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Goal : compute (sit) - cut (A , B) minimizing Ieh
Recall : (S. t)-minimum cut problem reduces to max flow in linear time.
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Application in image segmentation (Additional reading)
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BIPARTITE MATCHING

input : an undirected bipartite graph V W

P = (v vw , E) .

goal : a maximum cardinality matching
subset of edges
with no shared endpoints
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NOTE : every (sit) flow path includes exactly
one edge of given bipartite graph
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Claim : Bipartite matching reduces to maximum flow in linear time.
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and Edmonds-Karp
cap = 1 each cap = 1 each

Bipartite matching <> Integral Flow (Cheek ! )
size of matching = value of flow
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assume WOLOG /VI = IW/ (ie.
,
shorter side is on the left).
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Perfect matching : all vertices in V are matched.
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Imbalanced Vertex sets

Does this graph have a perfect matching ? No !
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Constricting set

Hall's theorem : Constricting sets are the only obstacle to perfect matchings.
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E) with IvlIWI has a
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Claim : Every (t) cut has capacity IVI . V

Proof : Fix any It)-atB)tLet v : = v n A.

Then
,
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the claim follows) ta

=> capacity of (A , B) < (V-1V + /NIVs) IV

by Hall's condition.
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