
COL 351 : ANALYSIS & DESIGN Of ALGORITHMS

MINOR EXAM

SEPT 17
,
2024 / RONT VAISH

Problem 1

Assign the items in non increasing order of absolute values.

At each step :

A if the item is non-negatively valued
, assign it to the

least happy agent ;

* otherwise
, if the item is negatively valued , assign it

to the happiest agent.

input : a set of n agents
a set of m items

the value vp for each item j

output : a fair allocation A of the items among the agents

① sort the items in non increasing order of absolute values·

Reindex the items so that (v , 1x1v2/ -- -lim).

② Initialize the allocation A :=(0, 9)
n entries

⑨ for j = 1 to m I/ be call that items are indexed

so that (VII/V212, -- -

if up <
O

*

let i := argmax VCA1) / happiest agent
i

else

-

let =

arguin
vCA1) / least-happy agent

- Ax AixvEj]

⑪ return A

To prove correctness
,
we need to show that A is

* a valid allocation (by direct argument)
A a fair allocation (by invariant and case analysis)

The output A is valid because the for-loop considers all items
,

and
,
in iteration j , item j is assigned to exactly one agent.

Let At be the partial allocation maintained by our algorithm
at the start of iteration j

.

To prove fairness , we will show that for every jettc ;mely , At is fair.

Consider
any pair of agents 2

. 1.

SupposeAt is fair. We will show that Att is also fair.

Assume v (A) v(A) without loss of generality.

Farness between h and h under All implies !

* for any gett st. V 0
,

~ (1993) =vA) , and
* "getn reco , varigs) va

We will refer to any such g and gas a certificate item.

Car I : If neither h nor I receives an item in jthituation.
Then fairness is maintained between h and 1 in jth iteration
as the certificate items are intact.

Car I : If h receives a negative-value item in jth iteration.

Then
,h must be the happiest agent before item j is assigned, i. e .,
he agmax v(A)

If h continues to have larger value than 1 after j is assigned,

(e , v(atuijs)V()) ,
then fairness is maintained

(j)
as the certificate items in Ae and Alt one intact.

15)

Otherwise
,
we have that v(Auj3) < v(*e).

In this can
,
item j in agent his bundle is a certificate item because

(j+1)

vAn(1j3) = v(va since h was the happiestagent
at the start of Iteration j

.

[j2

key idea : All negative value items in An and all nonnegative value
items in All have at least as much absolute value as itemy ,l

and are therefore also certificate items.

Thus
,
fairness is maintained .

Car I : If I receives a nonnegative-value item in jth iteration.

A similar analysis as in Case I holds . If h has larger value thant,

then old certificates work. Otherwise
, invoke absolute value selection rule.

Note that cases I
, I

,
I are mutually exclusive and exhaustive.

Thus
, fairness is maintained at the end of jth iteration.

Th

Sorting the items takes 0 (mlogm) time.

The for-loop runs for m iterations. In each iteration,

searching for happiest/least happy agent takes O(n) time.

Thus
, O(mlogm + mr) time overall

,
which is

polynomial in the input size.

then is a countexample with two agents and two items.

Vi = 1 v = - N ,
= q2 = 1

Dropping the first itm brings its ownu's value to 0
,

Which is still greater than1.

Problem 2

non negative

V

input : a directed acyclic graph G = / , E , w) , a fixed raten sev.

output : the longest path (if any) far to every
other vetex of p.

① Compute a topological ordering , say w , of graph G.
Reindex the vertices so that v(V) =

1

.

② I run a modified Dijkstra algorithm starting from3
X := ES3 .

Let i be such that (S) = R.

Als] := 0 and ALEY= NULL for all i < a.

B1s] := 0 -, Bluy" 11 11

for i = M+ to n / consider vertices in topological order

if there exists some edge (U , v) such that neX :

* pick (*, v :) that maximizes Alu
*

] + Wor when
utex

* add U to X

- Alv= Alut] + War and BLUT := BLu] U (* u.
else

-

AUT = NULL
, Blul = NuL / no path from s to u

-

Refun A
,
B

Let m := IE) and n:= /VI.

The topological ordering algorithm runs in 0(m+n) time.

The modified Dijkstra algorithm runs On) ituations of

fer-loop . In each iteration
,
the algorithm takes O(m) time

to find the edge (U& vi).

Overall
,
our algorithm takes O (n . m) time ,

which is

polynomial in input size.

We will prove correctness by induction on the number of iterations.

Let i be such that (s) = r.

H :)= Hi=2 st = M H=t wil = it (l= n

--- - & - - -

T
T

S

key Imma : If there exists a simple path from s to a vertex Fill

then the last edge of this path must be of the form

M , MH) Where R *< it.

The lemma follows from the fact that w is a topological ordering.

H H=2 HR Met Wit Hen

--- - & - --

T
T

S

For the first -1) vertices
,
our algorithm returns NULL.

This is correct because
,
dus to key himma

,
there is no path

from s to any of these vertices.

Suppose the algorithm encounters a nonempty frontier for the

first time in the thiteration
. Clearly , t zr.

Then
,
the edge (s , vel must be the unique path from to at

(by key huma). We will treat this as the base case.

fixt PliJ : ACE] is the length of longest path from s to 0:
BCQS is the longest path from s to Vi.

Consider the City ituation. By key hmma
,
the last edge of any

~ me With path (if one exists) must be a frontie edge of the form

(U , it) where ne X

Thus
, any path from s to Vit , must be of the form

·un -> With
(utX)

Length of such path = length of sen +o length of U , it)

By induction hypothesis , Blu*] is the longest path to ut.

By grudy selection , Bli] must be the longest path to with

Similarly , A[VH] is the length of the longest path. Ea

O The topological ordering algorithm175 100
can return - = (S , D , E , 5).

S ↓ 03
T

2 -V I

Then
,
our algorithm will return the

E2 longe path to v, as s-> 0.

Howeve
,
the correct answer is

- -> E- B- Y

Problem 3

Let e = qu , 23 be any edge in EIE' :

Since T is a spanning the ,
there must be a path between

a and o in t Thus
,
Tuges creates a cycle , say c

Since T is also a spanning th , there must exist some edge
e'e c'IT .

We will show that = TUde3 Ide's is also a spanning ter.

Note thatT* has n -1 edges where n = 101.

①It is connected because any walk between pain of Vertices a , y

that goes through e'in Tv923 can be re-routed through the

vertices in 'Ide's in +*

② +
*

is spanning because TUSe3 is a spanning subgraph of G.

Removing e' maintains connectedness
,
thus * must be spanning.

③ T
*
is a connected graph onn vertices and has n-1 edges.

So
,

it must be a the and thus is acyclic #

NOTE : The above proof does not show that uses Ises is a spanning
the because addinge'to T could lead to removal of a different edge.

See next page for a different proof.

Conside any eTIT
! Say e = \n , 03.

Then
,
Tlses is a forest with two trees .

Call their vertex sets X and Y.

U
.

2

·
v Edgee must be a crossing edge for the

cut

(X , Y) in graph G .
Thus

,
neX and REY.

SinceT is spanning tree and et
,

uses

X Y must contain a cycle , say I , such that ec.

By double crossing
limma

,
thue exists an edge e'-c such that

2
&
crosses the not (X , 4) and e'fe.

We will now show that uses Ises and T'useslie's are

spanning trees .

U
#

2

&
R Claim 1 : Tuse's ISe3 is a spanning tree.

Proof : Let F : T use's Yes.
* W

el In Tises
,
all vatics within X (respectively , within 4)

X Y are connected .
Since e is a crossing edge , it connects

some vutex in X with some vatex in
, thereby

connecting the sets X and 7 .

Thus
,
I is connected.

F is spanning because it connects every vetex
in G to every

other vetex in G .

Since I has no edge and is connected
,
it must be a tw

A

I

Claim 2 : Tuses /Ses is a spanning tree
U
#

2

·
v Proof : Let +*:= T'usesIse's ·

i
①

S uny Consider
any pair ofrutices neX

and youW

u vI
el such that the unique path between n and y

X Y
in t includes !We will agre that randy
*

an connected under T . This would prove that If is connected
*

and has the spanning property. Furthermore , Since T has (n-1) edges ,
We would obtain thatI is a tree

,
and therefore a spanning tree.

Recall that uses contains a cycle C such that e , ecC.

Thus
, any walk betweeni and y in uses that goes through

e can be re-routed to exclude e'

This implies that there must be a path between u and
y

in T uses that excludes e

Therefore ,
u and

y
are connected inT

E

III

input : graph G = (V, El with red/blue edges , integer K

output : Does there exist a spanning
tru of G with exactly red edges!

① Assign weight O to all red edges and weight I to all blue edges.
may

compute mst +mat of this graph . Let m= #red edge in
T

.

② Assign weight O to all blue edges and weight I to all red edges .

min
min

Compute msT thin of this graph . Let m := #red edge in
T

.

max

③ return NO if K < mmin or K > m &

min

④ Initialize T := T

for every red edge eET
max

if 2 T

* add e to T

* remove an edge e from the induced cycle
such that e'e +max. 1/ I' must exist

-

* update T 1/ The IS2's is spanning
the

if #red edge in T = K due to Part (9).

L Metun YES
-

return No

max min
correctness : T andT are spanning thes of G with the maximum

and minimum possible number of red edges.
max

If mmirk 1 m
, our algorithm starts withpmin and incementally

max

turns it intoT until R Red edges are achieved.

Note : #red edges may not strictly increase after each iteration.

min

Running time : Finding
max

and T via Prim's or Kenskel's algorithm
takes O (IE) log (v) time. The for-loop performs O(n) ituations.

In each iteration
, identifying the edgee'takes Olms time.

Overall
,
the algorithm takes Olmn) time.

