
COL 351 : ANALYSIS & DESIGN Of ALGORITHMS

LECTURE 4

DIVIDE CONQUER I :

ASYMPTOTIC NOTATION (CNTD .) AND COUNTING INVERSIONS

JULY 30
,
2024 / RONT VAISH

ANNOUNCEMENTS/ REMINDERS

Sign up on Gredescope and Teams (two channels)

In-class quiz on Tuesday (Aug 6t

Attendance : based on tutorial and in-class quizzes

Tutorial quiz will start at 1 : 10 PM (duration : 10 mins)

INTEGER MULTIPLICATION

Grade-school multiplication 1 an2 basic operations

Recursive algorithm (colls) ?

Kanatsuba algorithm (3 calls) !

MERGE SORT

Theorem : For every input away of length n 1
, Mage Sort

performs at most onlogh + On operations.

MERGE SORT

Theorem : For every input away of length n 1
, Mage Sort

performs at most Gnlogh + On operations.

root

#iginalaway ⑧

Helft · Fight

1 a ·T . ·T

" i

-

leaves (single-element aways

MERGE SORT

Theorem : For every input away of length n 1
, Mage Sort

performs at most Gnlogh + On operations.

root

#iginalaway ⑧

Helft · Fight
Work done at level j

1 a ·T . ·T

" i
= it xG(n/t) = Gn

-
independent of j

leaves (single-element aways

THREE GUIDING PRINCIPLES

Worst-case (or adversarial) analysis

Not too worried about precise constants

Asymptotic analysis

THREE GUIDING PRINCIPLES

Worst-case (or adversarial) analysis
- no assumption on where the input comes from

Not too worried about precise constants

-transcend environment dependence
- mathematicallyeasier and no loss in predictive power

Asymptotic analysis
- only large inputs are "interesting"

Fast
N

An algorithm whose worst-case running.
time

algorithm grows polynomially with input size

VOCABULARY : BIG OH NOTATION

VOCABULARY : BIG OH NOTATION

E. g. On logn + Gn

VOCABULARY : BIG OH NOTATION

E. g. On logn + Gn

Suppress constant factors and lown-order terms

system-dependent irrelevant for large inputs

VOCABULARY : BIG OH NOTATION

E. g. On logn + Gn

Suppress constant factors and lown-order terms

system-dependent irrelevant for large inputs

equate with n log n

VOCABULARY : BIG OH NOTATION

E. g. On logn + Gn

Suppress constant factors and lown-order terms

system-dependent irrelevant for large inputs

equate with n log n

The running time is O (logn) "big-oh of nlogn"
"order nlogn"

VOCABULARY : BIG OH NOTATION

sweet spot forreasoning
about algorithms

VOCABULARY : BIG OH NOTATION

sweet spot forreasoning
about algorithms

course enough to avoid environment-specific details

sharp enough to allow meaningful comparison among algorithms

QUICK EXAMPLES

QUICK EXAMPLES

Searching for a number in in an away A of length n

for i : 1 to r

if Atij = u

return TRUE

Methen FALSE

Running time :?

QUICK EXAMPLES

Searching for a number in in an away A of length n

for i : 1 to r

if Atij = u

return TRUE

Methen FALSE

Running time : O()

QUICK EXAMPLES

Searching for a number in in an away
A of lengtha or

for i : 1 to N

if Atij = u

return TRUE

for i : 1 to r

if Bij = u

return TRUE

Methen FALSE

Running time :?

QUICK EXAMPLES

Searching for a number in in an away
A of lengtha or

for i : 1 to N

if Atij = u

return TRUE

for i : 1 to r

if Bij = u

return TRUE

Methen FALSE

Running time : O()

QUICK EXAMPLES

Checking for a common element in aways
A and B

for i : 1 to r

for je 1 to r

if Ali] = Blj]
return TRUE

Methen FALSE

Running time :?

QUICK EXAMPLES

Checking for a common element in aways
A and B

for i : 1 to r

for je 1 to r

if Ali] = Blj]
return TRUE

Methen FALSE

Running time : 0 (E

QUICK EXAMPLES

Checking for a duplicate entry in awayA

for i : 1 to r

for je it to r

if Ali] = Alj]
return TRUE

Methen FALSE

Running time :?

QUICK EXAMPLES

Checking for a duplicate entry in awayA

for i : 1 to r

for je it to r

if Ali] = Alj]
return TRUE

Methen FALSE

Running time : 0 (E

DEFINING BIG OH

DEFINING BIG OH

2.f(n)
A

Thus is "eventually bounded above"-
T(n)

by a constant multiple of fin). - f(n)

7

N

DEFINING BIG OH

2.f(n)

Thes is "eventually bounded above"
T(n)

by a constant multiple of fin). - f(n)

7

N

T(n) = 0 (f(n)) if there exist positive constants 2 and no

such that T(n) < c · f(n) for all na no

DEFINING BIG OH
C= 2

2.f(n)

- isYetbond
N

T(n) = 0 (f(n)) if there exist positive constants 2 and no

such that T(n) < c · f(n) for all na no

DEFINING BIG OH
C= 2

2.f(n)

NOTE : O(f(n) is a set of functions"i
N

T(n) = 0 (f(n)) if there exist positive constants 2 and no

such that T(n) < c · f(n) for all na no

DEFINING BIG OH
C= 2

2.f(n)

NOTE : O(f(n) is a set of functions"iCorrect : T(n) t 0(f(n))

Common : T(m) = 0 (f(n))
N

T(n) = 0 (f(n)) if there exist positive constants 2 and no

such that T(n) < c · f(n) for all na no

DEFINING BIG OH
C= 2

2.f(n)

Game ! ~First
, you pick c and no

Then
, your opponent picks n.

N

T(n) = 0 (f(n)) if there exist positive constants 2 and no

such that T(n) < c · f(n) for all na no

EXAMPLES

EXAMPLES

K k- 1

Claim : If Thnl = a + an + - .. + an + 90 ;
k- 1

then T(ul = 0 (nk) .

EXAMPLES

K k- 1

Claim : If Thnl = a + an + - .. + an + 90 ;
k- 1

then T(ul = 0 (nk) .

Proof :

EXAMPLES

k- 1

Claim : If til = and + an +... + an + 90 ,
k- 1

then T(ul = 0 (nk) .

C

Proof : Choose no = 1 and c = artar +... + %

EXAMPLES

k- 1

Claim : If til = and + an +... + an + 90 ,
k- 1

then T(ul = 0 (nk) .

Proof : Choose no = 1 and c = artar +... + %
-

might be negative

EXAMPLES

K k- 1

Claim : If Thnl = a + an + - .. + an + 90 ;
k- 1

then T(ul = 0 (nk) .

Proof : Choose no = 1 and c = 19x1 + 19ry1 + ... + 1901

EXAMPLES

K k- 1

Claim : If Thnl = a + an + - .. + an + 90 ;
k- 1

then T(ul = 0 (nk) .

Proof : Choose no = 1 and c = 19x1 + 19ry1 + ... + 1901

Fix an arbitrary n, no

EXAMPLES

K k- 1

Claim : If Thnl = a + an + - .. + an + 90 ;
k- 1

then T(ul = 0 (nk) .

Proof : Choose no = 1 and c = 19x1 + 19ry1 + ... + 1901

Fix an arbitrary n, no

Th < 194/n
*
+ lamn + ... + 19 , 1u + 190)

EXAMPLES

K k- 1

Claim : If Thnl = a + an + - .. + an + 90 ;
k- 1

then T(ul = 0 (nk) .

Proof : Choose no = 1 and c = 19x1 + 19ry1 + ... + 1901

Fix an arbitrary n, no

Th < 194/n
*
+ lamn + ... + 19 , 1u + 190)

-lank + 19/nk + --- + 19, In + 19/u

EXAMPLES

K k- 1

Claim : If Thnl = a + an + - .. + an + 90 ;
k- 1

then T(ul = 0 (nk) .

Proof : Choose no = 1 and c = 19x1 + 19ry1 + ... + 1901

Fix an arbitrary n, no

Th < 194/n
*
+ lamn + ... + 19 , 1u + 190)

-lank + 19/nk + --- + 19, In + 19/u

= c . n?
B

EXAMPLES

Claim : If Thr = " then Tlul is not O(n
+-1).

EXAMPLES

Claim : If Thr = " then Tlul is not O(n
+-1).

Proof : (by contradiction)
Suppose TInl = 0 (n)

EXAMPLES

Claim : If Thr = " then Tlul is not O(n
+-1).

Proof : (by contradiction)
Suppose TInl = 0 (n) · Then

, for some positive constants

c and no and for all n T, %o ,

k- 1
T(n) < C . n

.

EXAMPLES

Claim : If Thr = " then Tlul is not O(n
+-1).

Proof : (by contradiction)
Suppose TInl = 0 (n) · Then

, for some positive constants

c and no and for all n T, %o ,

k- 1
T(n) < C . n

.

=> n C .

EXAMPLES

Claim : If Thr = " then Tlul is not O(n
+-1).

Proof : (by contradiction)
Suppose TInl = 0 (n) · Then

, for some positive constants

c and no and for all n T, %o ,

k- 1
T(n) < C . n

.

=> n C .

Contradiction !
F

BIG OMEGA BIG THETA

-

BIG OMEGA BIG THETA

T(m) = e (fM)) if there exist
positive constantsc and no such that

Thn) , 2. fln)

for all n,no

BIG OMEGA BIG THETA

f(n)
AT(m) = e (fM)) if there exist - T(n)

positive constantsc and no such that

Thn) , 2. fln)
- "f(n)

for all n,no
7

N

BIG OMEGA BIG THETA

f(n)
AT(m) = e (fM)) if there exist - T(n)

positive constantsc and no such that

Thn) , 2. fln)
- "f(n)

for all n,no · 7
c = 14

N

BIG OMEGA BIG THETA

f(n)
AT(m) = e (fM)) if there exist - T(n)

positive constantsc and no such that

Thn) , 2. fln)
- "f(n)

for all n,no · 7
c = 14

T(m) = 0 (fM1) if there exist
positive constants2, , and no such that

2 · fin) < Thn) < fin)

for all n,no

BIG OMEGA BIG THETA

f(n)
AT(m) = e (fM)) if there exist - T(n)

positive constantsc and no such that

Thn) , 2. fln)
- "f(n)

for all n,no · 7
c = 14

N

3 f(n) 2
= 3

A

T(m) = 0 (fM1) if there exist T(n)

positive constants2, , and no such that
[f(n) 4=1

2 · fin) < Thn) < fin)

for all n,no 7
No

N

BIG OMEGA BIG THETA

f(n)
AT(m) = e (fM)) if there exist - T(n)

positive constantsc and no such that

Thn) , 2. fln)
- "f(n)

for all n,no · 7
c = 14

O(f(n)) = 0 (f(u) 1 f (f(n)) N

3 f(n) 2
= 3

A

T(m) = 0 (fM1) if there exist T(n)

positive constants2, , and no such that
[f(n) 4=1

2 · fin) < Thn) < fin)

for all n,no 7
No

N

EXAMPLES

N
-

= O(n)
, e(m) ,

Aln) ?
log n

EXAMPLES

u , em ,
One ?

EXAMPLES

& = An , e(n) ,
O(n ?

log n

= O(m
,
(,
A!T

EXAMPLES

r = An , e(n) ,
O(n ?

= m , Um ,
u ?

EXAMPLES

& = An , e(n) ,
O(n ?

log n

= m , Um ,
u ?

n2 = O(n) ,
e(n) ,

O(n ?

EXAMPLES

& = An , e(n) ,
O(n ?

log n

= m , Um ,
u ?

n2 = O(n) , ul ,
Alm ?

EXAMPLES

& = An , e(n) ,
O(n ?

log n

= m , Um ,
u ?

n2 = O(n) , ul ,
Alm ?

Others : T(n) = 0(f(n) Th = w(f(n) self-reading
"little oh" "little Omega"

SIGACT News Apr-June 1976

MORE DIVIDE I CONQUER

COUNTING INVERSIONS

COUNTING INVERSIONS

input : a length n away A of distinct integers

output: the number of inversions of A

COUNTING INVERSIONS

input : a length n away A of distinct integers

output: the number of inversions of A
I

pains (i , j) of away indices with

< j and Ali] > Alj].

COUNTING INVERSIONS

input : a length n away A of distinct integers

output: the number of inversions of A
I

pains (i , j) of away indices with

< j and Ali] > Alj].
e. g . /13 15/2/4/6

inversions =

COUNTING INVERSIONS

input : a length n away A of distinct integers

output: the number of inversions of A
I

pains (i , j) of away indices with

< j and Ali] > Alj].
e. g . /13 15/2/4/6

i= 2
, j : 4

inversions =

COUNTING INVERSIONS

input : a length n away A of distinct integers

output: the number of inversions of A
I

pains (i , j) of away indices with

< j and Ali] > Alj].
e. g . /13 15/2/4/6

i= 2
, j : 4

inversions =

i= 3
, j= 4

COUNTING INVERSIONS

input : a length n away A of distinct integers

output: the number of inversions of A
I

pains (i , j) of away indices with

< j and Ali] > Alj].
e. g . /13 15/2/4/6

i= 2
, j : 4

inversions =

i= 3
, j= 4

i=3
, j =5

COUNTING INVERSIONS

input : a length n away A of distinct integers

output: the number of inversions of A
I

pains (i , j) of away indices with

< j and Ali] > Alj].
e. g . /13 15/2/4/6

i= 2
, j : 4

inversions = 3
i= 3

, j= 4
i=3

, j =5

COUNTING INVERSIONS

input : a length n away A of distinct integers

output: the number of inversions of A
I

pains (i , j) of away indices with

< j and Ali] > Alj].
e. g . /13 15/2/4/6 I 3 5246

· & # & H & elements

inversions = 3

·

i
·

i
H & indices

I 3 5 6

COUNTING INVERSIONS

input : a length n away A of distinct integers

output: the number of inversions of A
I

pains (i , j) of away indices with

< j and Ali] > Alj].
e. g . /13 15/2/4/6 I 3 5246

· & # & H & elements

inversions = 3

·

i
·

i
H & indices

I 3 5 6

COUNTING INVERSIONS

input : a length n away A of distinct integers

output: the number of inversions of A
I

pains (i , j) of away indices with

< j and Ali] > Alj].
e. g . /13 15/2/4/6 I 3 524 6

· & ↑ n H & elements
*

inversions = 3
* n

· & # & H & indices
I 2 3 4 5 6

COUNTING INVERSIONS

Collaborative filtering : Similar uses get similar recommendations

COUNTING INVERSIONS

Brute force algorithm : check every pair of indias (i , j)

COUNTING INVERSIONS

Brute force algorithm : check every pair of indias (i , j)

-(n)

COUNTING INVERSIONS

Brute force algorithm : check every pair of indias (i , j)

-(n)

Can we do better ?

COUNTING INVERSIONS

Brute force algorithm : check every pair of indias (i , j)

-(n)

Can we do better ?

Yes ! O(nlogn) algorithm via divide-and-conque.

COUNTING INVERSIONS

call an inversion (i , j) whee icj

left invasion if i
, j < 12

right inversion if i
. j +1/2

split inversion if i < 1 <I

COUNTING INVERSIONS

call an inversion (i , j) whee icj

left invasion if i
, j < 1

right inversion if i
. j +1/2 /315/2/4/6

split inversion if <*I

COUNTING INVERSIONS

call an inversion (i , j) whee icj

left invasion if i
, j < 1

right inversion if i
. j +1/2 /315/2/4/6

split inversion if <*I

COUNTING INVERSIONS

call an inversion (i , j) whee icj

left invasion if i
, j < 12

right inversion if i
. j +1/2 /315/2/4/6

split inversion if i < 1 <I all split inversions

COUNTING INVERSIONS

call an inversion (i , j) whee icj

left invasion if i
,jer<

right inversion if i
. j7n/2<

compute these recursively

split inversion if is1 < j < compute these in "combine" step

HIGH-LEVEL ALGORITHM

input: an
away A ofa distinct integers

output : the number of inversions of A

HIGH-LEVEL ALGORITHM

input: an
away A ofa distinct integers

output : the number of inversions of A

if n / return O

HIGH-LEVEL ALGORITHM

input: an
away A ofa distinct integers

output : the number of inversions of A

if n / return O

else 1 : =

recusively count inversions on left half of A

Mi = 11 11 "Right. "

s = count split inversions of A

return 1 + r + S

HIGH-LEVEL ALGORITHM

input: an
away A ofa distinct integers

output : the number of inversions of A

if n / return O

else 1 : =

recusively count inversions on left half of A

Mi = 11 11 "Right. "

s = count split inversions of A

return 1 + r + S

:E+) -- - (2k/2) - -- (2/

split inversions = ?

:E+) -- - (2k/2) - -- (2/

split inversions =2/4

:E+) -- - (2k/2) - -- (2/

split inversions =2/4

Possible to compute split inversions in O(n) time ?

suffices for Ohlogn) time overall

Piggyback on Merge Sort

Piggyback on Merge Sort

Suppose A has no split inversion.

Piggyback on Merge Sort

Suppose A has no split inversion.

Then
, every element in

[every
element in

left half of A right half of A

Piggyback on Merge Sort

Suppose A has no split inversion.

Then
, every element in

< every
element in

left half of A right half of A

What does muge subroutine do for such away ?

Piggyback on Merge Sort

Suppose A has no split inversion.

Then
, every element in

< every
element in

left half of A right half of A

What does muge subroutine do for such away ?

Concatenation ! #half mighthalf)
join

What does merge
subroutine do when there are split inversions ?

What does merge
subroutine do when there are split inversions ?

Consider
merging 3151 and 461.

output. 111

What does merge
subroutine do when there are split inversions ?

Consider
merging 151 and 1 .

Output #111

What does merge
subroutine do when there are split inversions ?

Consider
merging 51 and 1 .

Output #1111

What does merge
subroutine do when there are split inversions ?

Consider
merging 51 and 1.

Output #1111
When "2" gets copied in output , the split inversions

(3 , 2) and (512 are exposed.

What does merge
subroutine do when there are split inversions ?

Consider
merging 1 and 1.

Output #3111I
When "2" gets copied in output , the split inversions

(3 , 2) and (512 are exposed.

What does merge
subroutine do when there are split inversions ?

Consider
merging 1 and

Output #131411I
When "2" gets copied in output , the split inversions

(3 , 2) and (512 are exposed.

When "4" gets copied in output , the split inversion

(5, 4) is exposed.

What does merge
subroutine do when there are split inversions ?

Consider
merging 3151 and I

Output #13141511
When "2" gets copied in output , the split inversions

(3 , 2) and (512 are exposed.

When "4" gets copied in output , the split inversion

(5, 4) is exposed.

What does merge
subroutine do when there are split inversions ?

Consider
merging 3151 and 461.

Output #2131415161
When "2" gets copied in output , the split inversions

(3 , 2) and (512 are exposed.

When "4" gets copied in output , the split inversion

(5, 4) is exposed.

