· · · · · · · · ·	COL 351 :	ANALYSIS	& DESIG	N OF	ALGORITHMS	
		<mark>.</mark>				
				3		
		NETWOR	K FLOW			
			· · · · · · · · ·			
	· · · · · · · · · · ·					
	indiana ana ama <mark>EDI</mark>	10 N DS - K	ARP ALG	ORITH	M	
	· · · · · · · · · · ·					
				DAIL	- WALCH	
	UC 1 25	, 2029		Ko NI		

						• •						• •					•						•				• •			• •							· ·		
								ſ	•					٢	•				_								•	•	-		. .								
								٢	6	R	D		•	F	V		Κł	: R	2,	0	Ν		. f	\ L	. 6	0.	٠K		Н	M	1.								
														•	-				-	-					. '														
	•			•		• •				•	•	• •				•	• •					•	• •				• •			• •			• •	•					
			•	•	•					•	•	• •			•	•	•					•	• •			•	• •						• •				• •		
											•																										• •		
	•			•	•	• •				•	•	• •			•	•	•					•	• •				• •						• •				• •		*
				•						•	•					•							• •				• •			• •			• •				• •		•
	•			•	•	• •				•	•	• •	•		•	•	•		•			•	• •				• •			• •		•	• •			•	• •		•
				•							•					•							•				•			•			• •			•			•
	•			•	•	• •				•	•	• •				•	•					•	• •				• •			• •			• •			•	• •		•
				•						•	•					•	•				•	•	• •				• •			• •			• •			•			•
				•		• •				•	•	• •					•					•	• •				• •			• •			• •						•
																											• •									•			
						• •																	• •																

FORD - FULKERSON ALGORITHM
(1) initialize $f_e = 0 \forall e$
(2) nepeat:
* search for an s-t path P in Gf
such that every edge in P has positive nesidual capacity
/ possible in O(E1) time via BFS/DFS
* if no such path, networn current flow {fe}eEE
$*$ else, let $\Delta := \min_{e \in P} e's$ residual capacity in G_f
for all eEG with forward edges in P, add A to fe.
for all eEG with herease edges in P, subtract Δ from fe

•	· ·	•	•	•	•	· · ·		•	•	•	•	F	- C) 	۲]	D	-			-1	U	L	K	E	R	י 2 י י	20) 	J	•		À	L	9	0	R	CI	T	H	1	1	•	•	•	•	•	•	•	•	•	•	•	•	•	•
•	· ·	•	F		ب	ĺ	nt	-e (<u>}</u>	ol	•	Ċ	a	P P		it	ńe	ፈ)		•	•	•	•	•	•	•		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
•	· · ·	•	Fi	, לי <i>ך</i> ע) -)	· ·	Fu	Ų	1.e	۱۱	'n	•		te	ΛI	n	ìr	10	tı	25	•	•	¦γ	٦	0	f	ìn	11	te	0 0 1 0	· · · -	łi	'n	e	•	•	ן וני	1	Ň		י ג י	•	V	a)	li <i>i</i>	J	•	f	10	5).	•	•	•	•
																			•																						•	•													
	• •	•			•	• •							•		•		•		•		•	•			•	•					•			•		•		•	•		•	•		•			•		•	•			•		•
																																										•													
	• •														•																																				•	•	•		•
	• •			•		• •							•		•	•					•	•									•			•	•	•	•	•	•		•			•		•	•		•	•	•	•	•	•	•
•	• •					• •								•	•	•					•	•			•						•	•		•	•	•	•	•	•	•				•	•	•	•	•	•	•	•	•	•	•	•
•	• •			•		• •					•	•	•		•		•		•		•	•			•	•			•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•					•	•
•	• •				•	• •					•	•							•																						•												•		•
										•																									•																				

· · ·	•	• •	•	•	· ·	•	•	•	· ·	F	- 0 1	R	D	•		FL	ı ١	K	E	R	32)	1	•	À	L¢	ή C) R	17	T٢	11	1	•	•	•	• •	· ·	•	•	•	• •	· ·	•
· ·	•	· ·	F09		i l	nt	eg	}-0	J	Ċ,	aþ	α. α.	it	ies	· · ·		•	•	•	•	•	· ·		•	•	· ·	•	• •	•	•	•		•	•	•	• •		•	•	•	• •		•
• •	•	F	- Ό\	d -	· ·	Fu	U¢.	er ('or	\ \	4	er	mi	na	xti	25	•	iv	1	ſ	fìr	nî	te	•	łi	me)	ŀ	371	h	0	٦	ľ	10-	li d		f	40	5		• •	· · ·	•
· · ·	•	••••	•	•	· ·	•		٦.		•	4	· ·	•				Je	•	•			· · ·		•	•	· · ·			•	Pt_		- - - - - -	•	•	•	· ·	· ·	•	•	•	· ·	· ·	•
• •	•	• •	•		· ·	•	•			•	U U	12	. (J	7	ירן ו י	بلار بلار	۱ .	⊁ 	10-	fh	λn	•	A	. Y 	na	ι Χ . 		11	ы С		•	•	•	• •	· ·	•	•	•			•
•••	0	• •	•	•	· ·	•	•	•	• •	•	•	•••	•	•	• •	•	•	•	•	•	• •	•••	•	•	•	· ·	•	• •	•	•	• •	•	•	•	•	• •	· ·	•	•	•	•••	· ·	•
	•	• •	•	•	· ·	•	•	•	· ·	•	•	• •	0	•	• •		•	•	•	•	• •	• •		•	0	· ·	•	• •	•	0	• •		•	•	0	• •	· ·	•	•	•	0 0	· ·	•
· ·	•	• •	•	•	•••	•	•	•		•	•	••••	•	•	• •	•	•	•	•	•	• •	• •		•	•	•••	•		•	•	• •		•	•	•	• •		•	•	•	• •		•

FORD - FULKERSON ALGORITHM	· · · · · · · · · · · ·
For integral capacities,	
Ford-Fulkerson terminates in finite time with a valid	l flow.
Does the algorithm heturn a max flow?	. .
HOW DO WE KNOW WHEN WE ARE DONE?	. .

A general he	OPTIMALITY CONDITIONS ecipe	
(1) (Structure)	Identify "optimality conditions".	
(2) (Algorithm)	Design an algorithm that terminates	
	with the optimality conditions satisfied.	

OPTIMALITY CONDITIONS A general heripe (1) (Structure) Identify "optimality conditions". Claim: If Gf has no s-t path, then f is a max flow in G 2 (Algorithm) Design an algorithm that terminates with the optimality conditions satisfied. Ford-Fulkerson algorithm

	OPTIMALITY CONDITIONS FOR MAX FLOW
Theorem :	For a flow f in a graph G, the following are equivalent:
(0)	f is a maximum flow of G
(b)	thue exists an (s,t) - cut (A,B) such that
	value of $f = Capacity of (A, B)$.
(C)	thue is no (s,t) path in the residual graph Gf.

OPTIMALITY CONDITIONS FOR MAX FLOW Theorem: For a flow f in a graph G, the following are equivalent: (a) f is a maximum flow of G (b) there exists an (s,t) - cut (A,B) such that Value of f = Capacity of (A, B). (C) there is no (s,t) path in the nesidual graph G_f. $(b) \Longrightarrow (a)$

•	•	•	•	•	•		•	•	•	•	•	•		1 4 -	T	ie	q	H	T	<u>'</u>	•) (<u>S</u> ,	ť	;) ;	-	r C	C C	י ר י				7	•	ľ	1	4)	(F	=L	.0 .0	h h		•	•	•	•	•	•	•	•	• •		•	•	•
•	•	S	ι i	f	fi	C	he	h 1	ť	•	ł	0	•	2	n D N	W	, ,	ł	h	at		. <	f	י ר לו	L	, (ev V	U U	y J		ft	0F		ſ	•	A	n M	d	•	ev	יפר שר	y) 	s,	t)	-		ju.	t		<u>A</u> ,	B)	:	0	•
•	•	•	•	•	•		•	•	•	•	•	•	•	•	•	V	al	, M	e	•	0. 0.	F	•		F	•	. V /	5	•	Ċ	200	þ	در ا	i fi	y J		of	· (A	, 	3) (0	•	•	•	•	•	•	•		• •		0	0	•
•	•	•	•	•	•		•	•	•	•	•	•	•	•	•			•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•				•	•	•
•	•		•	•	•		•	•	•	•	•	•		•						•	•	•	•	•	•	•	•	•	•		•	•		•	•	•	•	•	•	•	•	•	•	•		•	•		•	•	•			•	•	•
•	•	•	•	•	•		•	•	•	•	•	•	•	•	•			•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	• •		•	•	
•	•	•	•	•	•		•	•	•	•	•	•	•	•	•			•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•		•			• •		•	•	•
•	•	•	•	•	•		•	•	•	•	•	•	•					•	•	•	•	•	•	•	•	•	•	•		•		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•					•	
•	•	•	•	•	•		•	•	•	•	•	•	•	•			2	•	•	•	•	•	•	•	•	0	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	• •		•	•	
•	•	•	•	•	•		•	•	•	•	•	•	•	•	•		2	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	• •		•	•	
	•		•	•	•		•	•	•	•	•	•					2	•			•	•	•	•	•	•	•							•	•	•	•	•	•	•	•		•	•	•		•	•	•	0	0	• •		•	•	•
			•																		•		•		•		•	•		•			•		•		•				•						•	•		•						

· ·	•	•	•	•	· ·	•	•	•	•		T](G	H	T	'/	((s	, t	;) ;	-	י כ נ	Ŭ	7 7			₹	•	2	14	X	· ·	Fl	-0	h	.	•	· · ·			•	•	•	•	•	· ·	•	•
 	S	s Giu S	ff	iC	ie,	ηt.	•	+ +	0. 0.	د کے ا	sha cha)))	Ħ	no	t	•	ſ	י ער ער	ι. ι	e	יא פיער נ	י שע ג (1	f	tor	י א א	f	•	0 Q1	n nd	· ·	e 9	י אפי נ	y) (s Ş,	t)	-	Ċ	ut) (A A	; 6	s)	•	•	•
· ·	•	•	•	•	· ·	•	•	•	•	•	•	℃	al	M	و	()-f	· ·	. .	f	•				Cø Cø	٦þ	٥	+i)	ſ	0-	f	(#	+ 	B)		•	•	· ·	· ·		•	•	•	•	•	· ·		•
• •	•	•	•	•	• •		•	•	•	•	•	•	•	• •	· ·	· ·	•	•	•	•	•	•	•	•	•	• •		•	•	•	•	•••	•	•	•	•	•	• •			•	0	•	•	•	•••	•	•
•••	•	•	•	•	••••	•	•	•	Č))	•	×	•	X	· ·	· ·	\rightarrow		•	0 0	X	•	•	•	Ð	• •	0	•	•)))	• •	-€))	•	$\stackrel{\circ}{\rightarrow}$	-+	-0	0		0	•	•	•	•	•••	•	•
· ·	•	0	•	0	••••	•	•	•	•	•	•	•	f	lov	2		50	Im	لا	•	•	•	•	•	•	C	ut		C A	po	Li	tie	2	•	•	•		••••			0	•	•	•		•••	•	•
• •	•	•	•	•	• •		•	•	•	•	•	•	•	• •			•	•		•		•	•	•		••••		•				• •		•	•		•	••••			•	•		•	•	0 0		
	•	•	•	•	• •	•	•	•	•	•	•	•					•	•		•	•	•	•	•	•	• •		•	•	•	•	•••	•	•	•	•	•	• •			•	•	•	•			•	•
	•				• •		•	•																		• •								•				• •			•							
	•	•	•		• •		•	•	•				•						•	•	•	•	•	•	•			•	•			· ·	•	•	•	•		• •			•	•	•	•			•	•

"TIGHT" (s,t) - CUT - MAX FLOW Sufficient to show that for every flow f and every (s,t) - cut (A, B) value of $f \leq capacity of (A, B)$ Proof: value of $f = \sum_{v \in A} \left(\sum_{e \in S^{\dagger}(v)} f_{e} - \sum_{e \in S(v)} f_{e} \right)$ $= \sum fe -$ Z fe ees(A) ees(A) $\overline{Z_{10}}$ ≤ 2 fe $\leq \sum_{i} u_e = capacity of$ $e \in S^{\dagger}(A)$ $e \in S^{\dagger}(A)$ cut (A, B).

OPTIMALITY CONDITIONS FOR MAX FLOW Theorem: For a flow f in a graph G, the following are equivalent: (a) f is a maximum flow of G (b) there exists an (s,t) - cut (A,B) such that value of f = Capacity of (A, B). (C) thue is no (s,t) path in the residual graph Gr $(A) \implies (C)$

OPTIMALITY CONDITIONS FOR MAX FLOW Theorem: For a flow f in a graph G, the following are equivalent: (a) f is a maximum flow of G (b) there exists an (s,t) - cut (A,B) such that value of f = capacity of (A, B). (C) thue is no (s,t) path in the residual graph Gf (A) \implies (c) Proof by Ford Falkerson

OPTIMALITY CONDITIONS FOR MAX FLOW Theorem: For a flow f in a graph G, the following are equivalent: (a) f is a maximum flow of G (b) there exists an (s,t) - cut (A,B) such that Value of f = capacity of (A, B). (C) thue is no (s,t) path in the necidual graph Gf $(c) \implies (b)$

	No (s,t) PATH IN G _f =	⇒ "TIGHT" CUT
Define	A := { ve v : thue is a	n $s \sim v$ path in G_f
Then,	$(A, V \setminus A)$ is an $(s,t) - cui$	t.
		(s / t)
· · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	A = A + A + A + A + A + A + A + A + A +
· · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·
· · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·
· · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·
· · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·

No (s,t) PATH IN G _f ⇒ "TIGHT" CUT
Define A := { vev : thue is an smv path in Gf }
Then, $(A, V \setminus A)$ is an (s,t) - cut.
(s / t)
In the underlying graph G: A V\A
* Every edge $e \in S'(A)$ is saturated (i.e., $u_e = fe$).
* Every edge $e \in S(A)$ is zeroed out (i.e., $f_e = 0$).

No (s,t) PATH IN $G_f \Rightarrow$ "TIGHT" CUT
Define A := { vev : thue is an smv path in Gf }
Then, $(A, V \setminus A)$ is an (s,t) - cut.
(s / t)
In the underlying graph G: A V\A
* Every edge $e \in S^{\dagger}(A)$ is saturated (i.e., $u_e = f_e$).
* Every edge $e \in S(A)$ is zeroed out (i.e., $f_e = 0$).
\rightarrow (A u) (A) is a light of
= 7 (R, V(R)) LS (A TIGNI CUI).

	• •					• •				• •			• •		• •			• •				• •			• •					•		• •				
•	• •		•		1	70-	n,	M	N I	17	ГÚ	•	° ° -	• i I		17	10	N	Ć	•	Ċ	50	1	Ń.	i i	p '	Ċ	Ċ	<u>.</u>	8	•	• •		•		•
	• •		•		. (J 1	III	₹V	11		1		ιι			11	IX	7	2		Π	YK.	. · I	- V	ሻጆ		Γ	Ц	W	•	•			•		•
•	•					• •	•			• •		•			• •			• •				• •									•			•		•
	• •		•							• •			• •		• •			• •				• •			• •						•	• •		•		
	• •									• •			• •		• •			• •				• •														
	• •																					• •														
	• •																					• •														
										• •					• •							• •														
	• •																					• •														
	• •																					• •														
																						• •														
															• 1							• •														
															. (୍ଭ																				
													·	à	. 1	$\mathbf{\tilde{1}}$	~ \		1 .			• •														
													. 1	V'V	/ .	1	<u>\</u> -	<u>کې</u> ک	± .			• •														
														/		/•.	À	.)	$\langle \cdot \rangle$			• •														
												. /	\sim		· [- \		Ľ	\frown																
												- (S)) 1,	- ·			ł ·	· (• •	+																
												. \	Ľ	્રા	ועי			•		Ľ	/.	• •														
														$\sum_{i=1}^{n}$	- f		-/		1																	
														1	· · ·			./.				• •														
														1	$\langle \cdot \rangle_{i}$	$\langle \lambda \rangle$, · /	<u>/ 1</u>	0.0).																
															<u> </u>		$\langle \cdot \rangle$					• •														
															· (19	• •)					• •														
																V).					• •														
																						• •														

						• •					• •							•						•					• •					• •								
					*	•	ſ	10.	Π	M	Ň		1	ΓÚ	1	C	5	İ.	1	Ť	1 4	<u>.</u>	j C	•	Ć		0	. 1	N I	Ń	e ' .	C	: Ì 4	N					•	•		•
		•		•	•	• •	V	/1	11	r	m	L		1	•	Ľ	V	N	ν	(1.4	J	42		- F	V	ĸ	•	· V	17		Г	U	9	N	•	•		•	• •		•
					•	• •		•		•	• •	•					•	•		•			•	•					• •	•		•	•	• •					•	• •	•	•
				•	•	• •				•	• •						•	•					•	•					• •				•	• •		•			•	• •		
						• •					•						•	•						•					• •					• •					•			•
					•	• •					• •						•	•		•			•	•					• •			•	•	• •		•			•	• •		•
					•	• •					• •						•	•					•	•				•	• •				•	• •					•	• •		•
					•						• •						•	•					•	•									•	• •					•			•
					•						• •						•	•					•	•				•					•	• •					•			•
				•	•	• •					• •						•	•					•	•					• •				•	• •					•	• •		
					•	• •					• •						•	•					•	•					• •					• •					•	• •		•
					•						• •							•	1	-			•	•										• •					•			
					•						• •							•	. (୍ୟ			•	•										• •					•			
					•						• •						١٥	n '	1	<u> </u>	- ^\	<u>`</u>	1	115										• •					•			
											• •					1	10	.v /	/ .	1	<u>\</u> -	\	<u>م</u>	6															•			
																-(2),	/	- 1	/ ` .	-\		$\langle \rangle$																•			
															•		$\langle \cdot \rangle$		- [·		- \			4	<u></u> .														•			
															- (S	•)	10	<u> </u>	ſ	5	ł	•	(+	;)																	
															. `	Ē	/	10	У [.		~	-			ر																	
											• •						. \	× -	· ł		-/		•7	٦.	<u>к</u>				• •													
																	• 1	۰Ż)	· ·		./	/.	.C	Ч.																	
																	. 1	in	λ_{i}	\ .[k.	/-	10	0																		
											• •							(2)	4		$\langle \cdot \rangle$			•					• •													
																		•	- (19	-)			•																		
											• •							•	`	Ľ	٦			•					• •													
											• •							•						•					• •													

OPTIMALITY CONDITIONS FOR MAX FLOW 00 1(1) (2)S t 100 β 100 (1)

OPTIMALITY CONDITIONS FOR MAX FLOW wrated : Sa-00 1(1) (2)S t 100 100 (1)

OPTIMALITY CONDITIONS FOR MAX FLOW wated : Sa-00 1 (1) S t 100 100 (1)

OPTIMALITY CONDITIONS FOR MAX FLOW : saturated 00 1 (1) S t $\ge (A, B)$ is a tight cut 100 (1)

OPTIMALITY CONDITIONS FOR MAX FLOW (A): saturated 00 1(1) t S \Rightarrow (A, B) is a tight cut 100 (1) > max flow

•	•	•	• •	•	•	•	•	•	•	•	•	•	•	Ņ	1/	A 7	X	-	F	L	.0	W	ĺ	•	1	1		J -	C	U U	Τ	•	T	Ĥ	Ē) 	E	۲		•	•	•	•	•	•	•	•	• •		•	•
•	•	G	ת 0	0	U	2U (y	- - 	•	•	Fo	r r	•		Zv	દ્ય	J	•	n	eł	- h		rl	C	,	•	•	• •	• •	•	•	•	•	•	•	•	· ·	•	•	•	•	•	•	•	•	•		••••	• • • •	•	•
•	•	ŕ	n	017 7	X i	m	U	m	•		s p	lı	٨Ĉ		0. 0.	F	-) ው	•	f	ło	i h	j J				۰ ۲۲	ir	'n	m	N 1	m	- (CA	þ	ас ас	it	y	C	¥	•	QY	ì) (<u>s</u> ,	t) -	- C	'ut	-	•
•	•	•	• •	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•				•	•			• •			•	•	•	•	•	•	• •	•	•	•	•	•	•	•	•	•	•			•	•
	•		• •		•	•	•	•	•	•	•		•	•	•	•	•		•	•			•									•	•		•	•	• •			•	•	•	•	•	•	•				•	
																							•					•								•							•	•		•					
•	•		• •			•	•	•	•	•	•	•	•	•	•	•	•	•	•	•		•	•		•	•		•				•			•	•	• •		•	•	•	•	•	•	•	•	•			•	•
	•													•		•	•											•							•		• •						•	•	•	•	•				
•	•	•	• •	•			•		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•				•			•	•	• •	•		•	•	•	•	•	•	•	•	• •		•	
			• •						•		•	•		•		•	•		•				•		•			•							•	•	• •				•		•	•	•	•	•	• •			
•		•	• •								•	•						•		•	•	•	•	•	•	•	•	•									• •			•				•		•					
																																													•						

MAX- FLOW MIN-CUT THEOREM Corollary: For every network, maximum value of a flow = minimum capacity of an (s,t)-cut flow volves Cut capacities

· · · · · · · · · · · · · · ·	MAX- FLOW	MIN-CUT T	HEOREM	
Corollary :	For every network	<pre></pre>		
maximum	value of a flow	= minimum	capacity of an	(s,t)-cut
, in the second s	<u> </u>) 0 0 0	$\rightarrow +\infty$	· · · · · · · · ·
· · · · · · · · · · · · · · · ·	flow volues	cut capacit	Hes	
Corollary (of	Corollary) Given be re	a maximum f covered in (łow, a minimum) (IEI) time.	cut can
. .				

MAX- FLOW MIN-CUT THEOREM	· · · · · · · · · ·
Corollary: For every network,	
maximum value of a flow = minimum capacity of an (s	s,t)-cut
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	· · · · · · · · · ·
flow volves cut capacities	
Corollary (of Corollary): Given a maximum flow, a minimum be recovered in O(IEI) time.	cut can
Proof: Do BFS/DFS from S, construct the set A of neachable	ventices.
Then, $(A, V \setminus A)$ is a min cut.	酒

	· · · · · · · · · · · ·											A X A X A A A A A A A A A A A A		F				۲	11	N •	- C.	JΤ		TH	E	R	E					· · · · · · · · · · · · · · · · · · ·					
																																			• •		
•	•	• •	•	•	· ·	 •	0	n	tl	1e	h	ist	to	ry	0	f (cc (ti	om 11	bi 19	ina 96	ato 0)	or	ial	0	\mathbf{pt}	in	niz	za	ti	or	ı	· ·	•	•	••••	•	•
•	•	• •			• •																											• •			• •		
•	•	• •	0	•	0 0	0										Ale	exa	nde	r S	$^{\mathrm{chr}}$	ijve	r^1										• •	•	•	• •	•	•
•	•	• •			• •		• •			•	•	• •		• •	•	•	• •					•	• •	• •		• •			• •			• •		•	• •		•
		• •		•	• •		• •				•	• •		•		•	• •	• •			• •	•	• •	• •		• •		•	• •			• •		•	• •		
	0	• •			• •							0 0		• •			0 0				• •			• •		•		•	• •			• •			• •		
		• •					• •				•			• •		•								• •		• •			• •						• •		
•		• •		•	• •		• •				•	• •		•		•	• •	• •			• •	•	• •	• •		• •		•	• •			• •	•	•	• •		
•		• •		•	• •		• •					• •	٠	• •		•							• •	• •		• •			• •			• •			• •		
								Ċ										• •																			

MAX- FLOW MIN-CUT THEOREM

MAX- FLOW MIN-CUT THEOREM

MAX- FLOW MIN-CUT THEOREM

					•								•	• •														•	1.1	1			•	
							0			 -					<u>.</u>			·			•	÷	•											
							Ďľ	A C	'k		10).	ŀ	Ò	R 1	D -	-	ł	-1	IL	.K	. E	K,	S	۸C	. .					 			
													. •								•										 			
																				•					• •					•			•	
																				•					• •					•			•	
																				•					• •					•			•	

•	•	•	•	•	•	•	•	•	•	•	•	•	•		B	A	CI	K	•	-	T	ר כ ר	•		R)	20) -		P	V	L	k	E	R	S	⊃ ∧	J	•	•	•	•	• •		•	•	•	•	•	• •	•
•	•		*	•	Ŕ	Le Le	Co Co	al	l	•	•	•	•	•	f	•	י בו נ		1	n	a;	¢	4	fo	i hi	· · ·	Ę		> >	• •	n		(<u> </u>	S, 4	t)		po	H	۰ ۲	∙Îv	1	, , , ,	Ĵ	F	•	•	•	•	•	· ·	•
•	•	•	•	•	•	•	•	•	•	•	•			₽ ₹	•	F	- - - - - - - - - - - - - - - - - - -	יע ערל י	J.	•	F	in l	k	الع	(ר ה ה	•	2í	•	. (205	У ,	و ر ^ح	t	•	•	· ·	•	•	•	•	•			•	•	•	•	•	· ·	•
•	0	•	•	•	•	•	•	•	0	0	•	•	0	•	•	•	•	•	0	•	0	•	0	•	•	•	•	•	•	• •	• •	0	•	0	•	•	••••	•	•	•	•	•			•	•	•	•	•	• •	•
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	0	•	0	•	•	•	0	•	•	• •		•	•	•	0	•	• •	•	•	0	•	•	• •		•	0		•		• •	
•	•	•	•	•	•	•	•	•	•	•	•	•	0	•	•	•		•	•	0	•	•	•	•	•	•	•	•	•	• •	· ·	•	•	•	•	•	· ·	•	•	•	•	•				•	•	•	•		
•	•	•	•	•	•	•	•	•	•	•	•	•	0	•	•	•	•	•	0	0	•	•	•	•	•	•	•	•	•	• •		•	•	•	•	•	· ·	•	•	•	•	•	 		•	•	•	•	•	· ·	•
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	• •	· ·	•	•	•	•	•	· ·	•	•	•	•	•			•	•	•	•	•	· ·	•
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	• •	• •	•	0	0	0	•	• •	•	•	0	•	•	• •		•	•	•	•	•	• •	•
•	•	•	•			•	•		•	•			•									•			•	•			•						•		• •		•	•					•	•	•	•	•		

· · · · ·		B	ACK	To Pr	drd - Pu	LKERSON		
****	Recall	:. f	n 2í	nax floh	$i \Leftrightarrow ni$	o (s.t)-path	in Gf	· · · · · · · · · ·
· · · · ·			Ford-	Fulkerion	n is Co	mect	· · · · · · · · · ·	
***	Running	time	0+	Ford - Fu	Ukuson :	Pseudo polyno	mial (Tu	torial 11)
· · · · ·	· · · · · · · ·	· · · · · ·	· · · · ·	· · · · · · ·	nuntime	depends on	lle (not	log ye)
								~
						· · · · · · · · · · · ·	· · · · · · · · ·	· · · · · · · · · ·
 			· · · · ·	 			· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·	
 			 		.			

	BACK	To Fol	rd - Fulkel	r son	
* Reca	ent : Li s	max flow	<⇒ no (s,t	,)-path in	G _f
· · · · · · · · · · · ·	🔿 For	d-Fulkusion	is connect	· · · · · · · · · · ·	
* Runn	ing time of	Ford - Ful	kuson: Pseud	o polynomial	(Tutonial 11)
. 	· ·		runtime ayen	ds on Ue	(not log 4e)
Ke	eps choosing	essentially	useless paths	s over and	ባለፍ
· · · · · · · · · · ·	· · · · · · · · · · · · · ·			· · · · · · · · · · ·	

BACK TO FORD-FULKERSON
* Recall : f is max flow \iff no (s,t) -path in G_f
⇒ Ford-Fulkuson is Connect
* Running time of Ford-Fulkuson: Pseudopolynomial (Tutorial 11)
nuntime depends on lle (not log lle)
keeps choosing "essentially useless" paths over and over
Choose s-t paths intelligently

	BACK TO FORD-FULKERSON	
* Recall	f is max flow \iff no (s,t) -path in G_f	· · ·
	=> Ford-Fulkuson is connect	· · · ·
* Running	time of Ford-Fulkuson: Pseudopolynomial (Tutorial 1	1)
	runtime depends on lle (not log lle	-) (
· · · · · · · · · · · · · · · · · ·		
E X E FIX :	Edmonds - Kay Algorithm	

										•																		•			-			1			•	
										F	-		<u>.</u>	. L. d		•			<u>.</u>	•	·	<u>.</u>			-		-											
										L	D	r1	0	NI	22	Ś."	• .	K	A	ĸ	P.	A)	E	i0	R		H	IN	1.									
																								! -					۰.									
			•		•	• •		•		• •										•	• •		•	• •			•	• •		• •							• •	
	•		•		•	• •		•		• •									•	•	• •		•	• •			•			•							• •	
						• •				• •										•				• •			•	• •		•		•	•			•	• •	
										•										•							•	• •		•		•	•					
					•	• •				• •				•						•	• •		•	• •			•	• •		•		•	•				• •	•
										• •				•						•				• •				• •				•	•			•	•	
																																					• •	
,																																						
			•		•			•		• •										•	• •		•	• •			•	• •		• •							• •	
	•		•		•	• •		•		• •									•	•	• •		•	• •			•			•							• •	
										•																		• •					•					
										•										•							•	• •		•		•	•					
				•	•				•	•				•					•	•			•	• •			•	• •		•		•	•		•	•	•	
					•	• •				• •				•						•			•	• •			•			•		•	•			•	• •	
					•	• •				• •				•						•	• •			• •			•	• •		• •		•	•	•			• •	
		0		0	0		0													0		0				0		0 0	0						 			

· · ·		· · · · · · · · · · · · · · · · · · ·		EDMONDS	- KARP	ALGORITHI	M		· · · · · · ·
• •		· · · · · · · · · · · · · · · · · · ·		Refinement	of For	rd - Fulkerson	n		
• •	· ·	In	G.,	bick an s-t	bath w	ith fewest	number	of edge	LC -
			+ /					I (J	
· ·	· ·	· · ·	Τ,						· · · · · ·
• •		· · · ·	τ,					· 0	
		 /ul>						
· · · · · · · · · · · · · · · · · · ·		 						
		 						

	EDMONDS-KARP ALGORITHM
Fort	(1) initialize $f_e = 0 \forall e$
Fulkerson	2 repeat:
	* search for an s-t path P in Gf
	such that every edge in P has positive nesidual capacity
	// possible in O(E) time via BFS/DFS
	* if no such path, networ current flow {fe}eEE
· · · · ·	$*$ else, let $\Delta := \min_{e \in P} e's$ residual capacity in Gf
· · · · ·	for all eEG with forward edges in P, add \$ to fe.
	for all $e \in G$ with herease edges in P, subtract Δ from fe.

••••	EDMONDS-KARP ALGORITHM
 	(1) initialize $f_e = 0 \forall e$
• •	2 repeat:
•	* search for an s-t path P in Gf
	such that every edge in P has positive nesidual capacity
	// possible in O(E) time via BFS/DFS
	* if no such path, networ current flow {fe}eeE
• •	* else, let $\Delta := \min_{e \in P} e's$ residual capacity in G_f
· ·	for all CEG with forward edges in P, add A to fe.
· ·	for all $e \in G$ with herease edges in P, subtract Δ from fe.

• •	EDMONDS-KARP ALGORITHM
•	(1) initialize $f_e = 0 \forall e$
• •	2 repeat: with the fewert
• •	* search for an s-t path P in Gf number of edges
	such that every edge in P has positive nesidual capacity
	// possible in O(E) time via BFS/DFS
	* if no such path, netwon current flow {fe}eeE
	$*$ else, let $\Delta := \min_{e \in P} e's$ residual capacity in G_f
• •	for all eEG with forward edges in P, add & to fe.
• •	for all e e q with herease edges in P, subtract A from fe.

EDMONDS-KARP ALGORITHM
(1) initialize $f_e = 0$ $\forall e$
(2) nepeat:
* search for an s-t path P in Gf with fewest no. of edges
such that every edge in P has positive nesidual capacity
// possible in O(E1) time via BFS/DFS
* if no such path, networ current flow {fe}eEE
* else, let $\Delta := \min_{e \in P} e's$ residual capacity in G_f
for all eEG with forward edges in P, add & to fe.
for all $e \in G$ with herease edges in P, subtract Δ from fe

0	•	•	•	•	•	•	• •	•	•	•	•	•	•	E	ĒT	> 	1 1	0	Ņ	D.	S		K	- A	t P	<pre>P</pre>			41	- G	0	R	TI	H	۲	1	•	•	• •	•	•	•	•	•	•	• •	•	•	•
•	•	•	×	-	•	•	Co	r	,e (ł	•	•		2	þe	. C	i D	J	•	C	28	e	• •	0- 0-	f	•	F	<u>کر 0</u>	d		F	-w	.kı	ر م		, 1))	•	• •	•	•	•	•	•	•	• •	•	•	•
•	•	•	•	0	•	•	• •	•	•	•	•	•	•	0		•	0	•	•	•		o o o o	, , , , , , , , , , , , , , , , , , ,	•		•	•	•	•	• •	•	•	•	• •		•	•	•	• •	•	•	•	•	•	•	• •	•	•	
•	•	•	•	•	•	•	• •		•	•	•	•	•	0		•	0	•	•	•					•	•	•	•	•				•	• •		•		•	• •	•	•	•	•	•	•	• •	•	•	•
•	•	•	•	•	•	•	• •	•	•	•	•	•	•	•	•	•	•	•	•	•	•	• •	••••	•	•	•	•	•	•	• •	•	•		• •		•	•	•	• •	•	•	•	•	•	•	• •	•	•	•
•	•	•	•	•	•	•	• •			•	•	•	•	•	•	•	•	•	•							•	•			• •		•	•	• •		•	•	•	• •	•	•	•	•	•	•	• •	0	•	•
•	•	•	•	•	•	•	• •	•	•	•	•	•	•	•	•	•	•	•	•	•	•	• •	• •	•	•	•	•	•	•	• •	•	•	•	• •		•	•	•	• •	•	•	•	•	•	•	• •	•	•	
•	•	•	•	•	•	•	• •			•	•	•	•	•	•	•	•	•	•							•	•			• •		•	•	• •		•	•	•	• •	•	•	•	•	•	•	• •	0	•	•
•	•	•	•	•	•	•	• •	•	•	•	•	•	•	•	•	•	•	•	•	•	•	• •	••••	•	•	•	•	•	•	• •	•	•	•	• •		•	•	•	• •	•	•	•	•	•	•	•••	•	•	•
•	•	•	•	•	•	•	• •			•	•	•	•	•	•	•	•	•	•							•	•			• •		•	•	• •		•	•	•	• •	•	•	•	•	•	•	• •	0	•	•
•	•	•	•	•	•	•	• •	•	•	•	•	•	•	•	•	•	•	•	•	•	•	• •	• •	•	•	•	•	•	•	• •	•	•	•	• •		•	•	•	• •	•	•	•	•	•	•	• •	•	•	
•	•	•	•	0			• •		•		•	•	•	0	0	0	0	0	•		•			0		•	•	•	•					•					• •		•	•	•	•	•			•	•
						•	• •																				•	•				•	•					•											

* Connect (special case of Ford - Fulkuson) Theorem : The Edmonds - Karp algorithm huns in O(m ² n) time, where m = E and n = V .	•	•	•	•	•	•	•	•	•	•	•	•	•		•		E	T	> 	4	, 0 ,	ľ	11	D.	S	•	-	K	f	t	R	P		• /	4	Ļ	9	0	R	. . . 	Т.	H	K		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
Theorem : The Edmonds-karp algorithm huns in $O(m^2n)$ time, where $m = E $ and $n = V $	•	•	•	¥	•	•	•	(01	h	ور	Ł	•		•		2)e	C	` ` (λ			C	λ 2	se	•	•	0	f	•	•	F	0 -	d	•	-	F	- ~~	lk	J. J.	، می	γ٥	י ח ג) 	•	•	•	•	•	•	•	•	•	•	•	•	•	•
where $m = E $ and $n = V $.	•	•	•	T	ĥ	20	۲. ۲.	e Sm	0	•	•	. 7	- [h	e	•	1	E	l Y	N11	JV	۰ d	2	-	}		W	Υ Ψ	•	0	J	91) }	vi	th	, M	•	, }	Ŵ	n,	2	, j	'n	•) ()((1 (1	n N	'n)		ti	m	e	, , ,	•	•	•	•	•
	•	•	•	•	•	•	•	•	•	•	•	0	W	h	فد	,e		•	۲ ۲	γ	•	=	-	2	Ē		ŀ	•	•	ť	21	d	ľ	•	Ŷ	n ^r	Ч	=	•	V	ŀ	•	•	0	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
						•											0		•												•						•																	•					
				•	•	•				٠									•												•				•		•							•					•	•	•		•		٠		•		•
			•	•	•		•		•	•	•	•						•	•	•	•				•	•		•					•	•	•	•	•			•	•			•	•	•	•		•		•			•				•	
	•																																															•		•			•		•		•		
	•	•	•	•	•	•	•		•	•	•		•					•	•						•		•	•	•		•	•					•	•				•			•		•	•	•	•		•	•	•		•	•		•
	•	•	•	•	•	•					•							•	•						•		•				•	•						•				•			•									•				•	
																															•																												
· · · · · · · · · · · · · · · · · · ·																															•																												
· · · · · · · · · · · · · · · · · · ·																																																									•		•
	•	•	•	•	•	•	•														•				•	•	•				•	•	•		•		•	•				•						•		•		•	•	•	•		•		•
	•	•	•		•			•													•				•	•	•				•	•	•			•			•				•					•		•		•	•		•	•			•

• •	· · ·	•	· ·	• •	• •	•	• •	l	Ē)	10	Ň	DS	-	K	A	R	P	Â		90	RI	T	11	1	•	• •	•	• •	•		• •	•	•••	•	•
· · ·	¥	•	C	0 /	ect	•	• •	ع)	þe	cì	al	•	Ca	se	· ·	of	۰ ۱	F	ንትረ	d -	- F	Tul	ku	102)	· ·	•	· ·	•	•	· ·	•	· · ·	•	•
· · ·	Th	(0)	iem			The wr))) Ø X	E	đr	no	nd	- 2 -	k I	ar F	P	N	go an	ni	hn	n M	hu =	ins	i vl		()(m	n)) -	tir	ne	· · · ·	•		•	• • • •
	• • •	0	• •							. 17	· · ·	•	: t'						• •		• •		 	•••••		•	••••	•	• •	•	•	• •	•	• •	•	•
	· · ·	•		· ·	• •	•		· ·		• •	• •	•		 	• •	•	• •	•	 		· · ·	•	· ·	· · ·			•	s.	· ·	r C	•	• •	•	• •	•	•
· · ·	¥		P	oly	n 0. n 0.	n 1 10 10 10 10 10 10 10 10 10 10 10 10 1	ial	[-	ł	in	ne	• • • •	t t t t t) V L	· · ·	ት ቤ ርጉ የ	n y		Ϊ'n	^ ∤ ¢	nt	•		pa	ci	He			Je	2] -	•	· · · · · · · · · · · · · · · · · · ·	· · ·	· · · · · · · · · · · · · · · · · · ·		•
· · · · · · · · · · · · · · · · · · ·	×		P		η η η η η η η η η η η η η η η η	τ 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	ia		-	Ţ'n	ne			v v	· · · · · · · · · · · · · · · · · · ·					^ ∦ • • •	nt			pa	u l	He.			Je.	3	• • • • • • •					• • • • • • •

EDMONDS-KARP ALGORITHM
* Correct (special case of Ford - Fulkuson)
Theorem: The Edmonds-karp algorithm runs in $O(mn)$ time, where $m = E $ and $n = V $.
* Polynomial-time for any input capacities {Ue].
\times O(n ³) for sparse graphs, O(n ⁵) for dense graphs

•	•	• •	•	•	•	•	R	Ű	Ņ	N	lÞ	16	j	•	Π	M	E	•	A	N/	AL	.Y	2	2	•	Of	E	D	2	0	N	D.	S -	-	K	A	21	P	•	••••	•	•	• •
							• •																																				• •
							• •																					• •							•					• •			• •
		• •					• •																					• •							•					• •			• •
		• •					• •																					• •							•					• •			• •
		• •					• •			•					• •				• •					• •				• •				• •			•	•				• •			• •
		• •					• •			•	• •			•	• •	•			• •				•	• •				• •				• •			•					• •			• •
•		• •					• •			•	• •				• •			•	• •				•	• •				• •			•	•			•					•	•		• •
		• •					• •			•				•	• •			•	• •				•	• •				• •				• •			•					• •			• •
		• •	•	•			• •		•	•	• •	•		•	• •	•		•	• •				•	• •			•	• •	•			• •			•					• •			• •
		• •					• •			•					• •			•	•				•	• •				•							•					•			• •
		• •					• •			•					• •				• •				•	• •				•				• •			•					• •			• •
•		• •				•	• •			•	• •			•	• •			•	• •				•	• •				• •				• •			•					• •			• •
•		• •		•			• •			•				•	• •			•	• •			•	•	• •			•	•				•			•					•			• •
		• •					• •			•																		• •		•		• •			•					• •			• •
		• •				•	• •			•	• •			•	• •			•	• •				•	• •			•	• •				• •			•					• •			• •
		• •					• •											•	• •			•	•				•	• •						•						• •			
		• •												•																										• •			
0	•	• •					• •				• •			•	• •			•					•	• •				• •												• •			
		• •		•							• •			•				•				•	•				•				•												

•	••••	•	•	•	• •		R	Ĵ	Ň	N	lþ	16	j	•	T	۲	16	•	A	N	A	LY	2 2	21		Of		E	D	M	01	11	DS	- 	k	< A	R	P		· ·	•	•	• •	
•	• •	k	Le	cr	U I	•	•	•	•	•	• •	•	•	•	•	· ·	•	•	•	•	•	•	•	•		•	•	· ·	• •	•	• •	•	•	•	· ·	•	•	•		· ·	•	•	•	•
•	••••	•	•	•	• •		•	f	•	2 2	• •	'n	~0	י עא ע	•		flo) } }			/ 	7	- -	Ì	י 10	•	(<u>_</u>		t)	•	pø	1	٦	ì įν	1	, , ,	Í,	F	•	· ·	•	•	•	
	• •																												• •										•			•		
	• •	•					•	•	•	•				•	•			•	•								•					•		•	• •			•				•	• •	
																															•				• •									
	• •	•			•				•	•	• •				•					•				•		•		•	• •		•				• •				•	• •			• •	
•	• •				•				•	•	• •					•				•				•				•	• •		•				• •				•	• •	•	•	• •	
•	• •				•				•				•		•	• •			•	•				•			•	•	• •		•				• •			•	•			•	• •	•
•	• •	•	•		•				•	•	• •	•			•	•			•	•		•	•	•		•		•	• •	•	•				• •		•	•	•	• •		•	• •	
•	• •				•		•			•	• •				•	• •			•	• •				•		•	•	•	• •		•	•	•		•			•	•			•	•	
	• •	•	•						•	•	• •	•				•				•		•		•				•	• •	•	•			•	• •				•	• •		•	• •	
	• •									•	• •				•				•							•	•		• •						• •			•					• •	
								•	•		• •																		• •					•	• •	•				• •		•	• •	
		•	•						•	•	• •											•	•	•					• •	•					• •		•			• •		•	• •	

· ·	•	•	•	•	· ·	•	R	Ĵ	Ņ	N		N	G	•	-	Π	۲ ۲	16	• • • •	ł	łk	J <i>P</i>	۱ ۱	.Y	2	21		0	F	l	ĒT	> ^	10) 	1.0	2 C		k	< <i>f</i>	łł	۲F)	•	•			•	•
• •	•	R	ور	'N	U.	•	•	•	•	•	•	•	•	•	•	· ·	•	•	•	•	•	•	•	•	•	• •		•	•	•	•	• •	•	•	•	•	•	•	· ·	•	•	•	•	•	· ·		•	•
· ·	•	•	•	•	· ·	•	•	f	•] <u>5</u>	2	•	m	(A	X	· ·	-	fli	י אר י	J [•	Ę	•	} ₹	•	Ĩ	סר		(-	י ג' י	ť)	ľ) A (th		¦ ¦ì∕	1 1		G	f	•	•	•	•••		•	•
	•	•	•	0	• •	•	•	•	•	•	•	•		•		• •		0	•	•	•	•	•	•	•			N			•	• •	•	•	•		•			•	•	•	•				•	•
			•		• •					•	•		•						•					•							-		V	J0	n	t		to		d	lî 9	sc	Ογ	m	ei	τ	•	
	•		•	•	• •					•	•	•	•		•	• •					•	•	•	•		• •		•	•	•	•	• •		S.			ļ	· ·	+	•	ìr	1	e	, קייי			•	•
										•	•																									••••						•	•	4	•••			
• •			•	•	• •				•		•	•	•	•	•										•	•				•		• •					•		•							• •		•
• •		•			• •	•	•			•		•	•	•	•	• •				•	•	•		•	•	•					•	• •			•		•	•			•		•	•		•		•
		•							•				•								•																											
• •																																			٠						٠			•				
• •												•	•		•											• •					•						•							•		• •		•
• •		•	•	•	• •	•						•	•	•	•			•	•	•		•		•	•	• •				•	•	• •	•				•						•	•				•
• •			•	•	• •			•		•			•	•	•	•							•			•				•	•	• •			•		•	•			•		•		•	•		
• •					• •							•	•	•	•	•					•	•	•	•	•	•					1	• •					•						•					

· ·	· · · · · ·	RUNNI	NG TIME	ANALY SIZ	OF EDMON	IDS-KARP
• •	Recru		· · · · · · · · · · ·	· · · · · · · · · · ·	· · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·
• •	· · · · · ·	21]	max flo	w 🔶 1	no (s,t) pa	th in Gf
· · · · · · · · · · · · · · · · · · ·	· ·	. .		wa S	nt to disconnect and t in Gf
· · ·	-	Measure	progress in	terms of	how far s	and t are in Gf
• •	· · · · · ·		· · · · · · · · · ·	· · · · · · · · · · · ·	· · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·
· ·	· · · · · · ·		· · · · · · · · · · · · · · · · · · ·			

· · · · · · · · · ·	RUNNI	NG TIM	e An	212 YJA	OF	EDMON	IDS-K	ARP		•
Recul		· · · · · · · · ·	· · · · · ·	· · · · · · ·	· · · · ·	· · · · · · ·	· · · · · ·	· · · · · · ·	· · · · · ·	•
· · · · · · · · · ·	ei f	max -	-low 2	r (2) 01	,t) pa	th in	Gf	· · · · · ·	
· · · · · · · · · ·				- Wa S	nt to and t	disco in	nneit Gf	
	M	· · · · · · · · · · · · · · · · · · ·			· · · · ·	· · · · · · · · ·	· · · · · ·			•
	·leaswre	priogress nu on the	n ter mber of minimu	ns of E edges m-edge	how	for s	and t			

RUNNING TIME ANALYSIS OF EDMONDS-KAR	ζ Ρ
Recru	· · · · · · · · · ·
f is max flow \Leftrightarrow no (s,t) path in G	f
want to d s and t	lisconnect in Gf
- Measure progress in terms of how far s and t ar	e in Gf
NOTE: An (s,t) path can have at most (n-1) ed	ges.
	· · · · · · · · · · ·

•	• •	•	•	•	••••	•	R	U U	Ņ	N		J	G	٦	Π.	n M	E	•	A	N		_Y	2'	21	· ·	0	F	E	ED) [0	N	D.	S -	-	</th <th>f f</th> <th>ZF</th> <th>></th> <th>•</th> <th>••••</th> <th>•</th> <th>•</th> <th>•</th> <th>•</th>	f f	ZF	>	•	••••	•	•	•	•
•	· ·	Lei	y i	le	m	mø	2		•	F	i ÌX	•	5	n	et	- W (n		(3	•	•	•	•	· ·	· ·	•	•	• •	•	•	•	• •	•	•	· ·	•	•	•	•	••••	•	•	•	•
	• •		U.								•		• •					•						•	• •							•					•								
•	• •				• •					•		•													• •				•				• •								• •	•		•	
	• •				• •					•	•							•						•					•			•	• •								• •	•		•	
	• •				• •	٠	•			•	•				•			•				•		•	• •			•	•		•			•	•					•	• •	•			•
•	• •		•		•			•	•	•	•		• •	•				•			•		•	•	• •		•		•			•	• •	•		• •				•	• •			•	
•	• •				• •				•	•	•	•	• •					•			•			•	• •				•			•	• •	•		• •					• •			•	
	• •			•						•	•	•					•	•						•	• •			•					• •		•					•	• •			•	
•	• •							•	•	•			• •	•							•			•	• •		•					•	• •			• •					• •				1
	• •												• •			•					•			•	• •		•					•	• •	•							• •				
																													•												• •				
	• •																								• •								• •								• •	•			
	• •				• •	٠				•	•		• •					•						•	• •				•												• •	•		•	
•	• •				• •				•		•	•	• •					•						•	• •				•			•	• •			• •					• •	•		•	
•	•				•			•	•	•	•	•	• •					•			•		•	•	• •	•	•		•			•	•	•		• •		•	•	•	• •	•		•	
•	• •				•				•	•	•	•	• •			•		•						•	• •				•				• •			• •				•	•	•			•
•	•	•			•				•	•	•	•	• •					•			•			•	• •		•		•			•	• •			• •					•			•	
	•				•								• •												• •								•			• •					•				

RUNNING	TIME	ANALY SIS	OF EDMONDS-KARP
Key lemma : Fix a	network	G. For	a flow f, define:
· · · · · · · · · · · · · · · · · · ·			
d(f) =			
	· · · · · · ·		· · · · · · · · · · · · · · · · · · ·
· · · · · · · · · · · · · · · · · · ·	· · · · · · ·	· · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·
· · · · · · · · · · · · · · · · · · ·	· · · · · · ·	· · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·
· · · · · · · · · · · · · · · · · · ·	· · · · · · ·	· · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·
· · · · · · · · · · · · · · · · · · ·	· · · · · · ·	· · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·
· · · · · · · · · · · · · · · · · · ·	· · · · · · ·	· · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·

•	•	•	•	•	•	•	•		Ri	JF	11	11	N	G		•	T	M	16	•	Â	N		LY	י 12 י	2(•	OF		E	DI	1	01	lD	S	-	K	A	RI		•	•	•	• •	•
•	•	K	Lu (le	Lm	۰ ۳	12	•	· ·	1	Fi;	, X, 1	D	``````````````````````````````````````	ŕ	iet	Ŵ	or	K		3.	•	F	 -0 N	· · ·	0 0	•	fl	0W		f	, , ,	de	fi	ne	•	· · ·	•	•	•	•	•	· · ·	
•	•	•	•	•	•	•	•	•	•			- -{	the		r M	U I	nl	v		0	$\frac{1}{2}$	ور	۶ġ	۲ ک	•	ìr	•	r D	•	12	<u>ال</u> 10	tes	ť	•	۰۰ ۲- ۲	t	•	pa	th	•	În	G	ŕ	••••	•
•	•	•	•	•	Ċ	l (f)	· · ·		· · ·	•	•	W	i †I	۰ م		20!	?i-	ŀίν	٩	J	ies	י ז פ	lu	el.	Ċ	20	500	hi	y	•	••••	•	•	· ·	•	•	••••	•	•	•		•	••••	•
•	•	•	•	•	•	•	•	•			•	•	•	•	•	•	•	• •	•	•	•	••••	•	•	•	••••	•	•	•		•	• •	•	•	••••	•	•	· ·	•	•	•		•	••••	•
•	0	•	•	•	•	•	•	•	•	• •	•	•	•	0	•	•	•	• •	•	•	•	· ·	•	•	•	••••	0	•	•	• •	•	• •	•	•	• •	•	•	• •	•	•	•		•	• •	•
•	•	•	•	•	•	•	•	•	•	••••	•	•	•	•	•	•	•	· ·	•	•	•	· ·	•	•	•	••••	•	•	•	· ·	•	••••	•	•	••••	•	•	· ·	•	•	•		•	••••	•
•	•	•	•	•	•	•	•	•	•	· ·	•	•	•	•	•	•	•	• •	•	•	•	· ·	•	•	•	· ·	•	•	•	· ·	•	· ·	•	•	· ·	•	•	· ·	•	•	•		•	• •	
•	•	•	•	•	•	•	•	•	•	• •	•	•	•	•	•	•	•	• •	•	•	•		•	•	•	• •	•	•	•	• •	•	• •	•	•	• •	•	•	• •	•	•	•		•	• •	•
•	•	•	•	•	•	•	•	•	•	•••	•	•	•	•	•	•	•	• •	•	•	•	••••	•	•	•	••••	•	•	•	• •	•	• •	•	•	· ·	•	•	· ·	•	•	•		•	•	•

•	•		•	•	•	· ·	R	Ĵ	Ņ	Ň		1	ą	•	T	1	16		A		A	LY	2	21	••••	0		E	Ð	M	0	N	20		k	A	t P	^P		• •	•	•	· ·	•
•		Le	y	le	2m	m	a 1		•	F	ΪX	• •	с С С	. 1	ne	th	תסו	.K	•	G	• •		Fot		0 0	•	f	102	 J .	f		d	ef	in	e	•		•	• •	· ·	•	0	· ·	•
•	•		•	•	•	• •	•	•		•	th	e	.Y	้าน	m	bu	· · ·	н О-	f	ہ و	dg			Ìr	۰ م	D		2	hvj	ιte	st	•••	۔ - 2		t	P	at	ĥ	Ì	n	6	r F	•••	•
•	•		•		f (-	F)	- 11 -			•	ן ג ג	ฑ่-	th	•	Þø	çί	tiv	10	; ; ;	ne	2 1	d v	بعرا	•	ca	pa	ù.	ły	· ·	•	•	· ·	•	•	· · ·	•	•	•	• •	· ·	•		· ·	•
•	•		•	•	•	• •	•				+	8	•	•	 . -	f		n NV		ŝν	ch	•	þ	at	h i	[2×	- 2ú	<u>+</u> -	•	•	• •	•	•	••••	•	•	•	• •	• •	•	•	••••	•
•	•		•	•	•	· ·	•	•	•	•	•	••••	•	•	•	•	· ·	•	•	•	••••	•	•	•	•	•	•	•	••••	•	•	· ·	•	•	••••	•	•	•	• •	· ·	•		· ·	•
•	•		•	•	•	• •	•	•	•	•	•	• •	•	•	•	•	· ·	•	•	•	• •	•	•	•	• •	•	•	•	• •	•	•	• •	•	•	• •	•	•	•			•		· ·	•
•	•		•	•	•	••••	•	•	•	•	•	• •	•	•	•	•	••••	•	•	•	••••	•	•	•	• •	•	•	•	•••	•	•	•••	•	•	•••	•	•	•	• •	•••	•	•	••••	•
•	•		•	•		· ·	•	•	•		•	• •	•	•	•	•	· ·	•	•	•	• •	•	•		• •	•	•	•	• •	•	•	· ·	•	•	• •	•	•	•	• •		•		· ·	•
•	•		•	•	•	• •	•	•	•	•	•		•	•	•	•	• •	•	•	•	• •	•	•	•	• •	•	•	•	• •	•	•		•	•	• •	•	•	•			•	•	• •	•

	RUNNING	TIME ANA	70 212 YJA	EDMONDS-KARP	
Key ler	nma : Fix a	network G.	Fon a f	low f, define:	· · · · · · · · · ·
· · · · · · · ·	r the r	umber of ed	lges in A	shortest s-t path	in Gr
d	f) = with	positive nes	idual capaci	ty	· · · · · · · · · ·
· · · · · · · ·			la halfa ov		· · · · · · · · · ·
· · · · · · · · · · · · · · · · · · ·		H 110 200	n phin ex	₩\$ <u> </u>	· · · · · · · · · ·
(nen,) d(f) nevu	decreases o	during the	execution of the a	algori thm
	· · · · · · · · · · · · · ·	· · · · · · · · · · · ·	· · · · · · · · · ·		· · · · · · · · ·
•••••					
	· · · · · · · · · ·	· · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·	<u></u>

RUNNING TIME ANALYSIS OF EDMONDS-KARP
Key lemma : Fix a network G. For a flow f, define :
the number of edges in a shortest s-t path in Gf
d(f) = Mith positive nesidual capacity
Then, (a) d(f) never decreases during the execution of the algorithm
(b) d(f) increases at least once per m iterations.

RUNNING TIME ANALYSIS OF EDMONDS-KARP
Key lemma : Fix a network G. For a flow f, define :
the number of edges in a shortest s-t path in Gf
d(f) = With positive nesidual capacity
Then, (a) d(f) never decreases during the execution of the algorithm
(b) d(f) increases at least once per m iterations.
G fixed, f changes \Rightarrow G _f changes

RUNNING TIME ANALYSIS OF EDMONDS-KARP	
Key lemma : Fix a network G. For a flow f, define :	
- the number of edges in a shortest s-t path in Gr	•••
d(f) = With positive nesidual capacity	
L + 00 if no such path exists.	• •
(a) d(f) never decreases during the execution of the algorithm	• •
(b) d(f) increases at least once per m iterations.	
$d(f) \in \{0, 1,, n-1, +\infty\}$	· · ·

RUNNING TIME ANALYSIS OF EDMONDS-KARP
Key lemma : Fix a network G. For a flow f, define :
the number of edges in a shortest s-t path in Gf
d(f) = With positive nesidual capacity
L + co if no such path exists.
Then, (a) d(f) never decreases during the execution of the algorithm
(b) d(f) increases at least once per m iterations.
$d(f) \in \{0, 1, \dots, n-1, +\infty\}$ Once $d(f) \not\equiv n \Rightarrow d(f) = +\infty$

RUNNING TIME ANALYSIS OF EDMONDS-KARP
Key lemma : Fix a network G. For a flow f, define :
$d(f) = \begin{bmatrix} the number of edges in a shortest s-t path in Gf d(f) = \end{bmatrix}$ with positive nesidual capacity
L + co if no such path exists.
(a) d(f) never decreases during the execution of the algorithm
(b) d(f) increases at least once per m iterations.
$d(f) \in \{0, 1, \cdots, n-1, +\infty\}$ Once $d(f) \not = n \implies d(f) = +\infty$ done!

RUNNING TIME ANALYSIS OF EDMONDS-KARP
Key lemma : Fix a network G. For a flow f, define :
$d(f) = \begin{bmatrix} the number of edges in a shortest s-t path in Gf \\ with positive nesidual capacity \end{bmatrix}$
L too if no such path exists.
Then, (a) d(f) never decreases during the execution of the algorithm
(b) d(f) increases at least once per m iterations.
$d(f) \in \{0, 1, \dots, n-1, +\infty\}$ Once $d(f) \not\equiv n \implies d(f) = +\infty$ done! O(mn) iterations

RUNNING TIME ANALYSIS OF EDMONDS-KARP
Key lemma : Fix a network G. For a flow f, define :
$d(f) = \begin{bmatrix} the number of edges in a shortest s-t path in Eq d(f) = \begin{bmatrix} with positive nesidual capacity \end{bmatrix}$
L + co if no such path exists.
Then, (a) d(f) never decreases during the execution of the algorithm
(b) d(f) increases at least once per m iterations.
$d(f) \in \{0, 1,, n-1, +\infty\}$ $O(mn)$ iterations \xrightarrow{BFS} per iteration $O(mn)$ time.