
COL 351 : ANALYSIS & DESIGN Of ALGORITHMS

LECTURE 39

NIP . COMPLETENESS I : THE CLASS NP

NOV 06, 2024 / RONT VAISH



AN ALGORITHMIC MYSTERY

Minimum Spanning Tree Traveling Salesman Problem



AN ALGORITHMIC MYSTERY

Minimum Spanning Tree Traveling Salesman Problem

input: an undirected graph G = (V , E) input: an undirected graph G = (V , E)

with heal-valued edge cost 2 with heal-valued edge cost 2
for each edge e for each edge e



AN ALGORITHMIC MYSTERY

Minimum Spanning Tree Traveling Salesman Problem

input: an undirected graph G = (V , E) input: an undirected graph G = (V , E)

with heal-valued edge cost 2 with heal-valued edge cost 2
for each edge e for each edge e

output : a spanning tree T with output : a tour T with

minimum total costI minimum total costI



AN ALGORITHMIC MYSTERY

Minimum Spanning Tree Traveling Salesman Problem

input: an undirected graph G = (V , E) input: an undirected graph G = (V , E)

with heal-valued edge cost 2 with heal-valued edge cost 2
for each edge e for each edge e

output : a spanning tree T with output : a tour T with

minimum total costI minimum total costI
search space:

"2

spanning trees in
search space : -1) ! on complete graphs

complete graphs



AN ALGORITHMIC MYSTERY

Minimum Spanning Tree Traveling Salesman Problem

input: an undirected graph G = (V , E) input: an undirected graph G = (V , E)

with heal-valued edge cost 2 with heal-valued edge cost 2
for each edge e for each edge e

output : a spanning tree T with output : a tour T with

minimum total cost [C. minimum total costIeET

search space:
"2

spanning trees in
search space : -1) ! on complete graphs

complete graphs

algorithms : Prim's
,

Kruskel's
, Omlogn) algorithms :



Easy : Problems with poly-time algorithms

Hand : Problems without any polynomial-time algorithm



Easy : Problems with poly-time algorithms

Hand : Problems without any polynomial-time algorithm

because one doesn't exist ? because we have failed to find one?



Easy : Problems with poly-time algorithms Physics

Hand : Problems without any polynomial-time algorithm Chemistry
Economics

Games Biology

because one doesn't exist ? because we have failed to find one?



Easy : Problems with poly-time algorithms Physics

Hand : Problems without any polynomial-time algorithm Chemistry
Economics

Games Biology

because one doesn't exist ? because we have failed to find one?

Conjecture(Edmonds'67]
TSP doesn't have a poly-time algo.



Easy : Problems with poly-time algorithms Physics

Hand : Problems without any polynomial-time algorithm Chemistry
Economics

Games Biology

because one doesn't exist ? because we have failed to find one?

Conjecture(Edmonds'67]
TSP doesn't have a poly-time algo.

Short of a mathematical proof , how to amass evidence of handness ?



Easy : Problems with poly-time algorithms Physics

Hand : Problems without any polynomial-time algorithm Chemistry
Economics

Games Biology

because one doesn't exist ? because we have failed to find one?

Conjecture(Edmonds'67]
TSP doesn't have a poly-time algo.

Short of a mathematical proof , how to amass evidence of handness ?

Relative hardness and reductions !



Source : Galey and Johnson (1979)



BUILDING A CASE WITH REDUCTIONS



BUILDING A CASE WITH REDUCTIONS

* Choose a large class C of computational problems



BUILDING A CASE WITH REDUCTIONS

* Choose a large class C of computational problems reduction

*Show that solving your problem (g . TSP) will solve
all problems in C.



BUILDING A CASE WITH REDUCTIONS

* Choose a large class C of computational problems reduction

*Show that solving your problem (g . TSP) will solve
all problems in C.

Sam --

roblem V

&

E Elem10 , 000



BUILDING A CASE WITH REDUCTIONS

* Choose a large class C of computational problems reduction

*Show that solving your problem (g . TSP) will solve
all problems in C.

=> If TSP is easy ,
then all problems in C are also easy

.



BUILDING A CASE WITH REDUCTIONS

* Choose a large class C of computational problems reduction

*Show that solving your problem (g . TSP) will solve
all problems in C.

=> If TSP is easy ,
then all problems in C are also easy

.

If you are willing to believe that problems in Care "hard",
then you should also believe that TSP is hand.



BUILDING A CASE WITH REDUCTIONS

* Choose a large class C of computational problems reduction

*Show that solving your problem (g . TSP) will solve
all problems in C.

=> If TSP is easy ,
then all problems in C are also easy

.

If you are willing to believe that problems in Care "hard",
then you should also believe that TSP is hand.

Bigge the set C = stronge evidence for TSP's intractability



CHOOSING A CLASS FOR TSP



CHOOSING A CLASS FOR TSP

Why not choose C = ALL computational problems ?



CHOOSING A CLASS FOR TSP

Why not choose C = ALL computational problems ?

Too ambitious ! Includes the HALTING problem.



CHOOSING A CLASS FOR TSP

Why not choose C = ALL computational problems ?

Too ambitious ! Includes the HALTING problem.

"Given a program ,
determine whether it goes into an

infinite loop or eventually halts
.

"



CHOOSING A CLASS FOR TSP

Why not choose C = ALL computational problems ?

Too ambitious ! Includes the HALTING problem.

"Given a program ,
determine whether it goes into an

infinite loop or eventually halts
.

"

(Turing , 1936) HALTING problem is undecidable



CHOOSING A CLASS FOR TSP

Why not choose C = ALL computational problems ?

Too ambitious ! Includes the HALTING problem.

"Given a program ,
determine whether it goes into an

infinite loop or eventually halts
.

"

(Turing , 1936) HALTING problem is undecidable

cannot be solved by a computer in any finite amount of time

(not even exponential ,
or factorial , ... (





* Birth of computer science

* Formulated Turing machines formal model of geneal-purpose computers

* showed undecidability of HALTING problem.



* Birth of computer science

* Formulated Turing machines formal model of geneal-purpose computers

* showed undecidability of HALTING problem.

Thus
, compute scientists have been aware of computers' limitations

literally from Day 1.



CHOOSING A CLASS FOR TSP

Why not choose C = ALL computational problems ?



CHOOSING A CLASS FOR TSP

Why not choose C = ALL computational problems ?

Some problems (e.g ., HALTING) can't reduce to TSp.

because TSP is solvable

in finite time via

exhaustive search



CHOOSING A CLASS FOR TSP

Why not choose C = ALL computational problems ?

Some problems (e.g ., HALTING) can't reduce to TSp.

C = all problems that can be solved by exhaustive search



CHOOSING A CLASS FOR TSP

Why not choose C = ALL computational problems ?

Some problems (e.g ., HALTING) can't reduce to TSp.

C = all problems that can be solved by exhaustive search

The class NP



THREE TYPES OF COMPUTATIONAL PROBLEMS



THREE TYPES OF COMPUTATIONAL PROBLEMS

Decision Problem : Output "Yes" if thee is a feasible solution

and "No" otherwise.



THREE TYPES OF COMPUTATIONAL PROBLEMS

Decision Problem : Output "Yes" if thee is a feasible solution

and "No" otherwise.

eg , is there a ThP ton of cost < 100 ?

no need to actually
produce a tone if one exists



THREE TYPES OF COMPUTATIONAL PROBLEMS

Decision Problem : Output "Yes" if thee is a feasible solution

and "No" otherwise.

eg , is there a ThP ton of cost < 100 ?

Search Problem : Output a feasible solution if one exists,
and "no solution" otherwise



THREE TYPES OF COMPUTATIONAL PROBLEMS

Decision Problem : Output "Yes" if thee is a feasible solution

and "No" otherwise.

eg , is there a ThP ton of cost < 100 ?

Search Problem : Output a feasible solution if one exists,
and "no solution" otherwise

e.g., return any TSP tow of
cost =100

, if one exists.



THREE TYPES OF COMPUTATIONAL PROBLEMS

Decision Problem : Output "Yes" if thee is a feasible solution

and "No" otherwise.

eg , is there a ThP ton of cost < 100 ?

Search Problem : Output a feasible solution if one exists,
and "no solution" otherwise

e.g., return any TSP tow of
cost =100

, if one exists.

Optimization Problem : Output a feasible solution with best-possible

objective function value (or "no solution" if none exist)



THREE TYPES OF COMPUTATIONAL PROBLEMS

Decision Problem : Output "Yes" if thee is a feasible solution

and "No" otherwise.

eg , is there a ThP ton of cost < 100 ?

Search Problem : Output a feasible solution if one exists,
and "no solution" otherwise

e.g., return any TSP tow of
cost =100

, if one exists.

Optimization Problem : Output a feasible solution with best-possible

objective function value (or "no solution" if none exist)

e. g., return the min cost TSP tow



THREE TYPES OF COMPUTATIONAL PROBLEMS

Decision Problem : Output "Yes" if thee is a feasible solution

and "No" otherwise.

Search Problem : Output a feasible solution if one exists,
and "no solution" otherwise

Optimization Problem : Output a feasible solution with best-possible

objective function value (or "no solution" if none exist)



THREE TYPES OF COMPUTATIONAL PROBLEMS

Decision Problem : Output "Yes" if thee is a feasible solution

and "No" otherwise.

Search Problem : Output a feasible solution if one exists,
and "no solution" otherwise

Optimization Problem : Output a feasible solution with best-possible

objective function value (or "no solution" if none exist)

NOTE :

every optimization has a natural search version.

e.g ., TSP tom with cost 1100
,

Knapsack solution with value >100 , etc.



THREE TYPES OF COMPUTATIONAL PROBLEMS

Decision Problem : Output "Yes" if thee is a feasible solution

and "No" otherwise.

Search Problem : Output a feasible solution if one exists,
and "no solution" otherwise

Optimization Problem : Output a feasible solution with best-possible

objective function value (or "no solution" if none exist)

Search reduces to optimization : easy ! (Exercise)



THREE TYPES OF COMPUTATIONAL PROBLEMS

Decision Problem : Output "Yes" if thee is a feasible solution

and "No" otherwise.

Search Problem : Output a feasible solution if one exists,
and "no solution" otherwise

Optimization Problem : Output a feasible solution with best-possible

objective function value (or "no solution" if none exist)

Search reduces to optimization : easy ! (Exercise)

Optimization reduces to search : via binary search (Exucis)



THREE TYPES OF COMPUTATIONAL PROBLEMS

Decision Problem : Output "Yes" if thee is a feasible solution

and "No" otherwise.

Search Problem : Output a feasible solution if one exists,

I and "no solution" otherwise

Optimization Problem : Output a feasible solution with best-possible

objective function value (or "no solution" if none exist)



THREE TYPES OF COMPUTATIONAL PROBLEMS

Decision Problem : Output "Yes" if thee is a feasible solution

and "No" otherwise.

Search Problem : Output a feasible solution if one exists,

I and "no solution" otherwise

Optimization Problem : Output a feasible solution with best-possible

objective function value (or "no solution" if none exist)

NP : commonly defined for decision problems

We will define it for search problems



THREE TYPES OF COMPUTATIONAL PROBLEMS

Decision Problem : Output "Yes" if thee is a feasible solution

and "No" otherwise.

Search Problem : Output a feasible solution if one exists,

I and "no solution" otherwise

Optimization Problem : Output a feasible solution with best-possible

objective function value (or "no solution" if none exist)

NP : commonly defined for decision problems

We will define it for search problems

technically , functional NP (FNP)



THE CLASS NP



THE CLASS NP

Recall our goal : To define the class of problems solvable

via exhaustive search.



THE CLASS NP

Recall our goal : To define the class of problems solvable

via exhaustive search.

What are the minimal ingredients necessary to solve a

problem via naive exhaustive search ?



THE CLASS NP

Efficient recognition of alleged solutions.



THE CLASS NP

Efficient recognition of alleged solutions.

e. g.



THE CLASS NP

Efficient recognition of alleged solutions.

e. g, checking whether V-V
- Yos- It

...
-> V5

is a valid TSP tone of cost <100.



THE CLASS NP

A search problem belongs to the complexity class NP if

S



THE CLASS NP

A search problem belongs to the complexity class NP if

① For every instance of the problem , every
candidate solution

has description length (in bits) bounded above by a polynomial
function of the input size.



THE CLASS NP

A search problem belongs to the complexity class NP if

① For every instance of the problem , every
candidate solution

has description length (in bits) bounded above by a polynomial
function of the input size.

e.g ., any sequence of vertica is of polynomial size



THE CLASS NP

A search problem belongs to the complexity class NP if

① For every instance of the problem , every
candidate solution

has description length (in bits) bounded above by a polynomial
function of the input size.

e.g ., any sequence of vertica is of polynomial size

② For every instance and every candidate solution
,
the feasibility

of the solution can be confirmed or denied in time

polynomial in the input size.



THE CLASS NP

A search problem belongs to the complexity class NP if

① For every instance of the problem , every
candidate solution

has description length (in bits) bounded above by a polynomial
function of the input size.

e.g ., any sequence of vertica is of polynomial size

② For every instance and every candidate solution
,
the feasibility

of the solution can be confirmed or denied in time

polynomial in the input size.
e.g ., checking validity of a sequence of vetex possible in poly time



THE CLASS NP

A search problem belongs to the complexity class NP if

it can be solved by a

Nondeterministic Turing machine in Polynomial time.-



THE CLASS NP

A search problem belongs to the complexity class NP if

it can be solved by a

Nondeterministic Turing machine in Polynomial time.-

NP Not Polynomial



EXAMPLES OF PROBLEMS IN NP



EXAMPLES OF PROBLEMS IN NP

① Search version of TSP



EXAMPLES OF PROBLEMS IN NP

① Search version of TSP

input : An undirected graph G = (v, E) with edge costs &CYeeE

output : Return a tow with cost It if one exists

report "no solution" otherwise



EXAMPLES OF PROBLEMS IN NP

① Search version of TSP

input : An undirected graph G = (v, E) with edge costs &CYeeE

output : Return a tow with cost It if one exists

report "no solution" otherwise

Why in NP ?



EXAMPLES OF PROBLEMS IN NP

① Search version of TSP

input : An undirected graph G = (v, E) with edge costs &CYeeE

output : Return a tow with cost It if one exists

report "no solution" otherwise

Why in NP ?

* Any sequence onn vertices can be described using O(nlogn) bits.



EXAMPLES OF PROBLEMS IN NP

① Search version of TSP

input : An undirected graph G = (v, E) with edge costs &CYeeE

output : Return a tow with cost It if one exists

report "no solution" otherwise

Why in NP ?

* Any sequence onn vertices can be described using O(nlogn) bits.

A checking whether a given sequence of vertices is a valid tour

and has cost can be done in polynomial time



EXAMPLES OF PROBLEMS IN NP

② Search vision of MST



EXAMPLES OF PROBLEMS IN NP

② Search vision of MST

input : An undirected graph G = (v, E) with edge costs &CYeeE

output : Return a spanning tree with cost It if one exists
If

report "no solution otherwise



EXAMPLES OF PROBLEMS IN NP

② Search vision of MST

input : An undirected graph G = (v, E) with edge costs &CYeeE

output : Return a spanning tree with cost &t if one exists

report "no solution otherwise

Why in NP ?



EXAMPLES OF PROBLEMS IN NP

② Search vision of MST

input : An undirected graph G = (v, E) with edge costs &CYeeE

output : Return a spanning tree with cost &t if one exists

report "no solution otherwise

Why in NP ?

* Any subgraph onn vertices can be described using Olign + mlogm) bits.



EXAMPLES OF PROBLEMS IN NP

② Search vision of MST

input : An undirected graph G = (v, E) with edge costs &CYeeE

output : Return a spanning tree with cost &t if one exists

report "no solution otherwise

Why in NP ?

* Any subgraph onn vertices can be described using Olign + mlogm) bits.

A checking whether a given subgraph is a valid spanning tree

and has cost can be done in polynomial time



EXAMPLES OF PROBLEMS IN NP

③ Search version of sequence alignment



EXAMPLES OF PROBLEMS IN NP

③ Search version of sequence alignment
input : Two strings X and Y , gap penaltygap ,

Mismatch penaltyLay
output : Return an alignment with cost It if one exists

report "no solution" otherwise



EXAMPLES OF PROBLEMS IN NP

③ Search version of sequence alignment
input : Two strings X and Y , gap penaltygap ,

Mismatch penaltyLay
output : Return an alignment with cost It if one exists

report "no solution" otherwise

Why in NP ?

* Any alleged alignment can be described using O (n +m) bits.

A checking whether a given pair of strings constitute a valid alignment
and has cost can be done in polynomial time


