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A tow is a closed walk that visits every renty
at least once.

An Eale How is a towr that travens every edge

exactly once

↑
W

a closed walk that visits every
ratex at least once and

every edge exactly once .
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* "Local information gives as "global" information
d d

individual degre ability to teaverse the graph

* Do not need to know how the modes are connected

* Easytocheckif
a graph has an Euler toa
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Theorem : A connected graph has an Enter towr if and only if

every
vertex has an even degree.

Proof : () Suppose G=(VIE) has an Enke towe.

n
-
Y -1

I !
V
K
-

Vk-1
-

Every edge in E is traversed exactly once =>

deg(v) = 2 X # times V appears in the town Vo, ... UKy ,K
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Proof : (E) For G= (V . E) , assume degers is even for
all veV.

Let W = Vo -V - ... - Vi be the longest walk that
travens any edge at most once. (Well-defined)

Obs1 : Any edge in E that is incident to Up is coured by W.

(otherwise W may be extended - not possible)
Obs 2 : Vo = UK

(otherwise Up has odd no . of edge in W => Odd dig)



Theorem : A connected graph has an Enter towr if and only if

every
vertex has an even degree.

Proof : (E) For G= (V . E) , assume degers is even for
all veV.

Let W = Vo -V - ... - Vi be the longest walk that
travens any edge at most once.

We now want to show thatI is an Enter tean .



Theorem : A connected graph has an Enter towr if and only if

every
vertex has an even degree.

Proof : (E) For G= (V . E) , assume degers is even for
all veV.

Let W = Vo -V - ... - Vi be the longest walk that
travens any edge at most once.

Suppose W is not an Enke towr .



Theorem : A connected graph has an Enter towr if and only if

every
vertex has an even degree.

Proof : (E) For G= (V . E) , assume degers is even for
all veV.

Let W = Vo -V - ... - Vi be the longest walk that
travens any edge at most once.

Suppose W is not an Enke towr .

=> Ther is an edge , saye, in E such that is not in W



Theorem : A connected graph has an Enter towr if and only if

every
vertex has an even degree.

Proof : (E) For G= (V . E) , assume degers is even for
all veV.

Let W = Vo -V - ... - Vi be the longest walk that
travens any edge at most once.

Suppose W is not an Enke towr .

=> Ther is an edge , saye, in E such that is not in W

but I a ratex Vi in I such that is adjacent to v



Theorem : A connected graph has an Enter towr if and only if

every
vertex has an even degree.

Proof : (E) For G= (V . E) , assume degers is even for
all veV.

Let W = Vo -V - ... - Vi be the longest walk that
travens any edge at most once.

Suppose W is not an Enke towr .

=> Ther is an edge , saye, in E such that is not in W

but I a ratex Vi in I such that is adjacent to v
-> Why ?



Theorem : A connected graph has an Enter towr if and only if

every
vertex has an even degree.

Proof : (E) For G= (V . E) , assume degers is even for
all veV.

Let W = Vo -V - ... - Vi be the longest walk that
travens any edge at most once.

Suppose W is not an Enke towr .

=> Ther is an edge , saye, in E such that is not in W

but I a ratex Vi in I such that is adjacent to v
-> Why ? Connectedness of graph G
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Theorem : A connected graph has an Enter towr if and only if

every
vertex has an even degree.

Proof : (E) For G= (V . E) , assume degers is even for
all veV.

Let W = Vo -V - ... - Vi be the longest walk that
travens any edge at most once.
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& e
-u U-Vi-Vit - .... VVp

- ... Vi
If -

UK-rK - Contradiction ? -> W must be an Entutory .
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AN APPLICATION OF EULER TOURS

Multiple identical Copies
of a genome

Shatter the genome
into reads

V ↳
Sequence the reads AGATATCA CGATCCAT

AGATCCG
Assemble the genome GATCCGA

Enter

using overlapping reads TAGATCC tows !
TAGATCCGA
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HAMILTONIAN CYCLE

A cycle that visits every
ratex exactly once

⑳
6 I

3 f
. ⑳ ·

4 2 5

. ⑳
⑳ I

2

3

->
e. g. weight = 15

How to dfind a minimum-weight Hamiltonian cye ?
↳

NP-complete " Traveling
Salesperson
Problem


