
COL 351 : ANALYSIS & DESIGN Of ALGORITHMS

LECTURE 38

NIP . COMPLETENESS I : INTRODUCTION

NOV 05, 2024 / RONT VAISH



STORY SO FAR



STORY SO FAR

Problem Algorithm Running time

Sorting Mege Sort OCnlogn)
strongly Connected Components Kosanaju 0(n +m)

Shortest Paths Dijkstra 0((m+n) logn)
Minimum Spanning Tree Kruskal O(mlegn)
Sequence Alignment Needleman-Wunsch O(mn)

All Pairs Shortest Paths Floyd-Warshall O(n)



AN ALGORITHMIC MYSTERY



AN ALGORITHMIC MYSTERY

Minimum Spanning Tree



AN ALGORITHMIC MYSTERY

Minimum Spanning Tree

input: an undirected graph G = (V , E)

with heal-valued edge cost 2
for each edge e



AN ALGORITHMIC MYSTERY

Minimum Spanning Tree

input: an undirected graph G = (V , E)

with heal-valued edge cost 2
for each edge e

output : a spanning tree T with

minimum total cost [C.
eET



AN ALGORITHMIC MYSTERY

Minimum Spanning Tree

input: an undirected graph G = (V , E)

with heal-valued edge cost 2
for each edge e

output : a spanning tree T with

minimum total costI
search space:

"2

spanning trees in
complete graphs



AN ALGORITHMIC MYSTERY

Minimum Spanning Tree

input: an undirected graph G = (V , E)

with heal-valued edge cost 2
for each edge e

output : a spanning tree T with

minimum total costI
search space:

"2

spanning trees in
complete graphs

algorithms : Prim's
,

Kruskel's
, Omlogn)



AN ALGORITHMIC MYSTERY

Minimum Spanning Tree Traveling Salesman Problem

input: an undirected graph G = (V , E)

with heal-valued edge cost 2
for each edge e

output : a spanning tree T with

minimum total costI
search space:

"2

spanning trees in
complete graphs

algorithms : Prim's
,

Kruskel's
, Omlogn)



AN ALGORITHMIC MYSTERY

Minimum Spanning Tree Traveling Salesman Problem

input: an undirected graph G = (V , E) input: an undirected graph G = (V , E)

with heal-valued edge cost 2 with heal-valued edge cost 2
for each edge e for each edge e

output : a spanning tree T with

minimum total costI
search space:

"2

spanning trees in
complete graphs

algorithms : Prim's
,

Kruskel's
, Omlogn)



AN ALGORITHMIC MYSTERY

Minimum Spanning Tree Traveling Salesman Problem

input: an undirected graph G = (V , E) input: an undirected graph G = (V , E)

with heal-valued edge cost 2 with heal-valued edge cost 2
for each edge e for each edge e

output : a spanning tree T with output : a tour T with

minimum total cost [C. minimum total costIeET

search space:
"2

spanning trees in
complete graphs

algorithms : Prim's
,

Kruskel's
, Omlogn)



AN ALGORITHMIC MYSTERY

Minimum Spanning Tree Traveling Salesman Problem

input: an undirected graph G = (V , E) input: an undirected graph G = (V , E)

with heal-valued edge cost 2 with heal-valued edge cost 2
for each edge e for each edge e

output : a spanning tree T with output : a tour T with

minimum total cost [C. minimum total costIeET

search space:
"2

spanning trees in
complete graphs

algorithms : Prim's
,

Kruskel's
, Omlogn)



AN ALGORITHMIC MYSTERY

Minimum Spanning Tree Traveling Salesman Problem

input: an undirected graph G = (V , E) input: an undirected graph G = (V , E)

with heal-valued edge cost 2 with heal-valued edge cost 2
for each edge e for each edge e

output : a spanning tree T with output : a tour T with

minimum total cost [C. minimum total costIeET

search space:
"2

spanning trees in
-

complete graphs

algorithms : Prim's
,

Kruskel's
, Omlogn) 4



AN ALGORITHMIC MYSTERY

Minimum Spanning Tree Traveling Salesman Problem

input: an undirected graph G = (V , E) input: an undirected graph G = (V , E)

with heal-valued edge cost 2 with heal-valued edge cost 2
for each edge e for each edge e

output : a spanning tree T with output : a tour T with

minimum total cost [C. minimum total costIeET

search space:
"2

spanning trees in
-

complete graphs
L

algorithms : Prim's
,

Kruskel's
, Omlogn) 4



AN ALGORITHMIC MYSTERY

Minimum Spanning Tree Traveling Salesman Problem

input: an undirected graph G = (V , E) input: an undirected graph G = (V , E)

with heal-valued edge cost 2 with heal-valued edge cost 2
for each edge e for each edge e

output : a spanning tree T with output : a tour T with

minimum total cost [C. minimum total costIeET

search space:
"2

spanning trees in
search space :?

complete graphs

algorithms : Prim's
,

Kruskel's
, Omlogn)



AN ALGORITHMIC MYSTERY

Minimum Spanning Tree Traveling Salesman Problem

input: an undirected graph G = (V , E) input: an undirected graph G = (V , E)

with heal-valued edge cost 2 with heal-valued edge cost 2
for each edge e for each edge e

output : a spanning tree T with output : a tour T with

minimum total cost [C. minimum total costIeET

search space:
"2

spanning trees in
search space : -1) ! on complete graphs

complete graphs

algorithms : Prim's
,

Kruskel's
, Omlogn)



AN ALGORITHMIC MYSTERY

Minimum Spanning Tree Traveling Salesman Problem

input: an undirected graph G = (V , E) input: an undirected graph G = (V , E)

with heal-valued edge cost 2 with heal-valued edge cost 2
for each edge e for each edge e

output : a spanning tree T with output : a tour T with

minimum total cost [C. minimum total costIeET

search space:
"2

spanning trees in
search space : -1) ! on complete graphs

complete graphs

algorithms : Prim's
,

Kruskel's
, Omlogn) algorithms :



AN ALGORITHMIC MYSTERY

Applications Traveling Salesman Problem

A sequenced processing of tasks input: an undirected graph G = (V , E)

* genome reconstruction
with heal-valued edge cost 2

* many more !
for each edge e

output : a tour T with

minimum total costI
search space : -1) ! on complete graphs

algorithms :



AN ALGORITHMIC MYSTERY

Applications Traveling Salesman Problem

A sequenced processing of tasks input: an undirected graph G = (V , E)

* genome reconstruction
with heal-valued edge cost 2

* many more !
for each edge e

output : a tour T with
Fact

minimum total costI
No known fast (i . e., poly time)

search space : -1) ! on complete graphs
algorithm for TSP

(despite decades of effort) algorithms :



Source : Galey and Johnson (1979)



Source : Galey and Johnson (1979)



good = polynomial-time



So far , we haven't managed to prove Edmonds' conjecture.



So far , we haven't managed to prove Edmonds' conjecture.

We have identified thousands of "TSP-like" problems :

* Graph coloring * Intege Programming * Ising Models

* LongestPaths * Protein Folding * Rubik's cabe

* Number Partitioning A Boolean Satisfiability + ---



So far , we haven't managed to prove Edmonds' conjecture.

We have identified thousands of "TSP-like" problems :

* Graph coloring * Intege Programming * Ising Models

* LongestPaths * Protein Folding * Rubik's cabe

* Number Partitioning A BooleanSatisfiability * ---

How can we build a compelling case that the conjecture is true ?



So far , we haven't managed to prove Edmonds' conjecture.

We have identified thousands of "TSP-like" problems :

* Graph coloring * Intege Programming * Ising Models

* LongestPaths * Protein Folding * Rubik's cabe

* Number Partitioning A BooleanSatisfiability * ---

How can we build a compelling case that the conjecture is true ?

RELATIVE INTRACTABILITY



Source : Galey and Johnson (1979)



EASY PROBLEM



EASY PROBLEM

A problem is polynomial-time solvable if there is a

polynomial-time algorithm that correctly solves it on all inputs.



EASY PROBLEM

Equivalently :

A problem is polynomial-time solvable if there is an

algorithm for which the solvable input size (for a fixed time budget)
scales multiplicatively with increasing computational power.



EASY PROBLEM

Equivalently :

A problem is polynomial-time solvable if there is an

algorithm for which the solvable input size (for a fixed time budget)
scales multiplicatively with increasing computational power.

xi0h 2
14
12

10

&

6

"on
O 5 10 15 20



EASY PROBLEM

Equivalently :

A problem is polynomial-time solvable if there is an

algorithm for which the solvable input size (for a fixed time budget)
scales multiplicatively with increasing computational power.
4

X10 2 Fix time budget. Double compute power.
14
12

10

&

6

"on
O 5 10 15 20



EASY PROBLEM

Equivalently :

A problem is polynomial-time solvable if there is an

algorithm for which the solvable input size (for a fixed time budget)
scales multiplicatively with increasing computational power.
4

X10 2 Fix time budget. Double compute power.
14
12 Before After
10

& 100n
?

6

"on 2
O 5 10 15 20



EASY PROBLEM

Equivalently :

A problem is polynomial-time solvable if there is an

algorithm for which the solvable input size (for a fixed time budget)
scales multiplicatively with increasing computational power.
4

X10 2 Fix time budget. Double compute power.
14
12 Before After
10

& on t 1
,
000

,
000 ?

6

H"on 2

O 5 10 15 20



EASY PROBLEM

Equivalently :

A problem is polynomial-time solvable if there is an

algorithm for which the solvable input size (for a fixed time budget)
scales multiplicatively with increasing computational power.
4

X10 2" Fix time budget. Double compute power.
14
12 Before After
10

& 100n
t

1
,
000

,
000 1

,
414

,
23

6

H"on 2

O 5 10 15 20



EASY PROBLEM

Equivalently :

A problem is polynomial-time solvable if there is an

algorithm for which the solvable input size (for a fixed time budget)
scales multiplicatively with increasing computational power.
4

X10 2 Fix time budget. Double compute power.
14
12 Before After
10

& 100n
t

1
,
000

,
000 1

,
414

,
23

6

H"No 2 1, 000
,
000 ?

O 5 10 15



EASY PROBLEM

Equivalently :

A problem is polynomial-time solvable if there is an

algorithm for which the solvable input size (for a fixed time budget)
scales multiplicatively with increasing computational power.
4

X10 2" Fix time budget. Double compute power.
14
12 Before After
10

& 100n
t

1
,
000

,
000 1

,
414

,
23

6

H"No 2 1. 000
,
000 1

,
000

,
00 1

O 5 10 15



HARD PROBLEM



HARD PROBLEM

A problem with no polynomial-time algorithm ?



HARD PROBLEM

A problem with no polynomial-time algorithm ?

because there isn't one ? Or because we haven't found one yet ?



HARD PROBLEM

A problem with no polynomial-time algorithm ?

because there isn't one ? Or because we haven't found one yet ?

we'll never admit to this !



HARD PROBLEM

A problem with no polynomial-time algorithm ?

because there isn't one ? Or because we haven't found one yet ?

seems intimidating we'll never admit to this !
to prove this



HARD PROBLEM

A problem with no polynomial-time algorithm ?

because there isn't one ? Or because we haven't found one yet ?

seems intimidating we'll never admit to this !
to prove this

Can we collect circumstantial

evidence to justify this ?



HARD PROBLEM

Weak evidence of hardness

strong evidence of hardness



HARD PROBLEM

Weak evidence of hardness

A poly-time algorithm for Traveling Salesman Problem would solve

a problem that has resisted the efforts of thousands of

brilliant minds ove many decades.

strong evidence of hardness



HARD PROBLEM

Weak evidence of hardness

A poly-time algorithm for Traveling Salesman Problem would solve

a problem that has resisted the efforts of thousands of

brilliant minds ove many decades.

strong evidence of hardness

A poly-time algorithm for Traveling Salesman Problem would solve

thousands of problems that have resisted the efforts of tens of

thousands of brilliant minds our many decades.



BUILDING A CASE WITH REDUCTIONS



BUILDING A CASE WITH REDUCTIONS

* Choose a large class C of computational problems



BUILDING A CASE WITH REDUCTIONS

* Choose a large class C of computational problems

*Show that solving your problem (g . TSP) will solve
all problems in C.



BUILDING A CASE WITH REDUCTIONS

* Choose a large class C of computational problems

*Show that solving your problem (g . TSP) will solve
all problems in C.

A Therefore , your problem must also be out of reach.



BUILDING A CASE WITH REDUCTIONS

* Choose a large class C of computational problems

NP-hand

*Show that solving your problem (g . TSP) will solve
all problems in C.

Reduction

A Therefore , your problem must also be out of reach.



BUILDING A CASE WITH REDUCTIONS

* Choose a large class C of computational problems
*Show that solving your problem (g . TSP) will solve

all problems in C.

A Therefore , your problem must also be out of reach.



BUILDING A CASE WITH REDUCTIONS

* Choose a large class C of computational problems
*Show that solving your problem (g . TSP) will solve

all problems in C.

A Therefore , your problem must also be out of reach.

If any one problem in C is proven to be not poly-time solvable,

then so is TSP ·



BUILDING A CASE WITH REDUCTIONS

* Choose a large class C of computational problems
*Show that solving your problem (g . TSP) will solve

all problems in C.

A Therefore , your problem must also be out of reach.

If any one problem in C is proven to be not poly-time solvable,

then so is TSP ·

Bigge the set C = stronge evidence for TSP's intractability


