
COL351: Analysis and Design of Algorithms Fall 2024

Tutorial Sheet 9
Announced on: Sept 26 (Thurs)

• This tutorial sheet contains problems in dynamic programming (DP). When presenting
your solutions, please define the DP table clearly. Don’t forget to write the base case. The
correctness and running time arguments can be brief (1-2 sentences).

• Problems marked with (⋆) will not be asked in the tutorial quiz.

1. The SUBSET SUM problem is defined as follows: We are given as input n integers a1, . . . , an
and a target integer T. The goal is to decide whether there exists a subset S ⊆ {a1, a2, . . . , an}
such that the entries of S add up to exactly T. In the case where the answer is YES, your
algorithm must return the set S. Design an O(nT) time and O(T) space algorithm for this
problem. Briefly justify your algorithm’s correctness, running time, and space requirements.

2. We are given a checkerboard that has four rows and n columns and has an integer written
in each square. We are also given a set of 2n pebbles, and we want to place some or all of
these on the checkerboard (each pebble can be placed on exactly one square) to maximize the
sum of the integers in the squares that are covered by pebbles. For a placement of pebbles
to be valid, no two of them can be on horizontally or vertically adjacent squares (diagonal
adjacency is allowed). Give an O(n) time algorithm to find an optimal placement of the
pebbles.

3. Let A be an n × n bit matrix, that is, every entry A[i, j] is either 0 (white) or 1 (black). A
submatrix A[i1 : i2, j1 : j2] is a black square of size s if (a) s = i2 − i1 + 1 = j2 − j1 + 1 and (b)
A[i, j] = 1 for all i1 ⩽ i ⩽ i2 and j1 ⩽ j ⩽ j2. Design an O(n2) time algorithm to find the
largest black square submatrix of A.

4. Consider the following inventory problem: You are running a store that sells some large
product (let us assume you sell trucks), and predictions tell you the number of sales to expect
over the next n months. Let di denote the number of sales you expect in month i. We will
assume that all sales happen at the beginning of the month, and trucks that are not sold are
stored until the beginning of the next month. You can store at most S trucks, and it costs C to
store a single truck for a month. You receive shipments of trucks by placing orders for them,
and there is a fixed ordering fee of K each time you place an order (regardless of the number
of trucks you order). You start with no trucks. The problem is to design an algorithm that
decides how to place orders so that you satisfy all the demands di and minimize the costs. In
summary:
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• There are two parts to the cost. First, storage: It costs C for every truck on hand that is
not needed that month. Second, ordering fees: every order placed costs K.

• In each month, you need enough trucks to satisfy the demand di, but the amount left
over after satisfying the demand for the month should not exceed the inventory limit S.

Give an algorithm that solves this problem in time that is polynomial in n and S.

5. This problem describes four generalizations of the knapsack problem. In each, the input
consists of item values v1, v2, . . . , vn, item sizes s1, s2, . . . , sn, and additional problem-specific
data (all positive integers). Which of these generalizations can be solved by dynamic program-
ming in time polynomial in the number n of items and the largest number M that appears in
the input? Mention all options that apply and provide a brief justification for your selection.

a) Given a positive integer capacity C, compute a subset of items with the maximum
possible total value subject to having total size exactly C. (If no such set exists, the
algorithm should correctly detect that fact.)

b) Given a positive integer capacity C and an item budget k ∈ {1, 2, . . . , n}, compute a
subset of items with the maximum possible total value subject to having total size at
most C and at most k items.

c) Given capacities C1 and C2 of two knapsacks, compute disjoint subsets S1, S2 of items
with the maximum possible total value ∑i∈S1

vi + ∑i∈S2
vi subject to the knapsack capac-

ities ∑i∈S1
si ⩽ C1 and ∑i∈S2

si ⩽ C2.

d) Given capacities C1, C2, . . . , Cm of m knapsacks, where m could be as large as n, compute
disjoint subsets S1, S2, . . . , Sm of items with the maximum possible total value ∑i∈S1

vi +

∑i∈S2
vi + · · ·+ ∑i∈Sm

vi, subject to knapsack capacities ∑i∈S1
si ⩽ C1, ∑i∈S2

si ⩽ C2, . . . ,
∑i∈Sm

si ⩽ Cm.

6. The following problems all take as input two strings X and Y, with lengths m and n, over
some alphabet Σ. Which of them can be solved in O(mn) time? Mention all options that
apply and provide a brief justification for your selection.

a) Consider the variation of sequence alignment in which, instead of a single gap penalty
αgap, you are given two positive numbers a and b. The penalty for inserting k ⩾ 1 gaps in
a row is now defined as ak + b, rather than k · αgap. The other penalties (for mismatching
two symbols) are defined as before. The goal is to compute the minimum possible
penalty of an alignment under this new cost model.

b) Compute the length of the longest common subsequence of X and Y. (A subsequence
need not comprise consecutive symbols. For example, the longest common subsequence
of “abcdef” and “afebcd” is “abcd”.)

c) Assume that X and Y have the same length n. Determine whether there exists a permu-
tation f , mapping each i ∈ {1, 2, . . . , n} to a distinct value f (i) ∈ {1, 2, . . . , n}, such that
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Xi = Yf (i) for every i ∈ {1, 2, . . . , n}.

d) Compute the length of the longest common substring of X and Y. (A substring is a
subsequence comprising consecutive symbols. For example, “bcd” is a substring of
“abcdef”, while “bdf” is not.)

7. (⋆) We are given a set of points P = {(x1, y1), (x2, y2), . . . , (xn, yn)} in the two-dimensional
Euclidean plane, with x1 < x2 < · · · < xn. We will use pi to denote the point (xi, yi).

Given a line L defined by the equation y = ax + b, we say that the error of L with respect to P
is the sum of its squared “distances” to the points in P, i.e.,

error(L, P) =
n

∑
i=1

(axi + b − yi)
2.

Using calculus, it can be shown that the line of best fit is given by:

a =
n ∑i xiyi − (∑i xi)(∑i yi)

n ∑i x2
i − (∑i xi)2

and b =
∑i yi − a ∑i xi

n
.

Our goal in this problem is twofold: First, we want to partition P into some number of
segments. A segment is a subset of P that represents a contiguous set of x-coordinates; that
is, it is a subset of the form {pi, pi+1, . . . , pj−1, pj} for some indices i ⩽ j. Second, for each
segment S in our partition of P, we compute the line minimizing the error with respect to the
points in S, according to the formulas above.

The penalty of a partition is defined to be a sum of the following terms.

a) The number of segments into which we partition P, times a fixed, given multiplier C > 0.

b) For each segment, the error value of the optimal line through that segment.

Design an efficient algorithm to find a partition of minimum penalty.
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