· · ·	· · ·	••••	Co		35		, ,	ANA	LYS	15 I	\$	•	De	516	4N	0	F	A	L G (ORI	T	ms		•••	•	· ·	
																							• •	• •		• •	
										• •									• •								
																			• •					• •			
• • •	• •				• •			<mark>-</mark> -	F	Ci	T١) V	E	~2	5				• •	• •	• •	•	• •	• •		• •	
• • •	• •	• •		• •	• •	• •			- 0		1		-0		.				• •	• •	• •		• •	• •	•	• •	
• • •	• •		• • •		• •					• •		• •		• •					• •	• •	• •	•	• •	• •	•	• •	
• • •	• •		• • •					• • •				• •		• •					• •	• •	• •		• •	• •			
									6	Э.,			4														
										χŲ	1Z	_	4														
• • •	• •																		• •	• •			• •	• •		• •	
• • •	• •		• • •		• •	• •		• • •		• •		• •		• •					• •	• •	• •		• •	• •	•	• •	
• • •	• •	• •		• •	• •	• •				• •	• •	• •		• •					• •	• •	• •		• •	• •	٠	• •	
• • •	• •	• •	• • •	• •	• •	• •				• •	• •	• •		• •					• •	• •	• •	٠	• •	• •	•	• •	
• • •			• • •					• • •		• •				• •						• •	• •		• •	• •			
					A .														• •								
					() r ·	Te	0	20:	n 4 ·							0 H	TI	► .	VA	H	CF	1.					
	• •				vu	· · Z	-1/		-7.					• •		. [1					. J.	6.	• •	• •		• •	
• • •	• •		• • •		• •	• •				• •				• •	• •	• •			• •	• •	• •		• •	• •		• •	

Consider the following greedy algorithm for the maximum flow problem.

ALGORITHM 1: GREEDY FLOW **Input:** Directed graph G = (V, E), edge capacities $\{u_e\}_{e \in E}$, source $s \in V$, destination $t \in V$. **Output:** A flow f. 1 For every $e \in E$, initialize $f_e = 0$. 2 while there is a path from s to t in G do $P \leftarrow$ an arbitrary path from s to t in G 3 $\Delta \leftarrow \min_{e \in P} u_e$ // minimum capacity of any edge in P4 for every edge e in P do 5 $f_e \leftarrow f_e + \Delta$ 6 if $u_e = \Delta$ then 7 remove e from Gelse $u_e \leftarrow u_e - \Delta$ 1011 return f

Show that GREEDY FLOW fails to compute even a good approximation to the maximum flow even on unit-capacity networks. That is, for any constant $\alpha > 1$, show that there is a flow network G where $u_e = 1$ for every edge $e \in E$ such that the value of the maximum flow is more than α times the value of the flow computed by GREEDY FLOW.

	* $\beta = \lceil \alpha \rceil + 1$
	* unit capacities
	· · · · · · · · · · · · · · · · · · ·
Juz - VA	
	(t)
UB YB	
	· · · · · · · · · · · · · · · · · · ·

· ·	GREEDY FL in the f	inst ite	hation 7	to sind	a flow	vf 1 hn	ìt.	· · · · · · · ·	· · · · · ·
¥	Aftu this	step,	there	is no	(s,t) (oath left,	so the	algo. t	uminatus
¥	The max				: Send	flow alo	ng s-	$\rightarrow u_{i} \rightarrow v$	i→t
· ·	for i e		,β].	· · · · · · · ·	 		· · · · · · · ·		· · · · · · ·
***	for i e Thus,				. flow	returned	by GR	LEEDY PL	0 W .

•	•	•	•	•	•	•	· · ·	•	•	•	•	•	•	• •		• •	•	•	· · ·	F	ר ר			en		2		•	•	•	•	•	· · ·	•	· · · · ·	•	•	•	•	•	· · ·	-	•	•	•	•	· · ·	•	•
•	•	•	•	•	•	•	· · ·		•	•	•	•	•	• •		• •	•	•	· · ·	•		• • • •	•	•	•	•	· · ·	•	•	•	•	•	· · ·	•	•	•	•	•	•	•	· · ·	•	•	•	• • • •		· ·	•	•
0 0 0	L a	et nc) 	A,		8) J A	an l',	d (<i>B</i>	$(A \cap$	', 1	B' ')) l ar	ce	m al	ir sc	nir o r	nı ni	ın ni	n (m	s,ur	t) n	-c	$\operatorname{uts}_{t,t}$	s i)-(n s cu	so: ts	me in	e fl G	OW	, 7 n	let	W(orl	. (Ţ.	P	ro	ve	tł	1a'	t (A	∩∡	4′,	, B	}∪	B')	•
•	•	•	•		•	:	• •	•	•	•	•		•	• •					••••		•	•	•	•	•	•		•	•	•	•	•	• •	•	•	•	•	•	•			•	•	•	•	•	••••	•	•
•		•	•	•	•		• •	•	•	•	•		•	• •					• •	•	•	•	•	•	•	•		•	•	•	•	•	• •	•	•	0	•	•		•		•	•				• •		
•	•	•	•	•	•	•	· · ·	•	•	•	•	•	•	• • •		• •	•	•	· · ·	•	•	•	•	•	•	•	· · ·	•	•	•	•	•	· · ·	•	•	•	•	•	•	•	· · ·		•	•	•	•	· · ·	•	•
•						•							•	· · · · · · · · · · · · · · · · · · ·						•	· · · ·	• • • • • •	•		•					• • • • • • •	•					• • • • • • •			•			•		•	•	•			

We will use the max flow - min out theorem.
Considu any max flow f in the network G (well-defined
Considu any max flow f in the network G (well-defined because a feasible flow always exists).
Since (A, B) is a minimum (s,t) cut, we have that:
value of $f = capacity of (A, B)$.
\Rightarrow (A, B) is a tight cut
\Rightarrow every edge $e \in S^{+}(A)$ is saturated (i.e., $Ue = fe$), and
" $E \in (A)$ " Zeroed out (i.e., $fe = 0$). (1)
Same observation holds for the (s,t) cut (A', B')

Consider the (s,t)-cnt (AUA', BNB')	
Consider any edge e= (U, V) E St (AUA	
Job Then, UEAVA' and VEBNB'	
• • • • $(1 + (2) \Rightarrow any such edge is saturate$	d.
B B' Similarly, consider any edge $e = (u, v) \in \mathcal{E}(\mathcal{A} v)$	
Thun, UEBAB' and UEAVA'.	
Again, by $(1 + (2) \Rightarrow any such edge is zeroed out$	
We know that ' value of $f = \sum fe - \sum fe = Capavity of the est(AvA') est(AvA') (s.t) cut (AvA', the est(AvA')) (s.t) cut (s$	ie Rodin
$e \in S^{T}(A \cup A')$ $e \in S(A \cup A')$ (sit) cut (AUA, I) \implies (AUA', B(1B') must be a minimum (s,t)-cut.	BAB)

Consider the (s,t)-cnt (ANA', BUB'). From (): We get that any edge e & S(ANÁ) going into B must be saturated. **S** • **E** We get that any edge e e S (An Á) going into B' must be saturated. Frim (2) B Thus, any edge e & (AnA') going into BVB' must be saturated. Similarly, any edge CES (ANA') coming from BVB' must be zeroed out It follows that (ANA', BUB') is a minimum (s,t)-cnt. Ø