
COL 351 : ANALYSIS & DESIGN Of ALGORITHMS

LECTURE 33

NETWORK FLOW I :

EDMONDS-KARP ALGORITHM

OCT 25
,
2024 / RONT VAISH

FORD-FULKERSON ALGORITHM

FORD-FULKERSON ALGORITHM

① initialize fe = 0 #2

② repeat :

* search for an s-tpath p in Gf
such that every edge in P has positive residual capacity
/ possible in O(EI) time via BFS/DES

*If no such path ,
return current flow EfeSeeE

* else
, let A := min es Residual capacity inIfezp

- for all e- G with forward edges in P, add A to fe
for all e- G with reverse edges in P, subtract A from fe

FORD-FULKERSON ALGORITHM

For integral capacities,

Ford-Fulkerson terminates in finite time with a valid flow.

FORD-FULKERSON ALGORITHM

For integral capacities,

Ford-Fulkerson terminates in finite time with a valid flow.

Does the algorithm return a max flow ?

FORD-FULKERSON ALGORITHM

For integral capacities,

Ford-Fulkerson terminates in finite time with a valid flow.

Does the algorithm return a max flow ?

How Do WE KNOW WHEN WE ARE DONE

OPTIMALITY CONDITIONS

A general recipe :

① (Structure) Identify "optimality conditions".

② (Algorithm) Design an algorithm that terminates

with the optimality conditions satisfied.

OPTIMALITY CONDITIONS

A general recipe :

① (Structure) Identify "optimality conditions".

Claim : If Ge has no set path ,
then + is a max flow in G

② (Algorithm) Design an algorithm that terminates

with the optimality conditions satisfied.

Ford-Fulkerson algorithm

OPTIMALITY CONDITIONS FOR MAX FLOW

Theorem : For a flowf in a graph G
,
the following are equivalent :

(a) f is a maximum flow of G

(b) there exists an (5
, t) = cut (A ,

B) such that

value of f = capacity of (A , B).

(C) there is no (sit) path in the residual graph If

OPTIMALITY CONDITIONS FOR MAX FLOW

Theorem : For a flowf in a graph G
,
the following are equivalent :

(a) f is a maximum flow of G

(b) there exists an (5
, t) = cut (A ,

B) such that

value of f = capacity of (A , B).

(C) there is no (sit) path in the residual graph If

(b)= (a)

"TIGHT" (s, t) = CUT => MAX FLOW

sufficient to show that for every flowf and every (sit)
- cut (A , B) :

value of f < capacity of (A ,
B).

"TIGHT" (s, t) = CUT => MAX FLOW

sufficient to show that for every flowf and every (sit)
- cut (A , B) :

value of f < capacity of (A ,
B).

* XXXX00003↓S
flow values cut capacities

"TIGHT" (s, t) = CUT => MAX FLOW

sufficient to show that for every flowf and every (sit)
- cut (A , B) :

value of f < capacity of (A ,
B).

Proof : value of f = [Ife-Ife
ver eestu eesul

=

Ife-enestA)

-> Ife > [he = capacity of
estA) estA) cut (A , BI.

OPTIMALITY CONDITIONS FOR MAX FLOW

Theorem : For a flowf in a graph G
,
the following are equivalent :

(a) f is a maximum flow of G

(b) there exists an (5
, t) = cut (A ,

B) such that

value of f = capacity of (A , B).

(C) there is no (sit) path in the residual graph If

(a) = (C)

OPTIMALITY CONDITIONS FOR MAX FLOW

Theorem : For a flowf in a graph G
,
the following are equivalent :

(a) f is a maximum flow of G

(b) there exists an (5
, t) = cut (A ,

B) such that

value of f = capacity of (A , B).

(C) there is no (sit) path in the residual graph If

(a) => (C) Proof by Fold Fulkenson

OPTIMALITY CONDITIONS FOR MAX FLOW

Theorem : For a flowf in a graph G
,
the following are equivalent :

(a) f is a maximum flow of G

(b) there exists an (5
, t) = cut (A ,

B) such that

value of f = capacity of (A , B).

(C) there is no (sit) path in the residual graph If

(c) =>> (b)

No (S ,t) PATH ING "TIGHT" cut

Define A := SVEV : there is an sur path in Gg].

Then
, (A , VIA) is an (S . t)-cut.

S

A

1 S
VIA

-

No (S ,t) PATH ING "TIGHT" cut

Define A := SVEV : there is an sur path in Gg].

Then
, (A , VIA) is an (S . t)-cut.

S

1 3 .

E
In the underlying graph G : A VIA

* Every edge ec STA) is saturated (i . e
,

He = fe).

* Every edge e E STA) is zeroed out (i . e
., fe = 0).

No (S ,t) PATH ING "TIGHT" cut

Define A := SVEV : there is an sur path in Gg].

Then
, (A , VIA) is an (S . t)-cut.

S

1 3 .

E
In the underlying graph G : A VIA

* Every edge ec STA) is saturated (i . e
,

He = fe).

* Every edge e E STA) is zeroed out (i . e
., fe = 0).

=> (A
,
VIA) is a tight cut.

Fur

OPTIMALITY CONDITIONS FOR MAX FLOW

w

100
T I
&

I

S 100 I t
&

L
I L 100

O

OPTIMALITY CONDITIONS FOR MAX FLOW

w

1007 ↓ (t)
(2) 1

100 161't
~

(1)
L

L 100
(1) a

O

OPTIMALITY CONDITIONS FOR MAX FLOW

w

A 100
T ↓ (t)

(2) &

100 161't
~

(1)
L

L 100 B
(1) a

O

OPTIMALITY CONDITIONS FOR MAX FLOW

t

w S(A) : saturated
A 100

T ↓ (t)
(2) &

100 161't
~

(1)
L

L 100 B
(1) a

O

OPTIMALITY CONDITIONS FOR MAX FLOW

w
SCA) : saturated

A 100
T ↓ (t)

(2) &

S(A) : zeroed out

100 161't
~

(1)
L

L 100 B
(1) a

O

OPTIMALITY CONDITIONS FOR MAX FLOW

w
SCA) : saturated

A 100
T ↓ (t)

(2) &

S(A) : zeroed out

100 161't
~

(1)
L

L 100 B => (A
,
B) is a tight cut

(1) a

O

OPTIMALITY CONDITIONS FOR MAX FLOW

w
SCA) : saturated

A 100
T ↓ (t)

(2) &

S(A) : zeroed out

100 161't
~

(1)
L

L 100 B => (A
,
B) is a tight cut

(1) a

O
=> max flow

MAX-FLOW MIN-CUT THEOREM

Corollary : For every network ,

maximum value of a flow = minimum capacity of an (s , t) - cut

MAX-FLOW MIN-CUT THEOREM

Corollary : For every network ,

maximum value of a flow = minimum capacity of an (s , t) - cut

* XXXX000 0 0 >
↓S

N
flow values cut capacities

MAX-FLOW MIN-CUT THEOREM

Corollary : For every network ,

maximum value of a flow = minimum capacity of an (s , t) - cut

* XXXX000 0 0 >
↓S

flow values cut capacities

Corollary (of Corollay) : Given a maximum flow ,
a minimum cut can

be recovered in OUEI) time.

MAX-FLOW MIN-CUT THEOREM

Corollary : For every network ,

maximum value of a flow = minimum capacity of an (s , t) - cut

* XXXX000 0 0 >
↓S

flow values cut capacities

Corollary (of Corollay) : Given a maximum flow ,
a minimum cut can

be recovered in OUEI) time.

Proof : Do BFS/DFS from S
,
construct the set A of reachable vertices.

Then
, (A ,

ULA) is a min cut. Fa

MAX-FLOW MIN-CUT THEOREM

MAX-FLOW MIN-CUT THEOREM

MAX-FLOW MIN-CUT THEOREM

MAX-FLOW MIN-CUT THEOREM

S

BACK TO FORD-FULKERSON

BACK TO FORD-FULKERSON

* Recall : f is max flow no (sit) - path in If

=> Ford-Fulkuson is correct

BACK TO FORD-FULKERSON

* Recall : f is max flow no (sit) - path in If

=> Ford-Fulkuson is correct

* Running time of Ford-Fulkuson : Pseudopolynomial (Tutorial 11)
runtime depends on He (not log He)

BACK TO FORD-FULKERSON

* Recall : f is max flow no (sit) - path in If

=> Ford-Fulkuson is correct

* Running time of Ford-Fulkuson : Pseudopolynomial (Tutorial 11)
runtime depends on He (not log He)

keeps choosing "essentially useless" paths over and over

BACK TO FORD-FULKERSON

* Recall : f is max flow no (sit) - path in If

=> Ford-Fulkuson is correct

* Running time of Ford-Fulkuson : Pseudopolynomial (Tutorial 11)
runtime depends on He (not log He)

keeps choosing "essentially useless" paths over and over

Choose s-t paths intelligently

BACK TO FORD-FULKERSON

* Recall : f is max flow no (sit) - path in If

=> Ford-Fulkuson is correct

* Running time of Ford-Fulkuson : Pseudopolynomial (Tutorial 11)
runtime depends on He (not log He)

* FIX : Edmonds - Kap algorithm

EDMONDS-KARP ALGORITHM

EDMONDS-KARP ALGORITHM

Refinement of Ford - Fulkerson

In 4t , pick an s-t path with fewest number of edges.

EDMONDS-KARP ALGORITHM
&

Ford ① initialize fe =0 e

Fulkeson
② repeat :

* search for an s-tpath p in Gf
such that every edge in P has positive residual capacity
/ possible in O(EI) time via BFS/DES

*If no such path ,
return current flow EfeSeeE

* else
, let A := min es Residual capacity inIfezp

- for all e- G with forward edges in P, add A to fe
for all e- G with reverse edges in P, subtract A from fe

EDMONDS-KARP ALGORITHM

① initialize fe = 0 #2

② repeat :

* search for an s-tpath p in Gf
such that every edge in P has positive residual capacity
/ possible in O(EI) time via BFS/DES

*If no such path ,
return current flow EfeSeeE

* else
, let A := min es Residual capacity inIfezp

- for all e- G with forward edges in P, add A to fe
for all e- G with reverse edges in P, subtract A from fe

EDMONDS-KARP ALGORITHM

① initialize fe = 0 #2

② repeat : with the fewest

* search for an s-tpath p in G
number of edges

such that every edge in P has positive residual capacity
/ possible in O(EI) time via BFS/DES

*If no such path ,
return current flow EfeSeeE

* else
, let A := min es Residual capacity inIfezp

- for all e- G with forward edges in P, add A to fe
for all e- G with reverse edges in P, subtract A from fe

EDMONDS-KARP ALGORITHM

① initialize fe = 0 #2

② repeat :

* search for an s-tpath p in GJ with fewest no - of edges
such that every edge in P has positive residual capacity
/ possible in O(EI) time via BFS/DES

*If no such path ,
return current flow EfeSeeE

* else
, let A := min es Residual capacity inIfezp

- for all e- G with forward edges in P, add A to fe
for all e- G with reverse edges in P, subtract A from fe

EDMONDS-KARP ALGORITHM

* Correct (special case of Ford - Fulkuson)

EDMONDS-KARP ALGORITHM

* Correct (special case of Ford - Fulkuson)

Theorem : The Edmonds-Karp algorithm runs in O (mm) time
,

where m = IE) and n = /V.

EDMONDS-KARP ALGORITHM

* Correct (special case of Ford - Fulkuson)

Theorem : The Edmonds-Karp algorithm runs in O (mm) time
,

where m = IE) and n = /V.

* Polynomial-time for any input capacities [Ue].

EDMONDS-KARP ALGORITHM

* Correct (special case of Ford - Fulkuson)

Theorem : The Edmonds-Karp algorithm runs in O (mm) time
,

where m = IE) and n = /V.

* Polynomial-time for any input capacities [Ue].

* O(n) for sparse graphs , OC) for dense graphs

RUNNING TIME ANALYSIS OF EDMONDS-KARP

RUNNING TIME ANALYSIS OF EDMONDS-KARP

Recall :

& is max flow> no (3 . #) path inf

RUNNING TIME ANALYSIS OF EDMONDS-KARP

Recall :

& is max flow> no (3 . #) path inf

want to disconnect

s and t in Gf

RUNNING TIME ANALYSIS OF EDMONDS-KARP

Recall :

& is max flow> no (3 . #) path inf

want to disconnect

s and t in Gf

Measure progress in turns of how far s and + me in Gf

RUNNING TIME ANALYSIS OF EDMONDS-KARP

Recall :

& is max flow> no (3 . #) path inf

want to disconnect

s and t in Gf

Measure progress in turns of how far s and + me in Gf

number of edges
on the minimum-edge path

RUNNING TIME ANALYSIS OF EDMONDS-KARP

Recall :

& is max flow> no (3 . #) path inf

want to disconnect

s and t in Gf

Measure progress in turns of how far s and + me in Gf

NOTE : An 15 , t) path can have at most (n-1) edges.

RUNNING TIME ANALYSIS OF EDMONDS-KARP

key Lemma : Fix a network G.

RUNNING TIME ANALYSIS OF EDMONDS-KARP

Key Lemma : Fix a network G .

For a flow f , define :

a = [

RUNNING TIME ANALYSIS OF EDMONDS-KARP

Key Lemma : Fix a network G .

For a flow f , define :

the number of edges in a shortest s-t path in of

d(f) = with positive residual capacity&

RUNNING TIME ANALYSIS OF EDMONDS-KARP

Key Lemma : Fix a network G .

For a flow f , define :

the number of edges in a shortest s-t path in of

d(f) = with positive residual capacity&
↓a if no such path exists.

RUNNING TIME ANALYSIS OF EDMONDS-KARP

Key Lemma : Fix a network G .

For a flow f , define :

the number of edges in a shortest s-t path in of

d(f) = with positive residual capacity&
ta if no such path exists.

Then ,
(a) d(f) never deceases during the execution of the algorithm

RUNNING TIME ANALYSIS OF EDMONDS-KARP

Key Lemma : Fix a network G .

For a flow f , define :

the number of edges in a shortest s-t path in of

d(f) = with positive residual capacity&
ta if no such path exists.

Then ,
(a) d(f) never deceases during the execution of the algorithm

(b) d(f) increases at least once per m iterations.

RUNNING TIME ANALYSIS OF EDMONDS-KARP

Key Lemma : Fix a network G .

For a flow f , define :

the number of edges in a shortest s-t path in of

d(f) = with positive residual capacity&
ta if no such path exists.

Then ,
(a) d(f) never deceases during the execution of the algorithm

(b) d(f) increases at least once per m iterations.

G fixed , f changes - G changes

RUNNING TIME ANALYSIS OF EDMONDS-KARP

Key Lemma : Fix a network G .

For a flow f , define :

the number of edges in a shortest s-t path in of

d(f) = with positive residual capacity&
ta if no such path exists.

Then ,
(a) d(f) never deceases during the execution of the algorithm

(b) d(f) increases at least once per m iterations.

diffe 20 , 1,..., n+, +0]

RUNNING TIME ANALYSIS OF EDMONDS-KARP

Key Lemma : Fix a network G .

For a flow f , define :

the number of edges in a shortest s-t path in of

d(f) = with positive residual capacity&
ta if no such path exists.

Then ,
(a) d(f) never deceases during the execution of the algorithm

(b) d(f) increases at least once per m iterations.

Once d(f) > n = dif =+&

diffe 20 , 1,..., n+, +0]

RUNNING TIME ANALYSIS OF EDMONDS-KARP

Key Lemma : Fix a network G .

For a flow f , define :

the number of edges in a shortest s-t path in of

d(f) = with positive residual capacity&
ta if no such path exists.

Then ,
(a) d(f) never deceases during the execution of the algorithm

(b) d(f) increases at least once per m iterations.

Once d(f) > n => dif =+& done !
diffe 20 , 1,..., n+, +0]

RUNNING TIME ANALYSIS OF EDMONDS-KARP

Key Lemma : Fix a network G .

For a flow f , define :

the number of edges in a shortest s-t path in of

d(f) = with positive residual capacity&
ta if no such path exists.

Then ,
(a) d(f) never deceases during the execution of the algorithm

(b) d(f) increases at least once per m iterations.

Once d(f) > n => dif =+& done !
diffe 20 , 1,..., n+, +0]

Olmn) iterations

RUNNING TIME ANALYSIS OF EDMONDS-KARP

Key Lemma : Fix a network G .

For a flow f , define :

the number of edges in a shortest s-t path in of

d(f) = with positive residual capacity&
ta if no such path exists.

Then ,
(a) d(f) never deceases during the execution of the algorithm

(b) d(f) increases at least once per m iterations.

Once d(f) > n => dif =+& done !
diffe 20 , 1,..., n+, +0]

Olmn) iterations
BES per itration O(rin) time.

