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ANNOUNCEMENTS/ REMINDERS

Sign up on Gredescope and Teams (two channels)

In-class quiz on Tuesday (Aug 6t

Attendance : based on tutorial and in-class quizzes

Tutorial quiz will start at 1 : 10 PM (duration : 10 mins)



INTEGER MULTIPLICATION

Grade-school multiplication 1 an2 basic operations

Recursive algorithm (colls) ?

Kanatsuba algorithm (3 calls) !



MERGE SORT

Theorem : For every input away of length n 1
, Mage Sort

performs at most onlogh + On operations.
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MERGE SORT

Theorem : For every input away of length n 1
, Mage Sort

performs at most Gnlogh + On operations.

root

#iginalaway ⑧

Helft · Fight
Work done at level j

1 a ·T . ·T

" i
= it xG(n/t) = Gn

- .................
independent of j

leaves (single-element aways
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THREE GUIDING PRINCIPLES

Worst-case (or adversarial) analysis
- no assumption on where the input comes from

Not too worried about precise constants

-transcend environment dependence
- mathematicallyeasier and no loss in predictive power

Asymptotic analysis
- only large inputs are "interesting"



Fast
N

An algorithm whose worst-case running.
time

algorithm grows polynomially with input size
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VOCABULARY : BIG OH NOTATION

E. g. On logn + Gn

Suppress constant factors and lown-order terms
---

system-dependent irrelevant for large inputs

equate with n log n

The running time is O (logn) "big-oh of nlogn"
"order nlogn"
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VOCABULARY : BIG OH NOTATION

sweet spot forreasoning
about algorithms

course enough to avoid environment-specific details

sharp enough to allow meaningful comparison among algorithms
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QUICK EXAMPLES

Searching for a number in in an away
A of lengtha or

for i : 1 to N

if Atij = u

return TRUE

for i : 1 to r

if Bij = u

return TRUE

Methen FALSE

Running time : O()
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QUICK EXAMPLES

Checking for a duplicate entry in awayA

for i : 1 to r

for je it to r

if Ali] = Alj]
return TRUE

Methen FALSE

Running time : 0 (E
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DEFINING BIG OH
C= 2

2.f(n)

NOTE : O(f(n) is a set of functions"iCorrect : T(n) t 0(f(n))

Common : T(m) = 0 (f(n))
N
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DEFINING BIG OH
C= 2

2.f(n)

Game ! ~First
, you pick c and no

Then
, your opponent picks n.

N

T(n) = 0 (f(n)) if there exist positive constants 2 and no

such that T(n) < c · f(n) for all na no
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Proof : Choose no = 1 and c = artar +... + %
-

might be negative



EXAMPLES

K k- 1

Claim : If Thnl = a + an + - .. + an + 90 ;
k- 1

then T(ul = 0 (nk) .

Proof : Choose no = 1 and c = 19x1 + 19ry1 + ... + 1901



EXAMPLES

K k- 1

Claim : If Thnl = a + an + - .. + an + 90 ;
k- 1

then T(ul = 0 (nk) .

Proof : Choose no = 1 and c = 19x1 + 19ry1 + ... + 1901

Fix an arbitrary n, no



EXAMPLES

K k- 1

Claim : If Thnl = a + an + - .. + an + 90 ;
k- 1

then T(ul = 0 (nk) .

Proof : Choose no = 1 and c = 19x1 + 19ry1 + ... + 1901

Fix an arbitrary n, no

Th < 194/n
*
+ lamn + ... + 19 , 1u + 190)



EXAMPLES

K k- 1

Claim : If Thnl = a + an + - .. + an + 90 ;
k- 1

then T(ul = 0 (nk) .

Proof : Choose no = 1 and c = 19x1 + 19ry1 + ... + 1901

Fix an arbitrary n, no

Th < 194/n
*
+ lamn + ... + 19 , 1u + 190)

-lank + 19/nk + --- + 19, In + 19/u



EXAMPLES

K k- 1

Claim : If Thnl = a + an + - .. + an + 90 ;
k- 1

then T(ul = 0 (nk) .

Proof : Choose no = 1 and c = 19x1 + 19ry1 + ... + 1901

Fix an arbitrary n, no

Th < 194/n
*
+ lamn + ... + 19 , 1u + 190)

-lank + 19/nk + --- + 19, In + 19/u

= c . n?
B
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EXAMPLES

Claim : If Thr = " then Tlul is not O(n
+-1).

Proof : (by contradiction)
Suppose TInl = 0 (n) · Then

, for some positive constants

c and no and for all n T, %o ,

k- 1
T(n) < C . n

.

=> n C .

Contradiction !
F
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BIG OMEGA BIG THETA

f(n)
AT(m) = e (fM)) if there exist - T(n)

positive constantsc and no such that

Thn) , 2. fln)
- "f(n)

for all n,no · 7
c = 14

O(f(n)) = 0 (f(u) 1 f (f(n)) N

3 f(n) 2
= 3

A

T(m) = 0 (fM1) if there exist T(n)

positive constants2, , and no such that
[f(n) 4=1

2 · fin) < Thn) < fin)

for all n,no 7
No

N
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EXAMPLES

& = An , e(n) ,
O(n ?

log n

= m , Um ,
u ?

n2 = O(n) , ul ,
Alm ?

Others : T(n) = 0(f(n) Th = w(f(n) self-reading
"little oh" "little Omega"
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COUNTING INVERSIONS

input : a length n away A of distinct integers

output: the number of inversions of A
I

pains (i , j) of away indices with

< j and Ali] > Alj].
e. g . /13 15/2/4/6

i= 2
, j : 4

# inversions = 3
i= 3

, j= 4
i=3

, j =5
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COUNTING INVERSIONS

input : a length n away A of distinct integers

output: the number of inversions of A
I

pains (i , j) of away indices with

< j and Ali] > Alj].
e. g . /13 15/2/4/6 I 3 524 6

· & ↑ n H & elements
*

# inversions = 3
* n

· & # & H & indices
I 2 3 4 5 6



COUNTING INVERSIONS

Collaborative filtering : Similar uses get similar recommendations
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COUNTING INVERSIONS

Brute force algorithm : check every pair of indias (i , j)

-(n)

Can we do better ?

Yes ! O(nlogn) algorithm via divide-and-conque.
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COUNTING INVERSIONS

call an inversion (i , j) whee icj

left invasion if i
, j < 12

right inversion if i
. j +1/2 /315/2/4/6

split inversion if i < 1 <I all split inversions



COUNTING INVERSIONS

call an inversion (i , j) whee icj

left invasion if i
,jer<

right inversion if i
. j7n/2<

compute these recursively

split inversion if is1 < j < compute these in "combine" step
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HIGH-LEVEL ALGORITHM

input: an
away A ofa distinct integers

output : the number of inversions of A

if n / return O

else 1 : =

recusively count inversions on left half of A

Mi = 11 11 "Right. "

s = count split inversions of A

return 1 + r + S
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:E+ ) -- - (2k/2) - -- (2/

# split inversions =2/4

Possible to compute split inversions in O(n) time ?

suffices for Ohlogn) time overall
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Piggyback on Merge Sort

Suppose A has no split inversion.

Then
, every element in

< every
element in

left half of A right half of A

What does muge subroutine do for such away ?

Concatenation ! #half mighthalf)
join
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What does merge
subroutine do when there are split inversions ?

Consider
merging 3151 and I

Output #13141511
When "2" gets copied in output , the split inversions

(3 , 2) and (512 are exposed.

When "4" gets copied in output , the split inversion

(5, 4) is exposed.



What does merge
subroutine do when there are split inversions ?

Consider
merging 3151 and 461.

Output #2131415161
When "2" gets copied in output , the split inversions

(3 , 2) and (512 are exposed.

When "4" gets copied in output , the split inversion

(5, 4) is exposed.


