	••••	•	•	•	•) (D	L	23	35	5	i I	· .	1	Ą	N	A	Ľ	1	¢1	S	•	•	\$	•	•	D	E	2	1	41	N		Df		•	A	Ĺ	9	0	RI	T	H	M	2	•	•	•	•	· ·	
																				•		•																											•			
					•		•														•	•																										•	•			
		•		•	•		•													•	•	•			•	•		•	•	•	•	•	•				•		•	•	•		•		•		•	•	•			
	• •	•		•	•		•		• •											•	•	•			•	•		•		•	•	•	•		•	•	•		•	•	•		•	•	•	•	•	•	•			
•	• •			•		•	•	•	• •											•	•	•				•				•	•	•										•	•		•	•	•	•	•	•	• •	
																								•																				•		•						
																											_																									
																		Μ	1				2	0			4	3	Ċ -	1.1	M																					
																					N						Y	Ľ	~)			•																				
	• •								• •																																								•			
					•		•														•	•																										•	•			
		•		•	•		•													•	•	•			•	•		•	•	•	•	•	•				•		•	•	•		•		•		•	•	•			
•	• •						•	•	• •												•	•		•								•	•		•	•							•	•		•	•	•	•	•	• •	
•	• •			•		•	•	•	• •											•	•	•				•				•	•	•										•	•		•	•	•	•		•		
	• •	•		•				•	• •											•	•	•		•		•				•	•	•						•					•				•					
•	• •								• •																																									•		
	• •						•	•	• •												•	•																											•	•		
	• •	•		•			•	•													•	•		•	•	Ì		•		•	•	•	•									•				•	•	•	•	•		
	• •						•		Si	F	p-	T	F	F		2	2	0	2	4			•										R	0	Н	ľ	Т			J	t		5	1			•		•		• •	
								•				•			1											1						0																				
																										•																										

Problem

Problem 1 [20 points]

Suppose there are n agents and m items. The agents have *identical* valuations for the items, that is, for any $j \in \{1, 2, ..., m\}$, item j valued at v_j by all agents, where v_j is an integer (note that v_j can be negative). For $j \neq j'$, it is possible that $v_j \neq v_{j'}$.

The value of a set of items (i.e., a *bundle*) is the sum of items in that set. That is, for any bundle of items $S, v(S) \coloneqq \sum_{j \in S} v_j$.

The goal is to partition the *m* items among the *n* agents in a *fair* manner. Denote an allocation by $A := (A_1, A_2, \ldots, A_n)$, where A_i is the subset of items assigned to agent *i*. We require that for any $i \neq k$, $A_i \cap A_k = \emptyset$ (i.e., items are not shared between bundles) and $\bigcup_i A_i$ is the entire set of items (i.e., no item is left unallocated). An allocation is deemed fair if, for any pair of agents *i* and *k*, the value of bundle A_i is "within an item" of the value of bundle A_k ; specifically, for every pair of agents *i* and *k*:

- for every item $j \in A_i$ such that $v_j < 0$, we have $v(A_i \setminus \{j\}) \ge v(A_k)$, and
- for every item $j \in A_k$ such that $v_j \ge 0$, we have $v(A_i) \ge v(A_k \setminus \{j\})$.

Your task is to design a polynomial-time algorithm for computing a fair allocation.

(a) [2 points] Write a concise, high-level description of your algorithm using plain English with minimal notation (1-2 sentences).

Assign the items in noninveacing order of absolute values.
At each step:
* if the item is non-negatively valued, assign it to the
least happy agent;
* otherwise, if the item is negatively valued, assign it
to the happint agent.

(b) [6 points] Write your algorithm's pseudocode with clearly stated input and output. Define any additional notation used.

input: a set of n agents
a set of mitems
the value vj for each item j
Output: a fair allocation A of the items among the agents
() Sort the items in nonincreasing order of absolute values,
() Sout the items in nonincreasing order of absolute values, Reindex the items so that $ V_1 = V_2 = - = V_m $.

(2) Initialize the allocati	on A :=	$= (\phi, \phi, \dots, \phi)$	n entries
(3) for $j = 1$ to m j = 1 to m j = 1 to m		All that items average that $ V_1 = V_2 = 1$	
let i := argmac i	x v(A _i)	// happiert	agunt
Let i'= argmin		// least-happy	agint
4 networn A	<i>G</i>		

(c) [6 points] Prove the correctness of your algorithm, specifying the proof technique upfront (e.g., by induction, by contradiction, by case analysis, etc.).

To prove connectness, we need to show that A is
* a valid allocation (by direct argument)
* a valid allocation (by direct argument) * a fair allocation (by invariant and case analysis)
The output A is valid because the for-loop consider all items,
and, in iteration j, item j is assigned to exactly one agent.
Let A ⁽⁺⁾ be the partial allocation maintained by our algorithm
at the start of iteration f.
To prove fairness, we will show that for every je{1,2,,m+1}, A ^(j) is fair.

Consider any pair of agents h, l.
Suppose At is fair. We will show that A (11) is also fair.
Assume $v(A_{h}^{(j)}) \neq v(A_{k}^{(j')})$ without loss of generality.
Fairnes between h and l under A ⁽ⁱ⁾ implies !
Fairnes between h and l under $A^{(j)}$ implies : * for any $g \in A_h^{(j)}$ s.t. $V_g \ge 0$, $V(A_h \setminus \{g\}) \le V(A_l)$, and
$ \times $
We will reports any such g and g' as a certificate item.
Cau I: If neither h nor l heceives an item in jth iteration.
Then fairness is maintained between h and l in j th iteration as the cutificate items are intact.

Cav II : If h receives a negative - value item in j th iteration.
Then, h must be the happingt agent before item j is assigned, i.e., h \in ang max $V(A_i^{ij})$.
If h continues to have larger value than I after j is assigned,
(i.e., $V(A_h^{(i)} \cup ij^2) \geq V(A_k^{(i)})$, then fairness is maintained
as the certificate items in $A_{\ell}^{(i)}$ and $A_{R}^{(i)}$ are intact.
Otherwise, we have that $v(A_h \cup sj3) \prec v(A_e)$.
In this case, item j in agent his bundle is a certificate item because
$V(A_h \setminus \{j\}) = V(A_h) = V(A_k)$ since h was the toppiest agent at the start of iteration j

Ky idea : All negative value items in $A_h^{(j)}$ and all nonnegative value items in $A_e^{(j)}$ have at least as much absolute value as item j' , and are threefore also certificate items.
items in All have at least as much absolute value as item j,
and me thurfore also certificate items.
Thus, fairness is maintained.
Cau III : If l'receives a nonnegative - value item in j th iteration.
A similar analysis as in Case II holds. If h has larger value thank,
then old certificates work. Otherwise, invoke absolute value selection rule.
Note that cases I, II, III are mutually exclusive and exhaustive.
Thus, fourness is maintained at the end of jth iteration.

(d) [3 points] Show that your algorithm runs in polynomial time.
Sorting the itms takes O (m log m) time.
The for-loop runs for miterations. In each iteration,
searching for happinet / least happy agent takes O(n) time.
· · · · · · · · · · · · · · · · · · ·
searching for happinet / least happy agent takes $O(n)$ time. Thus, $O(m \log m + mn)$ time overall, which is polynomial in the input size.
Thus, O(mlogm + mn) time overall, which is

(e) [3 points] Suppose now there is an additional quota constraint, defined as follows: Let q_1, q_2, \ldots, q_n be nonnegative integers that add up to m, i.e., $\sum_{i=1}^n q_i = m$. In addition to being fair, an allocation must also assign exactly q_i items to agent *i*. Prove or disprove: Given any quotas, a fair allocation satisfying the quotas always exists. To prove this, you should present a polynomial-time algorithm. (If you are suggesting a modification to the algorithm in part (a), instead of writing the entire pseudocode, just emphasize the main difference between the two algorithms.) To disprove, you should present a counterexample. There is a counterexample with two agents and two items. $V_1 = 1$ $V_2 = -1$ $Q_1 = Q_2 = 1$ Dropping the first item brings its owner's value to O which is still greater than -1.

non negative

Problem 2 [20 points]

In the *longest path* problem, we are given a weighted directed graph G = (V, E, w) and a vertex $s \in V$, and we are asked to find the longest simple path (i.e., no vertex is repeated) from s to every other vertex in G. For a general graph, it is not known if there is a polynomial-time algorithm to solve this problem. If we restrict G to be acyclic, however, this problem can be solved in polynomial time. Our task in this problem is to discover such an algorithm.

Problem 2

(a) [8 points] Write your algorithm's pseudocode with clearly stated input and output. Define any additional notation used.

Hint: You have seen an algorithm for the single-source shortest-paths problem. Can you use this algorithm (or a modification of it) on a (possibly modified) input to find the longest paths?

input: a directed acyclic graph G = (V, E, w), a fixed verter $S \in V$. output: the longest path (if any) for s to every other vertex of G. () Compute a topological ordering, say σ , of graph G. Reindex the vertices so that $\sigma(v_i) = i$. (2) // nun a modified Dijkstra algorithm Starting from S $\chi := \S S \Im$, but h be such that $\tau(S) = h$. A[s] := 0and A[vi]=NULL for all i < n $B[s] = \emptyset$ B[vi] · · · • •

for i = n+1 to n // consider vertices in topological order
if there exists some edge (U, v;) such that UEX:
* pick (u^*, v_i) that maximized $A[u^*] + W_{uv_i}$ where $u^* \in X$
* add vi to X
* $A[v_i] := A[u^*] + \omega_{iv_i}$ and $B[v_i] := B[u^*] \cup (u^*, v_i)$ else
L A[vi] = NULL, B[vi] = NULL // no path from s to vi
hetun A, B

(b) [3 points] Briefly justify why your algorithm runs in polynomial time.
$ \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot$
Let $m = E $ and $n = V $.
The topological ordering algorithm runs in $O(m+n)$ time.
The modified Dijkstra algorithm huns O(n) ituations of
for-loop. In each iteration, the algorithm takes O(m) time
to find the edge (u^*, v_i) .
Overall, our algorithm takes $O(nm)$ time, which is
polynomial in input size.

(c) [6 points] Prove the correctness of your algorithm, specifying the proof technique upfront (e.g., by induction, by contradiction, by case analysis, etc.). We will prove correctness by induction on the number of iterations. Let f_{c} be such that T(s) = r. $\sigma(\cdot) = n$ If there exists a simple path from s to a vertex Uit, Key limma ! then the last edge of this path must be of the form $(\mathcal{V}_{k}, \mathcal{V}_{i+1})$ where $r \leq k < i+1$. The limma follows from the fact that σ is a topological ordering.

				• • • • •							
											• •
	· · · · · · · · · · · · · · · · · · ·	$1 \rightarrow 1 \rightarrow$	=2 of)	сњ сњ	di)=t	$\sigma(1) = i + 1$		σ(.)=	n		
	· · · · · · · · · · · · · · · · · · ·										
			•••• ()				. • •.				
			· · · · · · · · · · · · · · · · · · ·				• • • •	• • • • •	• • • •	• • •	• •
			ి రాజు రాజు రాజు రాజు								
											• •
											• •
											••••
· · · · ·			· · · · · · · · ·		· · · · · ·	· · · · · · ·	· · · · ·	· · · · · ·	· · · ·	· · ·	• •
	For the	first (1	L-1) VU	ticu	000	algorith	m re	huns	NULL		• •
· · · · ·	For the	first (1	r−1) vu	ticu,	000	algori H	m re	hine	NULL	· · · ·	· · ·
· · · · · ·					• • • • •	· · · · · ·					
 . .<					• • • • •	· · · · · ·					· · · · · · · · · · · · · · · · · · ·
· · · · · · · · · · · · · · · · · · ·	This is	connect	because	, due t	o kuy	· · · · · ·					
	This is	connect	because	, due t	o kuy	· · · · · ·					
	This is	connect	because	, due t	o kuy	· · · · · ·					
		connect	because	, due t	o kuy	· · · · · ·					
	This is	connect	because	, due t	o kuy	· · · · · ·					
	This is	connect	because	, due t	o kuy	· · · · · ·					

Suppose the algorithm encounters a nonempty frontier for the first time in the tth iteration. Clearly, t 2 n. Then, the edge (s, of) must be the unique path from s to of (by key limma). We will treat this as the base case. P[i]: A[v;] is the length of longest path from s to v; B[v;] is the longest path from s to v; Consuder the (it1)th iteration. By key lumma, the last edge of any s min vit path (if one exists) must be a frontier edge of the form (U, Viti) where UEX

Thus, any path from s to vit must be of the form
$\mathcal{S} \xrightarrow{(u \in X)} \mathcal{U} \xrightarrow{(i+1)} \mathcal{Y}_{(i+1)}$
Length of such path = length of $s \rightarrow u + length of (u, v_{i+1})$
By induction hypotheses, B[ut] is the longest path to ut
By quudy selection, B[viti] must be the longest path to viti
Similarly, A [viti] is the length of the longest path.

(d) [3 points] Explain, using a counterexample, why your algorithm does not work when G is not acyclic.

1 7 100	The topological ordering algorithm Can return $T = (S, U_1, U_2, U_3)$.
(5) 1 (9_3) 1 1	Thun, our algorithm will return the
	longut path to v_i as $s \rightarrow v_i$.
· · · · · · · · · · · · · · · · · · ·	However, the connect answer is

Problem 3

Problem 3 [20 points] (a) [5 points] Let T = (V, E) and T' = (V, E') be two different spanning trees of a graph G. Prove that there exists an edge $e \in E \setminus E'$ and an edge $e' \in E' \setminus E$ such that both $T \cup \{e'\} - \{e\}$ and $T' \cup \{e\} - \{e'\}$ are spanning trees of G. Let $e = \{u, v\}$ be any edge in $E \mid E'$. Since T' is a spanning true, there must be a path between 4 and 4 in T'. Thus, T'USEB creates a cycle, say C'. Since T is also a spanning tru, there must exist some edge $e' \in C' \setminus T$ We will show that T := T'U {e} \{e'} is also a spanning true. Note that T has n-1 edges where n = [V].

() T* is connected because any walk between pair of vertices x, y
that gres through e' in T'use? can be re-routed through the
vertice in $C' \{ e' \}$ in T^* .
2 T [*] is spanning because T'U ?e? is a spanning subgraph of G.
Removing e' maintains connectudness, thus T* must be spanning.
3 T* is a connected graph on n vertices and has n-1 edges.
(3) T^{*} is a connected graph on n vertices and has n-1 edges. So, it must be a true and thus is acyclic.
NOTE: The above proof does not show that Tule\$13es is a spanning
the because adding e' to T could lead to removal of a different edge.
See next page for a different proof.

Consider any $e \in T \setminus T'$. Say $e = \{u, v\}$.
Then, TISES is a forest with two trees. Call their vertex sets X and Y.
une ve Edge e must be a crossing edge fan the cut
(X,Y) in graph G. Thus, UEX and UEY.
Since T is spanning tree and e∉T, TU je?
X Y must contain a cycle, say C, such that c e C.
By double crossing limma, there exists an edge e' EC such that
e' crosses the cut (X,Y) and $e' \neq e$.
We will now show that TU {e'3 \ {e} and T'U {e} } } e? and
spanning trees.

Claim 2 : TU {e ? \ } é ? is a spanning true.
une Proof: Let T = T'u jej 1 je' j
Consider any pair of vertice $x \in X$ and $y \in Y$ such that the unique path between x and y
" e' " such that the unique path between a and y
X Y in T'includes e' We will argue that name y
are connected under T [*] . This would prove that T [*] is connected
and has the spanning property. Furthermore, since T has (n-1) edges,
We would obtain that Tt is a tree, and therefore a spanning tree.
Recall that T'uses contains a cycle C such that e, e' e C.
Thus, any walk between n and y in TUSes that goes through
e' can be ne-nonted to exclude e'.

· ·	•	1	ħ	Ĵ	•	· · · Ì	γ	þ	li	U U	•	-+1	ha	t	•	•	<u>t</u> h		r	•	'n	° ₩	(((ł	•	Ь	e	•	2	• •	ļ)0	†l		ł)e [~]	tr	se	en	•	k	•		ŝ	J		f	•	•	•	•
•••	•		in in	•		τ τ		U V	r 2	و	- - - }	•	•		f1	- - 0 -	t	•	•	e)	X (J	- ~ ~	te	s	•	e		•	· ·	•	•	•	•	•	· ·	•	•	•	•	•	•	•	•		•	· ·		•	•	•
••••	0		- 	n e		fo	./\∖	e	•	•	•		•		l Ir	d	•		J	•	. 0	d A	و	•	•	r Ca)))	י יח	e	t	ہ م	•	•	n În	•	 	T	£	•	•	•	•	•	•	0		•••		•	•	•
•••	•	•	•	•	•	ļ -	•	•	•		•	•	•	•	•	•	•	· (7	•	•	•	•	•	•	•	•	•	•	•••	•	•	•	•	•	· ·	•	•	•	•	•	•	•	•	•	•	• •]	•
• •	•	0	0	•	•	•	•	•	•	•		•		0	•	•			•	•		•	•		0	•		•	•	•••		•	•			• •		0	0	•	•	•	•	•			• •	•	•	•	•
· ·	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	· ·	•	•	•	•	•	· ·	•	•	•	•	•	•	•	•		•				•	•
• •	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	0	•	• •	•	•	•	0	•	• •	0	•	•	•	•	•	•	•		•	• •	•	0	•	•
	•	•	•	•		•		•				•	•		•		•	•	•	•			•		•	•		•		· ·		•	•	•				•	•	•		•		•							•
· ·	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	· ·	•	•	•	•	•	· ·	•	•	•	•	•	•	•	•		•			•	•	•
• •	•	•	•	•		•		•	•	•		•		•	•		•		•	•			•	•	•				•	• •		•	•	0		• •		•	•	•		•	•	•	0	•	0 0 0 0		0		•
••••	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	••••	•	•	•	•	•	• •	•	•	•	•	•	•	•	•	0	•	• •		•	•	•

(b) [15 points] Let G = (V, E) be an undirected, unweighted, and connected graph with each edge colored either red or blue. Design an $\mathcal{O}(|E|) \not | k | V |$ algorithm that, given as input an integer k and the graph G, determines whether there exists a spanning tree of G that contains exactly k red edges. Write the pseudocode of your algorithm, and provide a brief justification of its correctness and running time.

(4) Initialize T	$r = -T^{min}$
for every hed	edge CET ^{max}
ìf e	¢T
	add e to T
*	henove an edge e' from the induced cycle Such that $e' \notin T^{max}$ // e' must exist
	update $T // T \cup e \setminus \{e'\}$ is spanning true had adapts in $T = K$ due to Part (A).
	return YES

Convectness: T ^{max} and T ^{min} are spanning trees of G with the maximum and minimum possible number of red edges.
and minimum possible number of red edges.
If min < K < m, our algorithm starts with T and inversentally
turns it into T ^{max} until K and edges are achieved.
Note: # red edges may not strictly inveace after each iteration.
Running time : Finding That and Thin via Prim's or kennekal's algorithm
takes O(IEl log IVI) time. The for-loop performs O(n) iterations.
In each iteration, identifying the edge e' takes O(m) time.
Overall, the algorithm takes O(mn) time,