COL351: Analysis and Design of Algorithms	Fall 2024
Tutorial Sheet 2	
	Announced on: Aug 01 (Thurs)

Problems marked with (*) will not be asked in the tutorial quiz.

1. Consider the following algorithm for checking whether a given number *n* is prime.

	ALGORITHM 1: Checking primality
	Input: An integer $n > 1$.
	Output: Yes/No
1	if <i>n</i> equals 2 or 3 then
2	return Yes
3	for $i = 2$ to $\lfloor \sqrt{n} \rfloor$ do
4	if <i>i</i> divides <i>n</i> then
5	return No
6	return Yes

Prove or disprove:

- a) The algorithm is correct.
- b) The algorithm runs in polynomial time.
- 2. Consider the following algorithm for calculating a^b where *a* and *b* are positive integers.

	ALGORITHM 2: FastPower(a,b)
	Input: Positive integers <i>a</i> and <i>b</i> .
	Output: <i>a^b</i> .
1	if $b = 1$ then
2	return <i>a</i>
3	$c := a \cdot a$
4	$d := \texttt{FastPower}(c, \lfloor b/2 \rfloor)$
5	if <i>b</i> is odd then
6	return $a \cdot d$
7	return d

Suppose each multiplication and division operation can be performed in constant time. Determine the asymptotic running time of FastPower as a function of b.

3. Let *A* and *B* be two sorted arrays of length *n* each. Assume that all elements within and across the two arrays are distinct. Design an $O(\log n)$ algorithm to compute the *n*th smallest

element of the union of *A* and *B*.

- 4. Design an $O(\log^2 n)$ algorithm that, given a positive integer n, determines whether n is of the form a^b for some positive integers a and b > 1. For the purpose of this problem, you may assume exponentiation to be O(1) time, i.e., computing p^q for two integers p and q takes constant time. Similarly, you can assume that comparison of two integers (i.e., determining whether p equals q, p > q or p < q) takes constant time.
- 5. You are given a sorted (from smallest to largest) array *A* of *n* distinct integers which can be positive, negative, or zero. You want to decide whether or not there is an index *i* such that A[i] = i. Design the fastest algorithm you can for solving this problem.
- 6. (*) You are given an *n*-by-*n* grid of distinct numbers. A number is a *local minimum* if it is smaller than all its neighbors. A *neighbor* of a number is one immediately above, below, to the left, or to the right. Most numbers have four neighbors; numbers on the side have three; the four corners have two.
 - (a) Prove that a local minimum always exists.
 - (b) Use the divide-and-conquer algorithm design paradigm to compute a local minimum with only O(n) comparisons between pairs of numbers. (Note: since there are n^2 numbers in the input, you cannot afford to look at all of them.)
- 7. (*) You are given a sequence of *n* numbers $a_1, a_2, ..., a_n$. Design an $\mathcal{O}(n)$ algorithm to find i, j with $i \leq j$ such that the sum $a_i + a_{i+1} + \cdots + a_j$ is maximum. Note that the numbers may not be positive.