· · · · · · · · ·	COL 351 :	ANALYSIS	& Des	IGN OF	ALGORITHMS	
			FILL OF			
			VE	28		
		🦳 .				
		· · · · · · · · · · · · · · · · · · ·	7.3.			
				• • • • • •		
					<u>.</u>	
	······	2014		POHI-	TVALCH	
				· · • • • • • • • • • • • • • • • • • •		
			· · · · · · ·	• • • • •	· · · · · · · · · · ·	

		5			F			-																								
•			• •								• •		•				•	•		• •			• •					•	•	• •		
																		•		• •			• •									
	•									 		I	7	0. j	D. J.	UN	1	•	L				• •						•			
												- 6	2	-1	-1			• 4	1													
											• •									• •						• •						

Problem 1 [12 points]

Let X and Y be two strings of length n and m, respectively. How many distinct alignments between X and Y are there? Justify your answer.

Note: Your calculation should exclude alignments that match two gaps with each other. Additionally, if X = AB and Y = CD, then the alignments (AB_,C_D) and (A_B,CD_) are considered equivalent and should be counted as a single alignment.

The answer is no	-m c _n .		· · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·
To show this, l	et us con	istruct a	bijection be	etween alignments
and merged stri	ings	· · · · · · · · · ·	· · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·
For example, let	- X = ,	AB and	Y = CD)
Then, there are si	x possoble	alignments	given by:	· · · · · · · · · · · · · · · · · ·
AB AB_	AB_	A _ B	_ A B	A B
CD $C-D$	_ C D	_ C D	C D -	C D
	· · · · · · · · · · · ·			
A_ B	equivalent	_ A B	· · · · · · · · · ·	
СР	alignments	C _ D	· · · · · · · · · · ·	· · · · · · · · · · · · · · · · ·

Convention: Among equivalent alignments, we will use those where
a character from string Y that is matched to a
gap is positioned as far left as possible while
maintaining the relative ordering of the characters
of both strings.
e.g., between $AB_$ and A_B , we will use the C_D $CD_$
the latter alignment because, in the left alignment,
"D" (and its match) can be moved left without changing
the relative ording of the character.

with each	alignment (as per our convention), we can associate
a unique	mugad string as follows:
A_ B CD_	$ \xrightarrow{A = B} ACDB (ignoring gaps) $ $ \xrightarrow{C D =} ACDB (ignoring gaps) $
Convercely,	with any muged string, we can associate a unique
alignment	(as per our convention) as follows:
	$A C D B \longrightarrow A C D B \longrightarrow A - B$
· · · · · · · · · · · ·	any adjacent pair of characters
	(X followed by Y) must be a match
	as pu our convention

· · ·		T	ĥw	J	.)	· · ·	nυ	•	0	f	· ·	di	1]	ìn	t	•	P P	j,	gn	m	J.	t <mark>s</mark>	•		•	no	· · ·	0	F.	n N N	الع الع ا	g	ed d	• •	י -2 י	tvi		<u>ר</u>	•	•	· ·	•	•
· · ·	•	•	•	•	•	• •	· · ·	•	•	•	· · ·	•	•	•	•	• •		•	•	· ·	•	•	•			5	· · ·	- - - -	4	י ג ג ג	5 5 7	4 <u>-</u>	-	¥		Þ	ìc	kì	rg	•	n	•	•
· ·	•	•	•	•	•	• •	· ·	•		•	· ·	•	•	•	•			•	•	· ·	•	•	•	· ·) Ƴ 1	de	NL N	d	S	0	2	•	0 n	t.	0. 1	f	(n	<u>n</u> +	n)	2	01	2
• •	•	•	•	•	•	• •	· ·	•	•	•	· ·	•	•	•	•	- ·		•	•	• •	•	•	•	· · ·	•	۲ ۲	۱+	-m		•		• •	•	•	•	•	•	• •	•	•	• •	•	•
• •	•	•	•	•	•	• •	· ·	•	•	•	· ·	•	•	•	•	- ·		•	•	••••	•	•	•	· ·	•	•	· ·	•	'n	1	•	• •	•	•	•	•	•	• •	•	•	· ·	•	•
· · ·	•	•	•	•	•	- ·	· ·	•	•	•	· ·	•	•	•	•			•	•	· ·	•	•	•	· · ·	•	•	· ·	•	••••	•	•	• •	•	•	•	•	•	• •	•	•	• •	•	•
• •	•	•	•	•	•	• •	· · ·	•	•	•	· ·	•	•	•	•			•	•	• •	•	•	•	• •	•	•	· ·	•	• •	•	•	• • • •	•	• •	•	•	•	• •	•	•	• •	•	•
• •	0	•	•	•		•		•	•		• •	•	•	•		• •		•		• •	•	•	•	• •	•		• •	•		•	•	• •	•		•	•	•	• •	•	•		•	•

					•										*		•	•						• •								1.1			
	• •														2		1.	۱.		2											•			• •	
	• •			•							•	•	•	•	1	0	D	ĮĽ	1	L	•						•	• •			•	•	•	• •	
																•																			
	_	-	-			-	_		-																										

Problem 2 [12 points]

Given an integer n and nonnegative numbers $p_1, \ldots, p_n \in [0, 1]$, you want to determine the probability of obtaining strictly more heads than tails when n biased coins are tossed independently at random, where p_i is the probability that the i^{th} coin comes up heads. Give an $\mathcal{O}(n^2)$ algorithm for this task. Assume you can multiply and add two numbers in [0, 1] in $\mathcal{O}(1)$ time. Justify the correctness and running time of your algorithm.

We will design a dynamic programming algorithm.
For any $i \in \{0, 1,, n\}$ and $j \in \{1, 2,, n\}$, let
Tij denote the probability of obtaining exactly i heads from the first j coins (assuming $i \leq j$).
\sim
Then, the decided answer is given by $\sum T_{i,n}$. $i \in \left\lfloor \frac{n}{2} \right\rfloor + 1$

Recurrence: For $i \in \{0, 1,, n\}$ of	and $j \in \{1, 2,, n\}$
$\Gamma(1-p_1)(1-p_2) - (1-p_j)$	if i = 0
$T_{i_1} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$	if i > j
Γ	if i=1 and $j=1$
$\begin{bmatrix} p_j \cdot T_{i-1,j-1} + (1-p_j) \cdot T_{i-1,j-1} \end{bmatrix}$	Ti, j-1 Otherwise
heads for tails for	
f coin from from	l head from
(1-1) neads from	previous (j-1) coins
previous (J-1) Orins	· · · · · · · · · · · · · · · · · · ·

Algorithm	
input : n nonnégative numbers p1, p2,, pn	
output : a nonnégative number p // prob	ability of strictly more
* initialize 2D away T of size (n+1);	de than tails X n
// base cases	· · · · · · · · · · · · · · · · · · ·
$ \begin{array}{ll} \star & T(0,j) = TT(1-p_k) & \text{for all } j \in \ \\ K \leq j \end{array} $	1, 2, -·, n}
$\star T(1,1) = p_1$	
$* T(i,j) = 0$ for all $i \neq j$	

* for all	j e{2,3,n		· · · · · · · ·	 	· · · · · · · · · · ·	· · · ·
for	r all i e {1,.	· ` Ĵ]	· · · · · · · ·	· · · · · · · ·		· · · ·
	$T(i,j) = p_j$	T (ι-1, j-1)	+ ([-	þj)- T	(i, j-1)	· · ·
* heturn	$\sum_{i \in \left\lfloor \frac{n}{2} \right\rfloor + 1}^{n}$		· ·	. .		
Consectruss :	Follows from	n induction	and l	law of	Conditional	· · · ·
	probability		· · · · · · ·	· · · · · · ·		· · · ·

Running time: Base case T(0,j) takes $O(n^2)$ time since we are given that multiplication is O(1). T is of size $O(n^2)$. Computing T(iij) inside the nested for-loop takes O(1) time per entry. Thus, the algorithm takes $O(n^2)$ time overall.