

```
Allen MINIMUM CUT PROBLEM
```


MINIMUM CUT PROBLEM $\widehat{\mathsf{F}}$ 100 β \mathcal{A} 100 \mathcal{S} 100 $\overline{\omega}$ Goal: compute (s,t) -cut (A, B) minimizing $\sum_{e \in \zeta(A)} u_e$

MINIMUM CUT PROBLEM p $1/100$ B ں
ا S 1 100 t A .
A 100 l
L \overline{w} Application in image segmentation (Additional reading)

3. HALL's THEOREM

neighbor set $N(S)$ \curvearrowright

Contractor Contractor Add the property of the control of the contract of the contract of the the control of the control of the control of

V W W W W W W Perfect matching : all vutices in V are matched.

vw Does this graph have ^a perfect matching ?

vw Does this graph have ^a perfect matching ?

vw Does this graph have ^a perfect matching ? No .

vw Does this graph have ^a perfect matching ? No .

 $N(S)$ $|N(s)| < |s|$ Does this graph have a perfect matching? No

 $N(S)$ $|N(s)| < |s|$ Constricting set Does this graph have a perfect matching? No

V W W W W W W $N(S)$ S $|N(s)| < |s|$ Constricting set Hall's theogem: Constricting sets are the only obstacle to perfect matchings.

HALL's THEOREM A bipartite graph $G = (V \cup W, E)$ with $|V| \leq |W|$ has a left-perfect matching if and only if $\# S \subseteq V$, IN(s) $\ge |S|$. $Proof : \left(\Leftarrow \right)$ Reduction to max flow. ${\sf V}$ with ${\sf W}$

HALL's THEOREM A bipartite graph $G = (V \cup W, E)$ with $|V| \leq |W|$ has a left-perfect matching if and only if $\# S \subseteq V$, $|N(s)| \ge |S|$. $Proof : \left(\Leftarrow \right)$ Reduction to max flow. ${\sf V}$ with ${\sf W}$ \mathcal{S}

HALL's THEOREM A bipartite graph $G = (V \cup W, E)$ with $|V| \leq |W|$ has a left-perfect matching if and only if $\# S \subseteq V$, $|N(s)| \ge |S|$. $Proof : \left(\Leftarrow \right)$ Reduction to max flow. ${\sf V}$ with ${\sf W}$ $7 - 7$ $rac{1}{\sqrt{2}}$ (S) \blacktriangleright $\frac{1}{\sqrt{t}}$ $\overbrace{ }$ &

HALL's THEOREM A bipartite graph $G = (V \cup W, E)$ with $|V| \leq |W|$ has a left-perfect matching if and only if $\# S \subseteq V$, IN(s) $\ge |S|$. $Proof : \left(\Leftarrow \right)$ Reduction to max flow. ${\sf V}$ with ${\sf W}$ $T \qquad \qquad 1$ 1 170 (S) \blacktriangleright $\frac{1}{1}$ 1 ^T 1 $\overline{\alpha} \longrightarrow \alpha'$ & .
⊦∞

HALL's THEOREM A bipartite graph $G = (V \cup W, E)$ with $|V| \leq |W|$ has a left-perfect matching if and only if $\forall S \subseteq V$, $|N(s)| \ge |S|$. $Proof : (\Leftarrow) *Reduction* $+$ *max* $+$ *flow*$ V W 7° 1° 1 170 $S \sum_{i}$ \blacktriangleright $\begin{array}{c}\n1 \\
1 \\
1\n\end{array}$ 1 TV and 7 1 $\overline{\alpha} \longrightarrow \alpha'$ & .
4∞

HALL'S THEOREM A bipartite graph $G = (V \cup W, E)$ with $|V| \leq |W|$ has a left-perfect matching if and only if $\#$ SEV, IN(s) 7/sl. Proof (=) Reduction to max flow Claim: Every (s.t) cut has capacity 7 1vl. (\mathcal{S}^{\cdot})

HALL'S THEOREM Claim: Every (S.t) cut has capacity 7 1 Priof Fix any (s.t)-cut (A, B). $\begin{array}{c} \mathsf{v} \\ \mathsf{v} \end{array} = \mathsf{v} \quad \mathsf{v} \quad \mathsf{A}$ \mathcal{S}

HALL'S THEOREM Claim: Every (S.t) cut has capacity 7 1 Priof Fix any (s.t)-cut (A, B). $\mathbf{V} = \mathbf{V} \cdot \mathbf{A}$ \mathcal{S}

HALL'S THEOREM Claim (Every (S.t) cut has capacity z 1v Priof Fix any (s.t)-cut (A, B) $ket W == W \cap A$ S Then, $N(V') \subseteq A$ (Otherwise, capacity of A is too and

HALL's THEOREM Claim : Every (S.t) cut has capacity 7 1V Proof : Fix any (s,t) -cut (A) $L(X \cap Any \in (S, t) = out.$

Let $V := V \cap A$ ALL'S THEOREM
Copainty 7 11 A
B). Then , $\mathsf{N}(V') \subseteq \mathsf{A}$ & Otherwise, capacity of A is too and $\overline{\mathcal{B}}$ & the claim follows). \Rightarrow capacity of (A, B) 7

HALL'S THEOREM Claim: Every (S.t) cut has capacity 7 1 $Prinf$: Fix any (s,t) -cut (A, B) . $ket W := V$ A (S) \mathbb{F} Then, $N(V') \subseteq A$ (Otherloise, capacity of A $int \alpha + \alpha$ and => capacity of (A, B) : 7 | VI - IV'I edges from S $\frac{1}{2}$ $\sqrt{1 + \frac{1}{2}}$

HALL'S THEOREM Claim: Every (S.t) cut has capacity 7 1 $Privf = Fix$ any $(s,t) - cut$ (A, B) . het $V = V$ $= V$ \cap A . $\left(\mathcal{S}\right)$ \mathbb{F} Then, $N(V') \subseteq A$ (Otherwise, capacity of A $is + \infty$ and $+m$ \Rightarrow capacity of (A, B) z $|V| - |V'| + |N(V)|$ edges from S edges from N(V) $\frac{1}{2}$ $+$ $+$

HALL's THEOREM Claim : Every (S.t) cut has capacity 7 1V Proof : Fix any (s,t) -cut (A) Ext any $(S,t) = cut$

Let $V := V \cap A$ ALL'S THEOREM
Copainty 7 11 A
B). $Them, N(V') \subseteq A$ & $(0$ therwise, capacity of A is too and $\overline{\mathcal{B}}$ & the claim follows) \Rightarrow capacity of (A, B) \vee /V|-1V'| + |N(V)| \vee

