
COL 351 : ANALYSIS & DESIGN Of ALGORITHMS

LECTURE 26

DYNAMIC PROGRAMMING I :

SEQUENCE ALIGNMENT (CONTD) & BELLMAN FORD ALGORITHM

OCT O4 , 2024 / RONT VAISH

SEQUENCE ALIGNMENT

input : strings X = M
, x2 ... I'm Y = Y , ye-- Yu Over alphabet I

SEQUENCE ALIGNMENT

input : strings X = M
, x2 ... I'm Y = Y , ye-- Yu Over alphabet I

output : an alignment of X and Y with minimum total penalty.

SEQUENCE ALIGNMENT

input : strings X = M
, x2 ... I'm Y = Y , ye-- Yu Over alphabet I

output : an alignment of X and Y with minimum total penalty.

a way of insecting gaps into one or both

strings so that they have equal length

SEQUENCE ALIGNMENT

input : strings X = M
, x2 ... I'm Y = Y , ye-- Yu Over alphabet I

output : an alignment of X and Y with minimum total penalty.

a way of insecting gaps into one or both

strings so that they have equal length

X + gaps

Y + gaps
~

common length I

SEQUENCE ALIGNMENT

input : strings X = M
, x2 ... I'm Y = Y , ye-- Yu Over alphabet I

output : an alignment of X and Y with minimum total penalty.

a way of insecting gaps into one or both

strings so that they have equal length

X + gaps e. g.,

o currance
Y + gaps
~ occurrence

common length I

SEQUENCE ALIGNMENT

input : strings X = M
, x2 ... I'm Y = Y , ye-- Yu Over alphabet I

output : an alignment of X and Y with minimum total penalty.

X = AGGCT

Y = ACGGCC

SEQUENCE ALIGNMENT

input : strings X = M
, x2 ... I'm Y = Y , ye-- Yu Over alphabet I

output : an alignment of X and Y with minimum total penalty.

X = AGGCT

Y = ACGGCC

Which is better :

AGGCT-
or

A
- GGC - T

?
AcGGCC A CGGCC-

SEQUENCE ALIGNMENT

input : strings X = M
, x2 ... I'm Y = Y , ye-- Yu Over alphabet I

output : an alignment of X and Y with minimum total penalty.

Gap penaltygap

Mismatch penalty Kay
where ,ye I

SEQUENCE ALIGNMENT

input : strings X = M
, x2 ... I'm Y = Y , ye-- Yu Over alphabet I

output : an alignment of X and Y with minimum total penalty.

Gap penaltygap 7,
0 Why ?

Mismatch penalty Kay
where ,ye I

SEQUENCE ALIGNMENT

input : strings X = M
, x2 ... I'm Y = Y , ye-- Yu Over alphabet I

output : an alignment of X and Y with minimum total penalty.

c -a -t
Gap penaltygap 7,

0

-
d
-

0
- g

Mismatch penalty Kay
where ,ye I

SEQUENCE ALIGNMENT

input : strings X = M
, x2 ... I'm Y = Y , ye-- Yu Over alphabet I

a gap penalty [gap 70 ,
a mismatch penalty Kny AnyeZ.

output : an alignment of X and Y with minimum total penalty.

SEQUENCE ALIGNMENT

input : strings X = M
, x2 ... I'm Y = Y , ye-- Yu Over alphabet I

a gap penalty [gap 70 ,
a mismatch penalty Kny AnyeZ.

output : an alignment of X and Y with minimum total penalty.

Sum of all gap and mismatch penalties

Needleman - Wunsch (W) score

SEQUENCE ALIGNMENT

input : strings X = M
, x2 ... I'm Y = Y , ye-- Yu Over alphabet I

a gap penalty [gap 70 ,
a mismatch penalty Kny AnyeZ.

output : an alignment of X and Y with minimum total penalty.

SEQUENCE ALIGNMENT

input : strings X = M
, x2 ... I'm Y = Y , ye-- Yu Over alphabet I

a gap penalty [gap 70 ,
a mismatch penalty Kny AnyeZ.

output : an alignment of X and Y with minimum total penalty.

Example :Egap = 1 Lay
= 2 # nycz

X = AGT AC G

y = A CAT AG

SEQUENCE ALIGNMENT

input : strings X = M
, x2 ... I'm Y = Y , ye-- Yu Over alphabet I

a gap penalty [gap 70 ,
a mismatch penalty Kny AnyeZ.

output : an alignment of X and Y with minimum total penalty.

Example :Egap = 1 Lay
= 2 # nycz

X = AGT AC G

y = A CAT AG

NW Score =?

SEQUENCE ALIGNMENT

input : strings X = M
, x2 ... I'm Y = Y , ye-- Yu Over alphabet I

a gap penalty [gap 70 ,
a mismatch penalty Kny AnyeZ.

output : an alignment of X and Y with minimum total penalty.

Example :Egap = 1 Lay
= 2 # nycz

X = AGT AC G

y = A CAT AG

SEQUENCE ALIGNMENT

input : strings X = M
, x2 ... I'm Y = Y , ye-- Yu Over alphabet I

a gap penalty [gap 70 ,
a mismatch penalty Kny AnyeZ.

output : an alignment of X and Y with minimum total penalty.

Example :Egap = 1 Lay
= 2 # nycz

X = AGT AC G

y = A CAT AG

SEQUENCE ALIGNMENT

input : strings X = M
, x2 ... I'm Y = Y , ye-- Yu Over alphabet I

a gap penalty [gap 70 ,
a mismatch penalty Kny AnyeZ.

output : an alignment of X and Y with minimum total penalty.

Example :Egap = 1 Lay
= 2 # nycz

X = AGT AC G
No gaps= penalty = 0

y = A CAT AG

SEQUENCE ALIGNMENT

input : strings X = M
, x2 ... I'm Y = Y , ye-- Yu Over alphabet I

a gap penalty [gap 70 ,
a mismatch penalty Kny AnyeZ.

output : an alignment of X and Y with minimum total penalty.

Example :Egap = 1 Lay
= 2 # nycz

X = AGT AC G A--GTACG

y = A CAT AG A CA - TA - G

From gaps =>> penalty = 4

SEQUENCE ALIGNMENT

input : strings X = M
, x2 ... I'm Y = Y , ye-- Yu Over alphabet I

a gap penalty [gap 70 ,
a mismatch penalty Kny AnyeZ.

output : an alignment of X and Y with minimum total penalty.

Example :Egap = 1 Lay
= 2 # nycz

X = AGT AC G
Is penalty <3 possible ?

y = A CAT AG

SEQUENCE ALIGNMENT

input : strings X = M
, x2 ... I'm Y = Y , ye-- Yu Over alphabet I

a gap penalty [gap 70 ,
a mismatch penalty Kny AnyeZ.

output : an alignment of X and Y with minimum total penalty.

Example :Egap = 1 Lay
= 2 # nycz

X = AGT AC G
Is penalty <3 possible ? No !

y = A CAT AG

SEQUENCE ALIGNMENT

input : strings X = M
, x2 ... I'm Y = Y , ye-- Yu Over alphabet I

a gap penalty [gap 70 ,
a mismatch penalty Kny AnyeZ.

output : an alignment of X and Y with minimum total penalty.

Example :Egap = 1 Lay
= 2 # nycz

X = AGT AC G
Is penalty <3 possible ? No !

Y = ACATAG Strings of equal length => #gaps is even

SEQUENCE ALIGNMENT

input : strings X = M
, x2 ... I'm Y = Y , ye-- Yu Over alphabet I

a gap penalty [gap 70 ,
a mismatch penalty Kny AnyeZ.

output : an alignment of X and Y with minimum total penalty.

Example :Egap = 1 Lay
= 2 # nycz

X = AGT AC G
Is penalty <3 possible ? No !

y = A CAT AG
Strings of equal length =>> #gaps is even

If #gaps = O
,
then #mismatches = 4

SEQUENCE ALIGNMENT

input : strings X = M
, x2 ... I'm Y = Y , ye-- Yu Over alphabet I

a gap penalty [gap 70 ,
a mismatch penalty Kny AnyeZ.

output : an alignment of X and Y with minimum total penalty.

Example :Egap = 1 Lay
= 2 # nycz

X = AGT AC G
Is penalty <3 possible ? No !

y = A CAT AG
Strings of equal length =>> #gaps is even

If #gaps = O
,
then #mismatches = 4

If #gaps = 4 , then penalty 4

SEQUENCE ALIGNMENT

input : strings X = M
, x2 ... I'm Y = Y , ye-- Yu Over alphabet I

a gap penalty [gap 70 ,
a mismatch penalty Kny AnyeZ.

output : an alignment of X and Y with minimum total penalty.

Example :Egap = 1 Lay
= 2 # nycz

X = AGT AC G
Is penalty <3 possible ? No !

y = A CAT AG
Strings of equal length =>> #gaps is even

If #gaps = O
,
then #mismatches = 4

If #gaps = 4 , then penalty 4

If #gaps = 2 ,
then #mismatches 1 .

SEQUENCE ALIGNMENT

input : strings X = M
, x2 ... I'm Y = Y , ye-- Yu Over alphabet I

a gap penalty [gap 70 ,
a mismatch penalty Kny AnyeZ.

output : an alignment of X and Y with minimum total penalty.

Example :Egap = 1 Lay
= 2 # nycz

X = AGT AC G
NW Score = 4

.

y = A CAT AG

SEQUENCE ALIGNMENT

input : strings X = M
, x2 ... I'm Y = Y , ye-- Yu Over alphabet I

a gap penalty [gap 70 ,
a mismatch penalty Kny AnyeZ.

output : an alignment of X and Y with minimum total penalty.

(Exercise)

alignments between X and Y : exponential in (n + m) .

Brute force is prohibitive

OPTIMAL SUBSTRUCTURE

OPTIMAL SUBSTRUCTURE

X + gaps

Y + gaps

OPTIMAL SUBSTRUCTURE

equal length &
X + gaps

Y + gaps

OPTIMAL SUBSTRUCTURE

equal length &
X + gaps

Y + gaps

OPTIMAL SUBSTRUCTURE

How
many

relevant cases ?

equal length &
X + gaps

Y + gaps

OPTIMAL SUBSTRUCTURE

How
many

relevant cases ? Three

equal length &
X + gaps

Y + gaps

OPTIMAL SUBSTRUCTURE

How
many

relevant cases ? Three

either u or a gap

equal length &
X + gaps

Y + gaps

OPTIMAL SUBSTRUCTURE

How
many

relevant cases ? Three

either u or a gap

equal length &
X + gaps

Y + gaps
either yn or

a gap

OPTIMAL SUBSTRUCTURE

How
many

relevant cases ? Three

either u or a gap
X + gaps

equel length[1 + gaps
either yn or

a gap

Ygap30
=> both can't be gaps !

OPTIMAL SUBSTRUCTURE
- X + gaps-
- y + gaps-

↑

OPTIMAL SUBSTRUCTURE

Let X : = X- um Y : = y - yu
- X + gaps-
- y + gaps-

↑

OPTIMAL SUBSTRUCTURE

Let X : = X- um Y : = y - yu
- X + gaps-
- y + gaps-

Case I : Final characters are um and you

Case I : Final characters are um and gap
↑

Case I : Final characters are gap and yu

OPTIMAL SUBSTRUCTURE

Let X : = X- um Y : = y - yu
- X + gaps-
- y + gaps-

Case I : Final characters are um and yo
induced alignment

Case I : Final characters are um and gap
↑

Case I : Final characters are gap and yu

OPTIMAL SUBSTRUCTURE

Let X : = X- um Y : = y - yu
- X + gaps-
- y + gaps-

Case I : Final characters are um and you
induced alignment

=> induced alignment of Xandy' is optimal.

Case I : Final characters are um and gap
↑

CaseI : Final characters are gap and Yu

OPTIMAL SUBSTRUCTURE

Let X : = X- um Y : = y - yu
- X + gaps-
- y + gaps-

Case I : Final characters are um and you
induced alignment

=> induced alignment of Xandy' is optimal.

Case I : Final characters are um and gap
=> induced alignment of Xand Y is optimal.

Case I : Final characters are gap and yu

OPTIMAL SUBSTRUCTURE

Let X : = X- um Y : = y - yu
- X + gaps-
- y + gaps-

Case I : Final characters are um and you
induced alignment

=> induced alignment of Xandy' is optimal.

Case I : Final characters are um and gap
=> induced alignment of Xand Y is optimal.

Case I : Final characters are gap and yu
=> induced alignment of X and Y' is optimal.

OPTIMAL SUBSTRUCTURE

Let X : = X- um Y : = y - yu
- X + gaps-
- y + gaps-

Case I : Final characters are um and you
induced alignment

=> induced alignment of Xandy' is optimal.

Case I : Final characters are um and gap
=> induced alignment of Xand Y is optimal.

Case I : Final characters are gap and yu
=> induced alignment of X and Y' is optimal.

Exercise : Prove formally.

RELEVANT SUBPROBLEMS

subproblems are two-dimensional (like knapsack)

Xi := first : letters ofX

Y := first letters of Y

THE RECURRENCE

THE RECURRENCE

Define Pij == penalty of optimal alignment of Xi and Yy

THE RECURRENCE

Define Pij == penalty of optimal alignment of Xi and Yy

For all i = 1
,
2
,
--

,
m and j = 1

,
2
, -- n

THE RECURRENCE

Define Pij == penalty of optimal alignment of Xi and Yy

For all i = 1
,
2
,
--

,
m and j = 1

,
2
, -- n

11 case I

Pij = 11 case I

11 case I

THE RECURRENCE

Define Pij == penalty of optimal alignment of Xi and Yy

For all i = 1
,
2
,
--

,
m and j = 1

,
2
, -- n

Criyj T Pit , (j) 1/ case I

Pij = 11 case I

11 case I

THE RECURRENCE

Define Pij == penalty of optimal alignment of Xi and Yy

For all i = 1
,
2
,
--

,
m and j = 1

,
2
, -- n

Criyj T Pit , (j) 1/ case I

Pij = Y
gap + Pi

, j /1 case I

11 case I

THE RECURRENCE

Define Pij == penalty of optimal alignment of Xi and Yy

For all i = 1
,
2
,
--

,
m and j = 1

,
2
, -- n

Criyj T Pit , (j) 1/ case I

Pij = Y
gap + Pi

, j /1 case I

Egap + Pi
, (j) 11 case I

THE RECURRENCE

Define Pij == penalty of optimal alignment of Xi and Yy

For all i = 1
,
2
,
--

,
m and j = 1

,
2
, -- n

Lasyj ↑ Pit
, (j) 1/ case I

Pij = min S Ygap + Pi
, j /1 case I

L
gap

+ Pi
, (j) 1 case I

THE RECURRENCE

Define Pij == penalty of optimal alignment of Xi and Yy

For all i = 1
,
2
,
--

,
m and j = 1

,
2
, -- n

S
Criyj T Pit , (j) 1/ case I

Pij = min Lgap + Pit
, j /1 case I

L
gap

+ Pi
, (j) 1 case I

Base cases : Pio :=?

THE RECURRENCE

Define Pij == penalty of optimal alignment of Xi and Yy

For all i = 1
,
2
,
--

,
m and j = 1

,
2
, -- n

S
Criyj T Pit , (j) 1/ case I

Pij = min Lgap + Pit
, j /1 case I

L
gap

+ Pi
, (j) 1 case I

Base cases : Prio : = i
. Xgap

THE RECURRENCE

Define Pij == penalty of optimal alignment of Xi and Yy

For all i = 1
,
2
,
--

,
m and j = 1

,
2
, -- n

S
Criyj T Pit , (j) 1/ case I

Pij = min Lgap + Pit
, j /1 case I

L
gap

+ Pi
, (j) 1 case I

Base cases : Pro : = i
. &gap Po

, j
: = j . Xgap

THE ALGORITHM

THE ALGORITHM
A = two-dimensional away of size (m+ 1) X (n +1)

THE ALGORITHM
A = two-dimensional away of size (m+ 1) X (n +1)

1/ base cases

Ali , 0] = i . Xgap # :

Alo , j] = j . <gap j

THE ALGORITHM
A = two-dimensional away of size (m+ 1) X (n +1)

1/ base cases

Ali , 0] = i . Xgap # :

Alo , j] = j . <gap j
1/ main loop
for i = 1 , 2, ..., m

for j = 1
,
2, -- n

THE ALGORITHM
A = two-dimensional away of size (m+ 1) X (n +1)

1/ base cases

Ali , 0] = i . Xgap # :

Alo , j] = j . <gap j
1/ main loop
for i = 1 , 2, ..., m

for j = 1
,
2, -- n

S
All-

, j-1) + Kniyj
Allj] = min Alit , j] + Lgap

Ali , j-1] + Xgap

THE ALGORITHM

Correctness : By induction (Exercise

↑

THE ALGORITHM

Correctness : By induction (Exercise

Running time : 0 (m . n) O (1) work each of

O(mn) subproblems

↑

THE ALGORITHM

Correctness : By induction (Exercise

Running time : 0 (m . n) O (1) work each of

O(mn) subproblems

Reconstruction : Easy Case I
,
I

,
Il explicitly tells us

where a gap is inserted.

REVISITING SINGLE SOURCE SHORTEST PATHS

SINGLE-SOURCE SHORTEST PATH PROBLEM

input : A directed graph G = (V , El , starting vertex s ,
a non negative lengthle for each edge eE

output : dist(s, v) for every
vetex veV.

SINGLE-SOURCE SHORTEST PATH PROBLEM

input : A directed graph G = (V , El , starting vertex s ,
a non negative lengthle for each edge eE

output : dist(s, v) for every
vetex veV.

length of the shortest path from stor if swer path exists
& otherwise

ON DIJKSTRA'S ALGORITHM

ON DIJKSTRA'S ALGORITHM

O(mlogn) running time with heaps

ON DIJKSTRA'S ALGORITHM

O(mlogn) running time with heaps

not always correct with negative edge lengths
(e . g .. if edges > financial transactions)

ON DIJKSTRA'S ALGORITHM

O(mlogn) running time with heaps

not always correct with negative edge lengths
(e . g .. if edges > financial transactions)

highly centralized

(need distributed algorithm for internet routing)

ON DIJKSTRA'S ALGORITHM

O(mlogn) running time with heaps

not always correct with negative edge lengths
(e . g .. if edges > financial transactions)

highly centralized

(need distributed algorithm for internet routing)
Solution : Bellman- Ford algorithm

NEGATIVE CYCLES

How to define shortest paths in the presence of negative cycles ?

NEGATIVE CYCLES

How to define shortest paths in the presence of negative cycles ?
4
-

&
S -4 -5

V

7

3

NEGATIVE CYCLES

How to define shortest paths in the presence of negative cycles ?
4
-

S -4
V

↑
-5 cycle with weight -2

7

3

NEGATIVE CYCLES

How to define shortest paths in the presence of negative cycles ?
4
-

S -4
↑
-5

V

7

3

If we include cycles in shortest paths

then length of the shortest path is undefined (or-0).

NEGATIVE CYCLES

How to define shortest paths in the presence of negative cycles ?
4
-

S -4
↑
-5

V

7

3

If we require shortest cycle-free path

then the problem is NP-complete (no known poly-time algo .)

NEGATIVE CYCLES

How to define shortest paths in the presence of negative cycles ?
4
-

S -4
↑
-5

V

7

3

If we require shortest cycle-free path

then the problem is NP-complete (no known poly-time algo .)

encodes" longest path" problem

NEGATIVE CYCLES

How to define shortest paths in the presence of negative cycles ?
4
-

S -4
↑
-5

V

7

3

solution : Allow negative length edges but not negative cycles.

NEGATIVE CYCLES

How to define shortest paths in the presence of negative cycles ?
4
-

&
S -4 -5

V

7

3

solution : Allow negative length edges but not negative cycles.

will show how to quickly check this

