
COL 351 : ANALYSIS & DESIGN Of ALGORITHMS

LECTURE 7

Quiz I

AUG 06
,
2024 / RONT VAISH

Problem 1(a)

High-level plan

* Two recusive calls for Sorting All
: 17 and ACEHin]

* A combine step with lineer reversal cost
-

O(n)

* Overall cost T(n) =2T(E) + 0 (n)

which would
give O(nlogn) cost as desired.

Divide and conque algorithm (sort-by-reversal)
input : an away A of length n consisting of Os and Is

output :

away A sorted in ascending order

if n = 1

Return A

else
B : = sort-by-reversal (A[1 : E]) ~0 11 --- I

C : = sont-by-reversal (AfEH : n]) e-0120-1

D : = B concatenated with C

Informal idea (not part of the pseudocode)

Observe that in the final sorted away ,
some elements (say K)

in the left half will switch to the right half and vice rusa.

-ol.... -o11 -- I

~m -

K K

Do a reversal of RI's on the left and KO's on the right.

This reversal definitely sorts one of the halves.

To sort the other half ,
do another reversal.

&seudocode continued) // "Combine" step
Ki= min #1s in DI : 1] , #0's in DLEHin]].

reverse the subway DCE-K : E+].
call the new away D'

.

if D' is sorted then return DI

-022---If011 -- - f
-

- -

K
↓ K

x0000-0121--- f

else if the left half of D' is not sorted

~
x. 012--- 021---1

win

K K

↓

~01 - 10 ... 0.--- -

not sorted sorted

then do another reversal for the suffix of left half
starting at 1

-

021- 10 ... 0

↓
& sorted

-00... 012 -- I

Metun the newly sorted left half and the already sorted
right half

else / the right half of D' is not sorted

-01-...02--1

--

K

↓

-00...021--1

sorted not sorted

do a reversal for the prefix ofeight half ending at 0.

=Lo ... 0 11 -- 1

↓
I sorted

=od -- 121 -- 2

return the newly sorted right half and the already sorted
left half

Correctures :

htargumentr(by strong induction)
sketch will suffice

Base case : For n= 1
,
A is trivially sorted.

Induction step : By inductive assumption ,
the recursive calls

to left and right halves return sorted outputs
.

Now use case analysis :

11) #Is in left = #0's in right : One neversal works

12 #Is in left > #O's in right : Right half sorted after first reversal.

Left half "a second "

(3) #I's in left > #0's in right : similar reasoning

Cost quarantee :

Let T(n) denote the maximum cost incurred by the algorithm
for any input of size

n.

-> #reversals - 2

Then
,
Thn) < 2 + (1) + 2xn-> cost/revusal In

By Master theorem T(n) = 0 (n (gn)
Al

Problem 1(b)

High-level plan

* Two recusive calls for Sorting All
: 17 and ACEHin]

* A combine step with O(nIgn) reversal cost

* Overall cost T(n) =2T(E) + O(nIgn)

which would
give Onlog) cost as desired.

Important difference
.

The combine step will itself be recursive.
from part (a)

Divide and conque algorithm (sort-by-reversal)
input : an away A of length n consisting of distinct integers
output :

away A sorted in ascending order

if n = 1

Return A

else

B : = sort-by-reversal (A[1 : E])

C : = sort-by-revusal (A(EH : n])
D : = B concatenated with C

Informal idea (not part of the pseudocode)

As in part las , identify the elements in left half that will

more to right half in the sorted array (say K such elements)·

#
.... ·

X N

key observation 1 : If an element in left half stays in the left

half in the sorted away ,
then all elements

smaller than it (i..e .,
to its left) in the left half

also remain in the left half.

=> The unmoved elements in the left half are contiguous .

Informal idea (not part of the pseudocode)

As in part las , identify the elements in left half that will

more to right half in the sorted array (say K such elements)·

#.%..

N
right might

key observation 2: If an element in left half stays in theleft

half in the sorted away ,
then all elements

larger right right
Smaller than it (i. e

.,
to its left) in the half
right

also remain in the t half.
right

=> The unmoved elements in theleft half are contiguous .

Informal idea (not part of the pseudocode)

Thus
, after the initial recursive calls

,
the picture is :

prik--- rms ,
--- Snak

- un

K K

P, - -

P1- S1-- -

Sark
- -

Note : Elements that remain in the left half Cresp, right half

may
need to more to a different position within

that half

Informal idea (not part of the pseudocode)

How to find K ?

prik--- rms ,
--- Snak

- un

K K

find largest number k such that :

smallest element in the largest element in the7

suffix of left half k-prefix of right half

#itprik--. rms,---suk & ,
< Mr but Par Si

- un

K K

Informal idea (not part of the pseudocode)

prik--- rms ,
--- Snak

After finding k ,
do three reversals :

all elements now in the correct half

S but possibly not in the correct positionZ

tprik-- trans---sink prskik--. o --- , S --- Snak

priki-. Prsik M... M

#-.. ,
S

.
-- -Su-#.. S

,
--- Snak

Informal idea (not part of the pseudocode)

We now need to sort Atprik ... in and . S---Suk

Unfortunately ,
we cannot recursively call sort-by-reversal as

that would overshoot our cost budget.

Instead
,
we use the fact that each of the two aways

consists of two sorted parts (one of length K ,
other of length 1-K)

and recursively call marge.

Ipsendo code continued)

muge (1 , R) /
L is a sorted away of size ! /l may not be
R U Is U /I 11 M equal to r]

Step 0 : if 1= 0 and M30 Return R

(bau car) 170 and M=0 return L

1-1 andr= return sorted version of [R) or (RIL) aftervusal
L R

Step 1 : Find K -Per--MS--Sr-k

L R

Step 2 : Do three reversals -Peer--- S1--Sr-k

Step 3 : L := muge -per, lentral) I recursively calling&
R : = mage Dan -1) merge for the sorted

Metrn L concatenated with R
subaways

Cost quarantee :

Let T(n) denote the maximum cost incurred by the Sort-by-reversal

for any input of size
n.

Then
,
T(n) < 2 + (2) + cost of muge

cost of muge (tr) - Cost of muge (1) + Cost of muge(r) +

O (min El , r3)
=> cost of muge

= 0 (nIgn)
since RI1 and KIR

=> TIn) = 0 (nIgn) (can prove by induction).

Correctness : Similar to part (9). T

