

(a) [5 points] Recall that, given an undirected graph and an integer k , the INDEPENDENT SET problem asks to compute a set S of mutually non-adjacent vertices such that $|S| \ge k$. The CLIQUE problem, on the other hand, asks for a set S of mutually adjacent vertices such that $|S| \ge k$. Show a reduction from INDEPENDENT SET to CLIQUE. G iven an instance $\langle \zeta \in (V,E) \rangle, k \geq 0$ f IND. SET, constant an instance CLIQUE $\angle G'=(V,E'),k>hhe$
 $\forall w,\psi \in V$: $(w,\psi) \in E \iff (w,\psi) \notin E'$ of CLIQUE $\angle G=(V,E'),k>$ where: Key obcervation Any indup Set of ^G is ^a clighe of ^G and vice versa .

(b) [5 points] Recall that given a directed graph $G = (V, E)$, a starting vertex $s \in V$, and an ending vertex $t \in V$, the DIRECTED HAMILTONIAN PATH problem asks to compute an $s-t$ path in G that visits every vertex in G exactly once or correctly declare that no such path exists. The UNDIRECTED HAMILTONIAN PATH problem is defined similarly for undirected graphs. Show a reduction from DIRECTED HAMILTONIAN PATH to UNDIRECTED HAMILTONIAN PATH. *Hint*: Think about simulating "directedness" by splitting a vertex into multiple contribution. an instante $\langle G = (V, \epsilon), s, \pm \rangle$ of DIR. HAM. PATH, *Internet* $\angle G = (V, E), S, E > 0$ DIR. HAM. PATH, content
instant $\angle G = (V, E), S, E > 0$ DIR. HAM. PATH, co
of UNDIR. HAM. PATH $\angle G' = (V', E'), S', E' > 0$
survey $v \in V$, Oreste v^{in} , v^{mid} , v^{mid} , v^{out} in V' .
your $(v, v) \in E$, Orest construct an $inframe$ of UNDIR. HAM . PATH $\angle G' = (U', E'), S', L' >$ as follows: $*$ For every $e \in V$, create v^{in} , v^{mid} , e^{out} in V' . * For every $(4, 4) \in E$, create edges (u^2, u^2) in E' every $(v, v) \in e$, create edges (u, v, v) in e' ,
every very create edges $(v^{\text{in}}, v^{\text{mid}})$ and $(v^{\text{in}}, v^{\text{in}})$ in e' , * For $A = s' = s^{in}$, $t' = t^{out}$

(c) [5 points] Show a reduction from UNDIRECTED HAMILTONIAN PATH problem to the search version of TRAVELING SALESMAN PROBLEM. *Hint*: Think about adding a dummy vertex and using only *binary* costs, i.e., all costs in $\{0, 1\}$. G ivin an instance $\angle G$ = (v. E), s , t $>$. of UNDIR. HAM . PATH, construct q_i un an instance $\angle q = (v, \epsilon)$, s, \pm, ϵ of other as follows. $*$ $V' = V \cup \{v_{o}\}$ $v_{o} = \text{dummy}$ vater $* \quad \varepsilon' = \varepsilon \cup \{(\varphi_{0}, \vartheta)\}$ x $C_{\theta_{0}, 2} = C_{\theta_{0}, \pm} = 0$ key observation : ^A TSP tow of cost ^O in GI $C_{\vartheta_{0},\vartheta} = 1 \quad \# \quad \vartheta \in V \setminus \{s,t\}$ naturally induces an undirected $C_{u_{i}v_{i}} = 0$ \forall $v_{i}v_{i} \in V$ Ham Path in G and vice versa.

(a) [5 points] Problem: Given an undirected graph $G = (V, E)$ and an integer k, compute a vertex cover of G of size at most k, if one exists. That is, find a subset $S \subseteq V$ of at most k vertices such that for every edge $e \in E$, there exists a vertex $v \in S$ such that e is incident to v. Greedy approach: Identify the maximum degree vertex and include it in the solution. Now remove all edges incident to the chosen vertex and repeat the process on the remaining graph. Continue until k vertices are selected in this manner. If needed, break ties as you wish. The following counterexample shows that the greedy approach is incorrect. Greedy picks $\{v_1, v_2, v_3\}$ and returns No'' VI V2 V3 Vy However, $\{v_1, v_3, v_4\}$ is a valid vertex cover. (V_5) (V_6) $k=3$

(b) $[5 \text{ points}]$ *Problem*: 3-SAT.

Greedy approach: Find a literal that makes the largest number of clauses TRUE. Set the corresponding variable TRUE/FALSE accordingly. Remove all clauses satisfied by this truth assignment from the 3-SAT instance and repeat the process on the remaining instance.

(c) [5 points] Problem: TRAVELING SALESMAN PROBLEM, where the input is a complete graph.

Greedy approach: Starting from a vertex of your choice, repeat the following process until all vertices have been visited: If the current vertex is v , visit the "closest unvisited neighbor" of v (i.e., a vertex w that minimizes the cost $c_{v,w}$).

The following counterexample shows that the greedy approach is incorrect. $stant$ s ∞ Greedy visits the vertice in the order s , v_1 , v_2 , v_3 .
2 1 2 I resulting in a cost of ∞ V_2 1 Optimal tone is (s, v_1, v_3, v_2) with cost =6.

Problem 3

Problem 3 [15 points]

Suppose there are *n* agents a_1, a_2, \ldots, a_n and *m* items g_1, g_2, \ldots, g_m . The agents have *binary* values for the items, that is, the value of agent a_i for item g_j is given by $v_{i,j} \in \{0,1\}$. An agent's value for a set of items is given by the sum of its values for individual items in that set. The goal is to partition the m items among the n agents in a *fair* manner.

Denote an allocation by $A := (A_1, A_2, \ldots, A_n)$, where A_i is the subset of items assigned to agent *i*. We require that for any $i \neq k$, $A_i \cap A_k = \emptyset$ (i.e., items are not shared between bundles) and $\cup_i A_i$ is the entire set of items (i.e., no item is left unallocated).

Design a polynomial-time algorithm for computing an allocation that makes the least-happy agent as happy as possible. That is, compute an allocation A that maximizes $\min_i v_i(A_i)$. Justify the correctness and running time of your algorithm. If necessary, you may assume that for every item, there is at least one agent who values it at 1.

Problem 4 [15 points]

Given a directed graph $G = (V, E)$ and any pair of vertices $u, v \in V$, let $dist(u, v)$ denote the length of the shortest directed path from u to v in G . If no such path exists, then define $dist(u, v) = +\infty.$

By means of an efficient algorithm, show that in any directed graph, there exists an *independent* set of vertices that can reach every other vertex in at most two steps. That is, design a polynomial-time algorithm that, given as input a directed graph $G = (V, E)$, computes a subset of vertices $S \subseteq V$ such that:

1. dist(u, v) ≥ 2 whenever $u, v \in S$ and $u \neq v$, and

2. given any vertex $v \notin S$, there is a vertex $u \in S$ such that $dist(u, v) \leq 2$.

Hint: The independent set need not be of the maximum possible size. Can you think of an algorithm that lines up the vertices and computes the desired set by doing left-to-right and/or right-to-left passes?

