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Problem Algorithm Running time

Sorting Mege Sort OCnlogn)
strongly Connected Components Kosanaju 0(n +m)

Shortest Paths Dijkstra 0((m+n) logn)
Minimum Spanning Tree Kruskal O(mlegn)
Sequence Alignment Needleman-Wunsch O(mn)

All Pairs Shortest Paths Floyd-Warshall O(n)
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Applications Traveling Salesman Problem

A sequenced processing of tasks input: an undirected graph G = (V , E)

* genome reconstruction
with heal-valued edge cost 2

* many more !
for each edge e

output : a tour T with
Fact

minimum total costI
No known fast (i . e., poly time)

search space : -1) ! on complete graphs
algorithm for TSP

(despite decades of effort) algorithms :
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* LongestPaths * Protein Folding * Rubik's cabe

* Number Partitioning A BooleanSatisfiability * ---

How can we build a compelling case that the conjecture is true ?

RELATIVE INTRACTABILITY
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A problem with no polynomial-time algorithm ?

because there isn't one ? Or because we haven't found one yet ?

seems intimidating we'll never admit to this !
to prove this

Can we collect circumstantial

evidence to justify this ?
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Weak evidence of hardness

A poly-time algorithm for Traveling Salesman Problem would solve

a problem that has resisted the efforts of thousands of

brilliant minds ove many decades.

strong evidence of hardness

A poly-time algorithm for Traveling Salesman Problem would solve

thousands of problems that have resisted the efforts of tens of

thousands of brilliant minds our many decades.
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BUILDING A CASE WITH REDUCTIONS

* Choose a large class C of computational problems
*Show that solving your problem (g . TSP) will solve

all problems in C.

A Therefore , your problem must also be out of reach.

If any one problem in C is proven to be not poly-time solvable,

then so is TSP ·

Bigge the set C = stronge evidence for TSP's intractability


