
COL351: Analysis and Design of Algorithms Fall 2024

Tutorial Sheet 6
Announced on: Aug 30 (Fri)

Problems marked with (⋆) will not be asked in the tutorial quiz.

1. You are given n jobs, each with length ℓj and deadline dj. Define the lateness λj of a job j in a
schedule σ as the difference Cj(σ)− dj between the job’s completion time and deadline, or as
0 if Cj(σ) ⩽ dj.

Which of the following greedy algorithms produce a schedule that minimizes the maximum
lateness? Feel free to assume that there are no ties. In each case, either provide a counterex-
ample to show incorrectness or a brief argument (2-3 sentences) to show correctness.

a) Schedule the jobs in increasing order of length ℓj.

b) Schedule the jobs in increasing order of slack dj − ℓj.

c) Schedule the jobs in increasing order of deadline dj.

2. How will your answer to Problem 1 change if, instead of maximum lateness, the goal is to
minimize the total lateness ∑n

j=1 λj.

3. You are given as input n jobs, each with a start time sj and a finish time tj. Two jobs conflict if
they overlap in time—if one of them starts between the start and finish times of the other. The
goal is to select a maximum-size subset of jobs that have no conflicts. (For example, given
three jobs consuming the intervals [0, 3], [2, 5], and [4, 7], the optimal solution consists of the
first and third jobs.) The plan is to design an iterative greedy algorithm that, in each iteration,
irrevocably adds a new job j to the solution-so-far and removes from future consideration all
jobs that conflict with j.

Which of the following greedy algorithms is guaranteed to compute an optimal solution?
Feel free to assume that there are no ties. In each case, either provide a counterexample to
show incorrectness or a brief argument (2-3 sentences) to show correctness.

a) At each iteration, choose the remaining job with the earliest start time.

b) At each iteration, choose the remaining job with the earliest finish time.

c) At each iteration, choose the remaining job that requires the least time, i.e., with the
smallest value of tj − sj.

d) At each iteration, choose the remaining job with the fewest number of conflicts with
other remaining jobs.

1



Tutorial Sheet 6:

4. Given a list of n natural numbers d1, d2, . . . , dn, show how to decide in polynomial time
whether there exists a simple undirected graph G = (V, E) whose node degrees are precisely
the numbers d1, d2, . . . , dn. That is, if V = (v1, v2, . . . , vn), then the degree of v1 should be d1,
the degree of v2 should be d2, and so on.

5. Consider the following change-making problem: The input to this problem is an integer L.
The output should be the minimum cardinality collection of coins required to make L shillings
of change, that is, you want to use as few coins as possible. The coins are worth 1, 5, 10, 20, 25,
and 50 shillings. Assume that you have an unlimited number of coins of each type. Formally
prove or disprove that the greedy algorithm that takes as many coins as possible from the
highest denominations correctly solves the problem. So, for example, to make a change for
234 Shillings, the greedy algorithm would require ten coins: four 50 shilling coins, one 25
shilling coin, one 5 shilling coin, and four 1 shilling coins.

6. Consider another change-making problem: The input to this problem is again an integer
L, and the output should again be the minimum cardinality collection of coins required to
make L nibbles of change (that is, you want to use as few coins as possible). Now the coins
are worth 1, 2, 22, 23, . . . , 21000 nibbles. Assume that you have an unlimited number of coins
of each type. Prove or disprove that the greedy algorithm that takes as many coins of the
highest value as possible solves the change-making problem.

Hint: The greedy algorithm is correct for one of the above two subproblems and is incorrect
for the other. For the problem where greedy is correct, use the following proof strategy:
Assume, to reach a contradiction, that there is an input I on which greedy is not correct. Let
OPT(I) be a solution for input I that is better than the greedy output G(I). Show that the
existence of such an optimal solution OPT(I) that is different than greedy is a contradiction.
So what you can conclude from this is that for every input, the output of the greedy algorithm
is the unique optimal/correct solution.

7. Suppose there are n agents and m items. The value of agent i for item j is given by a
nonnegative integer vi,j. An agent’s value for a set of items is the sum of its values for
individual items in that set. The goal is to partition the m items among the n agents in a fair
manner.

Denote an allocation by A := (A1, A2, . . . , An), where Ai is the subset of items assigned to
agent i. We require that for any i ̸= k, Ai ∩ Ak = ∅ (i.e., items are not shared between bundles)
and ∪i Ai is the entire set of items (i.e., no item is left unallocated). An allocation is deemed
fair if, for any pair of agents i and k, the value derived by agent i from its bundle Ai is “within
an item” of the value it derives from agent k’s bundle Ak; specifically, for every pair of agents
i and k and for every item j ∈ Ak, we have that vi(Ai) ⩾ vi(Ak \ {j}), where vi(S) denotes
the value of agent i for a subset S of items.

Design a polynomial-time algorithm for computing a fair allocation when the agents have

2



Tutorial Sheet 6:

identical valuations, i.e., item j is valued at vj ⩾ 0 by every agent (though, for distinct items j
and j′, the values vj and vj′ may differ).1

8. (⋆) Imagine you have a set of n course assignments given to you today. For each assignment i,
you know its deadline di and the time ℓi it takes to finish it. With so many assignments, it may
not be possible to finish all of them on time. If you finish an assignment after its deadline,
you get zero marks. Therefore, you must either complete the assignment by the deadline or
not at all. How can you determine the maximum number of assignments you can complete
within their deadlines?

9. (⋆) Construct a five-symbol alphabet and an associated frequency distribution where the
“top-down” Shannon-Fano encoding is suboptimal. You may construct the frequencies such
that the encoding always finds an exact split.

1If you can show the existence of a fair allocation without the identical valuations assumption, please meet Rohit.

3


