		•				• •		1
					•					• •												•			• •		•	•		• •	•		•			• •		•
					•					• •								•	-			• •			• •		•			• •				•		• •		
										• •				• •				•	-						• •					• •						• •		
					•				•	• •							•	•			•	• •			•		•	•		• •	•		•			• •		1
					•				•	•				•				•				•			• •		•			•			•			• •		•
									0				1							0												0	F					

An Ap	PLICATION	OF EULER	TOURS	
	Genome Sc	2quencing		
. 			· ·	
	T	ACGAGA	CAGTACA	
	· · · · · · · · · · · · ·	\sim 3 billion	Letters	· · · · · · · · ·
		· · · · · · · · · · · · · · · · · · ·		

· · · · · · · · ·	An	Applic	ATION	0F	EULER	TOURS	· · · · · · · · · · · ·
Mult	iple identical	Copies	· · · · · · ·	· · · · ·	· · · · · · · · ·	· · · · · · · · ·	<u>. </u>
of	a genome	· · · · · · · · · ·	· · · · · · ·		· · · · · · · ·	· · · · · · · ·	
· · · · · · · ·	· · · · · · · · · ·	· · · · · · · ·	· · · · · · ·	· · · · ·	· · · · · · · · ·	· · · · · · · ·	· · · · · · · · · · · ·
· · · · · · · ·	· · · · · · · · · ·	· · · · · · · · ·	· · · · · · ·	· · · ·	· · · · · · · · ·	· · · · · · · ·	· · · · · · · · · · · ·
· · · · · · · ·	· · · · · · · · · ·	· · · · · · · · ·	· · · · · · ·	· · · ·	· · · · · · · · ·	· · · · · · · ·	· · · · · · · · · · · ·
· · · · · · · ·	· · · · · · · · · ·	· · · · · · · ·	· · · · · · ·	· · · ·	· · · · · · · · ·	· · · · · · · ·	· · · · · · · · · · · ·
· · · · · · · ·	· · · · · · · · · ·	· · · · · · · · ·	· · · · · · ·	· · · ·	· · · · · · · · ·	· · · · · · · ·	· · · · · · · · · · · ·
						· · · · · · · ·	

•		AN APPLICATION	OF EULER TOURS	
•	Multiple Of a	- identical copies genome		
•	Shatter intr	the genome		
•	· · · · · · · · ·			· · · · · · · · · ·
•	· · · · · · · · ·			· · · · · · · · · ·
•	· · · · · · · · · ·			· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·

· · · · · · · · · · ·	AN APPLICATION	OF EULER	TOURS
Multiple of a	identical Copies genome		
Shatter into	the genome heads		
Sequenc	e the reads AG	ATATCA	CGATCCAT

AN APPLICAT	TION OF EULER TOURS
Multiple identical copies of a genome	
Shatter the genome into reads	
Sequence the heads	AGATATCA CGATCCAT
Assemble the genome using overlapping heads	$\begin{array}{c} A G A T C C G \\ G A T C C G A \\ \hline T A G A T C C \\ \hline T A G A T C C G A \end{array}$

AN APPLICAT	ION OF EULER TOURS
Multiple identical copies of a genome	
Shatter the genome into heads	
Sequence the heads	AGATATCA CGATCCAT
Assemble the genome using overlapping heads	AGATCCG GATCCGA TAGATCC TAGATCCGA

•	•	· ·	•	• •		• •		•	• •		•	ŀ	ł	} N	∧j	L7	[0]	N	14	N	•		9 (CL	E	· ·	•	· ·	•	• •	· · ·	•	· · ·	•	•	· ·	•	· ·
•	•	· · ·	· · · · · · · · · · · · · · · · · · ·	A		(u	f c	le	· · ·	1	ħ	nt	• • •	V	2 Î	its		e	'_∨ (۲. (ĵ ĵ	· · ·	1 1 1	Je	Х		ex	Ś	H	y		07	۱C	و	•	· ·	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·
	•		•					•							•				•		•		•	• •	•		•	• •	•			•			•		•	
									•																					•								
				•					•			• •				/ 1			\mathbf{i}	• •		• •		• •		• •		• •		•						• •		• •
	•			•	•	•		•	•			• •		•	/-	•	•	• •	. `	<u>></u>		• •		• •		• •		• •		•			• •		•	• •		• •
•	•			• •				•	•		•	• •		. –				• •		. 🛡	•	• •	•	. /	\mathcal{T}^{-}	• •		• •	•	•			• •		•	• •	•	• •
	•							•				• •		./.		• •				• •		• •		/ '	/ ·	• •		• •	•				• •		•	• •		
														/						\geq	_		/.															
																						•		/ .														
																		7	-				/															
																																						• •
												• •				• •				• •		• •		• •		• •		• •										• •
•							•		•			• •		• •		• •		• •		• •		• •		• •		• •		• •		•			• •		•		•	• •
•						•			•		•	• •		• •		• •		• •		• •		• •		• •		•		• •		•			• •			• •	•	• •
•		• •	•					•	•			• •		•		• •	•	• •		• •		•	•	• •	•	• •		•		•			• •		•	• •		• •
	•	• •						•	•			• •		• •		• •		• •		• •		•		• •		•		• •		•			• •		•	• •		• •
	•	• •				• •		•				• •				• •				• •		• •		• •									• •		•			

•	· · ·	•	•	· ·	•	· ·	•	•	· ·	•	•	ŀ	łA	• M		٦-	0	N	A	• • •	•	C	. M (E	•	· ·	•	· ·	•		· ·	•		· ·	•	· ·	•	•
•	· · ·	•	1	A	•	Cy (l cl	l	· · ·	1	ħ	nt	•	V	Ì SI	its	•	e	, V (نگ ا	y		V U	te	X	•	<u>e</u> ¢	K	rct	ty	F F	61	5	Ŀ	· · ·	•	· · ·	•	
		•	•			• •			• •																		• •								• •				
			•																																				
						• •																																	
						• •						• •			-			• •							$\overline{\mathcal{T}}$		• •					• •							
			•	• •		• •		•	• •		•	• •		- -						• •		• •			1 ·		• •		• •		•	• •		•		•			•
•	• •					• •			• •		•	• •		1 -		• •		• •	-				1		/ .	•	• •	•	• •		•	• •				•	• •	•	•
•	• •		•	• •		• •		•	• •		•	• •	1		1			• •	•	• •				-/-		•	• •	•	• •	•	•	• •	•			•	• •		•
		•	•	• •		• •		•	• •		•	• •		· ·									1	/s	• •	•	• •	•	• •	•	•	• •	•		• •	•	• •		
																			-																				
																													• •										
						• •						• •													• •		• •		• •						• •				
•	• •		٠	• •		• •			• •			• •		• •		• •		• •		• •		• •					• •		• •			• •		•			• •		
•	• •			• •		• •		•	• •			• •		• •		• •		•		• •		• •			• •		• •		•		•	• •		•	• •	•	• •		•
•	•		•	• •		• •		•	• •			• •		• •		• •		• •		• •		• •			• •		• •	•	•		•	• •		•	• •		• •		•
•	•			• •		•		•	•			•		• •		• •		•		•		• •			• •		•		•		•	• •		•	• •	•	• •		•
	•			• •					•			•		•		• •		• •		•							•		• •			• •							

HAMILTONIAN CYCLE A cycle that visits every voter exactly once How to check if a graph has a Hamiltonian cycle?

	HAMILTONIAN CYCLE
A cycle	that visits every verter exactly once
How to	check if a graph has a Hamiltonian cycle? NP-complete ?

HAMILTONIAN CYCLE A cycle that visits every voter exactly once 2 How to find a minimum - weight Hamiltonian cycle?

HAMILTONIAN CYCLE A cycle that visits every voter exactly once 2 $7 \text{ e.g., weight} \leq 15$ How to find a minimum - weight Hamiltonian cycle?

HAMILTONIAN CYCLE A cycle that visits every vertex exactly once 2 $7 \text{ e.g., weight} \leq 15$ How to find a minimum-weight Hamiltonian cycle? NP- complete (1°)

HAMILTONIAN CYCLE A cycle that visits every voter exactly once 2 $7 \text{ e.g., weight} \leq 15$ to find a minimum-weight Hamiltonian cycle > Traveling NP- complete (°1°)