
COL 351 : ANALYSIS & DESIGN Of ALGORITHMS

MAJOR EXAM

NOV 22 , 2024 / RONT VAISH



Problem 1



Given an instance <G = (E) , K) of IND . SET
,
construct an instance

of CLIQUE <G= U , e) , k> whee :

niveV : (riv)ee (1 , 0) & E

Key observation :

Any indup Set of G is a clighe of G and vice versa.



Given an instance <G = U .E , s,t) of DIR . HAM . PATH
,
construct an

instance of UNDIR
. HAM . PATH (G' = UE) , sit) as follows :

* For every REV , create pinmid
outo
in V .

* For every (4 , 4) -E ,
create edges (nort vin , in E

* For every
ver

,
create edges (p ,

vid , and cident, in E
A s = sin

,
t = tout

r win midout



Key observation :

Any undirected Ham path in G'must be of the form :

inmidoutmidoutmid oa

Thus
,
adirected Ham cycle in G can be naturally inferred from

an undirected Ham cycle in G' and nice versa.



Given an instance (G = (v . E)
,
S
,
t] of UNDIR . HAM .

PATH
,
construct

an instance (g'= IE) , Sce] of TSP as follows.

* V = VUEVS v = dummy water
* E = Ev3( . 0) Ever

key observation :

* Cs
=
rot

= 0

A TSP tow of cost O in GI

% ,
0
= 1 #vev1Eith naturally induces an undirected

Cu
,
0
-
of n ,

0 ev Ham Path in G and Vice versa.



Problem 2



The following counterexample shows that the greedy approach is incorrect.

VI

Greedy picks &V, V2 , V3] and returns "No"

V2 V3 Vy
However

,
Ev , B , va3 is a valid verted cover.

If vo V

k= 3



The following counterexample shows that the greedy approach is incorrect.

( r + )(x, v +) a(TH, +(2)

(V + )(nv + )( + vX)

where each dimotes a distinct literal us . ..., No

Greedy Sets n = TRUE and U = TRUE·

This falsifies the third constraint , so Greedy returns "No"

However
,
there exists a satisfying assignment :11 , U

= FALSE
,
* = TRUE



The following counterexample shows that the greedy approach is incorrect.

starts I u3 Greedy visits the vertis in the order s
, V , " , vs

2

1
2

I resulting in a cost of 5.

VI V2
1 optimal tone is (S , V , " ,

12) with cost = 6.



Problem 3



we will use max flow with lower and upper bounds on capacities.

(Problem 7
,
Tutorial Sheet 12).

Let O be our "guess" of the utility of the leash-happy agent.

Note : O is an intege in [0 ,
m) when m = no of items.

For any fixed o ,
construct a flow network Go as follows :

(11)
< (01] < "(m) A Add edge - a if Vij

= 1.

11 , 13 > gj
(0

,m)
S

[1 , 1]
t * Capacity [1 , u] denotes lower

[Q,mi bound 1 and apper bound U.
I

items agents



Algorithm
For 0 - 90 , 1

,
2
,
--

,
m3

* Compute an integral max flow in Go , if a feasible flow exists.

/ recall that lower + upper bounds problem reduces to the

upper bound-only problem , which is solved by Edmonds-Karp

* If max flow= m
,
continue ·

Otherwise return (0-1) and the corresponding flow.

NOTE : A feasible flow , certainly exists for 0:0.



* The running time
is polynomial because the foe-look itwate at

Mostm time
,
and
,
in each ituation , construction of flow

nethock and max flow computation can be done in poly time.

Correctness

*
Integed capacities =>> feasible flow is intigual.

* The [1 , 1] capacity means every good is assigned to exactly
one agent , i. e .,

a valid allocation.

* The 10 ,
m] capacity ensures that least-happy agent has value O.

* Thus
, feasible flow corresponds to a desired feasible allocation.



Problem 4



Algorithm
① Consider the vertius in an arbitrary left-to-right order vU... Un

.

Mark all vetius as "active".

⑧ for i = 1
,
2, -- , n // left to right pass

(iisactive zi st . Live
deactivate vj/ deactivate all out-neighbors

on the right

③ for i = n ,
n-1

, ...,
2
,

1 / right to left pass
if vi is active

11 for every jai s .t . (Vi , Vj) eE

L deactivate vj / deactivate all out-neighbors on the left.

return set of active vntices



The algorithm runs in O(mtn) time where n = #vertius
,
m = #edges.

Let S := Set of active vatius returned by the algorithm.

Invariant : A deactivated Vertex is never activated again
.

Claim 1 : S is an independent set.

Proof : Conside
any distinct Vi , Up

ES
,
and suppose i < j

:

vjes (Vi , Vj) &E (UJ is not an out-neighbor of vi)

↓ es (j , vi) (v "
= Y) .

=> dist (vi . Vj)2 . B



Claim 2 : For
any vjeS ,

7 VieS such that dist(Vi ,Y) - 2.

Proof : by case analysis , depending on when Up is deactivated.

can I : Vj is deactivated during right-to-left pass
=>I is deactivated by some v I S .t . is j
=> VI must remain active throughout , i . e ., VieS

=> dist (i , Vj) =1 2
.

canI : Vj is deactivated during left-to-right pass
=>I is deactivated by some v. s.t . i < j
=> either VieS or Vi is deactivated during right-to-left pass

.

--
Mr 7 Upes St . dist Np . Vi) = 1 (Can 1)

dist (i .Vj) = => dist Uk , Vj) = 2 .

T


