COL 3	51 : ANALYEIS	& DESIGN	N of A	LGORITHMS	· · · · · ·
	LEC	FURE 26		<th>· · · · · · ·</th>	· · · · · · ·
. .	DYNAMIC	PROGRAM	ning IV	· · · · · · · · · · · · · · · · · · ·	· · · · · ·
SEQUEN CE	ALIGNMENT (C	NTD) &	Bellman	FORD ALGO	RITHM
SEQUEN CE	AUGNMENT (CA	ONTD) &	Bellman	FORD ALGO	LITHM

			SEQUENCE	ALIGNMENT	
• •	input	strungs	$\chi = \pi_1 \pi_2 \cdots$	x_{m} $Y = y_{1} y_{2}$	Yn Over alphabet Z
• •			· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·
• •		· · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·
• •	· · · · ·	· · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·
• •	· · · · ·	· · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·
• •					
• •	· · · · ·	· · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·	
• •	· · · ·	· · · · · · · · · ·	· · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	

• •		· · ·	· · · · ·		SEQ	JENCE	AL	IGNMENT		
• •	inpu	t : .	strur	2 gr	X = X	1 2	n n m	$\gamma = \gamma_1 \gamma_2$	Yn Over	alphabet S
· ·	outp	ut:	Qin	alig	nment	of X	and	Y with minim	ium total	penalty
• •	· · ·	· · ·	· · · · ·	· · · · ·				· · · · · · · · · · · · · · · · · · ·	· · · · · · · · ·	· · · · · · · · · · ·
•••	· · ·	· · ·	· · · · ·	· · · · ·		· · · · · ·	· · · · ·		· · · · · · · · ·	
• •		· · · ·	· · · · ·	· · · ·						· · · · · · · · · · ·
	· · · ·	· · ·	· · · · ·	· · · ·		· · · · · ·	· · · · ·			· · · · · · · · · · · ·
	· · ·	· · ·	· · · · ·	· · · · ·	· · · · · ·	· · · · · ·	· · · · ·	· · · · · · · · · · · ·	· · · · · · · · ·	· · · · · · · · · · ·
• •	· · · ·	· · ·	· · · · ·	· · · · ·	· · · · · ·		· · · · ·			· · · · · · · · · · · ·
								· · · · · · · · · · ·		

		•	• •	· ·	•	•	• •	•	• •	• •	S	EG	2U	EN	C	E	A		IG	Ν	M	E۲	11	- · ·		••••		•		•	• •			
• •	in	þu	t		•	st	tùr	r Bv	2.	• •	X [°] =	 	1 1	N2		~.' ·	rl m	 1 .	•	Y. :		y,	y	· ^ ·	~ .	yr	۰. ۱	01	اور ا	al	pho	be	* 2	
· ·	0 v	itpi	nt		•	01	n	. (ali	gn	me	nt		of	}	K I	an	d	Y	Ь	ith	۰ ۲	ηὶ᠇	nî m	INT	n	to	-ta	J	þ	na	lty	• •	
• •	••••	•	• •	· ·	•	•	· ·	•	: \\ . \	• •		• •		• • •		• •		• •	•		• •	•	· ·	•••	•	• •	• •	•	••••	•	• •			
• •	• •	•	• •	• •	•	•	• •	•	· ·	• •	•	- · ·	st	W	() 2 g	• •	۱. ۵2	t	ha	t	(tř	hey	U h	r	2	e	jue	L		len	g th			· ·
• •		•	• •	• •	•	•	· ·	•	• •	• •	•	• •	• •	· · ·		• •	•	· ·	•	• •	• •	U	· ·	• •	•	• •	• •	•	• •	•	• •	• •		• •
• •	• •	•		• •	•	•	• •	•	•••	• •	•	•••	• •	• • •		• •	•	• •	•	• •	•••	•	· ·	· ·		• •	· ·	•	•••	•	· ·	• •		• •
• •	• •	•	• •	• •	•	•	· ·	•	· ·	• •	•	••••	• •	· · ·	· ·	• •	•	· ·	•	· ·	• •	•	· ·	• •	•	· ·	• •	•	• •	•	• •	• •		• •
•••	• •	•	• •	• •	•	•	• •	•	• •	• •	•	· ·	• •	• • •		• •	•	• •	•	· ·	• •	•	• •	•••	•	· ·		•	•••	•	· ·	• •		· ·
•••	••••	•	• •	• •	•	•	· ·	•	••••	••••	•	•••	• •	• • •	· ·	• •	•	• •	•	• •	•••	•	• •	••••	•	· ·		•	••••	•				

			S	EQUENCE	ALIGNME	NT			
in	put :	strin			h_{m} $Y = y$		yn ove	r alpha	int E
0 1	tput:	Qin	alignme	nt of X	and Y with		n total	- penal	ty .
· · · · ·	· · · ·	· · · · ·		a way	of inserting	gaps	into on	e 0r	both
· · · · ·	· · · · ·	· · · · ·	· · · · · · ·	strings	of inserting so that the	y have	equal	length	· · · · ·
· · · ·	· · · ·	· · · · ·	· · · · · · ·	· · · · · · · · ·	· · · · · · · · · · ·	· · · · · · ·	· · · · · · ·	· · · · ·	· · · ·
· · · ·	· · · · ·	· · · ·	· · · · · · · ·	× × × × × × × × × × ×	gaps —	· · · · · · ·	· · · · · · ·	· · · · · ·	
· · · ·	· · · ·	· · · · ·	· · · · · · · · · · · · · · · · · · ·	<u> </u>	gaps —	· · · · · · · ·	· · · · · · ·	· · · · ·	
		· · · ·							
			· · · · · · ·	Common	length l	· · · · · · ·			

		SEQUENCE	ALIGNMENT
input :	strings	$\chi = \chi_1 \chi_2 \dots$	$n_m Y = y_1 y_2 \cdots y_n$ over alphabet \geq
output:	an alig	nment of X	and Y with minimum total penalty.
		a way storings	of inserting gaps into one or both so that they have equal length
· · · · · · · · · · ·			
	<u> </u>	Υ +	gaps O_curhance Occurhence
· · · · · · · · · ·		Common	length l

		SEQUENCE	ALIGNMENT	
input :	strings	$\chi = \pi_1 \pi_2 - \cdots$	x_m $Y = y_1 y_2 \cdots y_n$ over alphabet \geq	
output:	oin aligr	ment of X	and Y with minimum total penalty.	•
. 	· · · · · · · · · · · ·	X = A G	GCT	•
	· · · · · · · · · · ·	Y=AC	GGCC	•
· · · · · · · · · · ·				
· · · · · · · · · ·	· · · · · · · · · · ·	· · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	0
· · · · · · · · · · ·	· · · · · · · · · · ·	· · · · · · · · · · · · · · · ·		•

		SEQUENCE	ALIGNMENT
input :	strings	$X = x_1 x_2 - \cdots$	x_m $Y = y_1 y_2 \cdots y_n$ over alphabet \geq
			and Y with minimum total penalty.
. .		X = A G Y = A C	GCT GGCC
21 hìch là	better :	AGGC ACGG	T = A = G G C = T or $A = G G C C = ?$ $A = C G G C C = ?$

	Seo	UENCE	ALIG	NMENT			
input: stri	ngs X =	x, x ₂ - ~	nt _m	$\gamma = \beta_1 \beta_2$	Yn	٥٧٥ر	alphabet Z
output: an	alignment	of X	and Y	with minin	num t	otal	penalty
· · · · · · · · · · · · · · · ·			· · · · · ·	· · · · · · · · · · ·		· · · ·	
Gap	penalty 0	Kgap	· · · · · ·	· · · · · · · · · · ·		· · · ·	
· · · · · · · · · · · · · · ·	· · · · · · · · ·	· · · · · · ·	· · · · · ·	· · · · · · · · · · ·	· · · ·	· · · ·	· · · · · · · · ·
Mismatch	penalty 0	Chy	· · · · · · ·	· · · · · · · · · · · ·	· · · · ·	· · · · ·	· · · · · · · · · ·
· · · · · · · · · · · · · · · ·	Where M		 	· · · · · · · · · · ·	· · · ·	· · · ·	· · · · · · · · ·
· · · · · · · · · · · · · · ·	· · · · · · · · · ·	0	· · · · · ·	· · · · · · · · · · ·	· · · ·	· · · ·	· · · · · · · · · ·
· · · · · · · · · · · · · · ·							

	SEQUENCE	ALI	gnment			
input : strings				Yn	0٧ور	alphabet Z
output: an alig						
Gap pena	lty Xgap 7	, 0	Why ?	· · · · · ·		
Mismatch pena	Ity Kny	· · · · · ·		· · · · ·		· ·
	hue ny EZ					
· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · ·	· · · · · ·		· · · · ·	· · · · ·	· · · · · · · · · ·

Inhat: strings X - A. A A Y = Y Y and Y Over all habet	
input: strings $X = x_1 x_2 - x_m Y = y_1 y_2 - y_n$ over alphabet:	Σ
output: an alignment of X and Y with minimum total penalty.	• •
Gap penalty $\alpha_{gap} = 7 0$ -d = 0 - g	
Mismatch penalty α_{ny}	
WTHURE MIYEZ	

	• •	•	•	0	•	•	•	•	•	•	•	•	•	•	•	S	E	Q		9E	N	10	26		• •	A	L	(i t	Ĵ	M	E	N	T	-	•	•	• •	•	•	•	•	•		• •	•	•	•	
•		in	Þ٩	t		•	•	5	tn	ir İ	g.	2	•	•	X	(:	-		×,	. ^	N ₂		- ^	.•	2	m		•	Y	' =	 	y	1	y,	, ,		•	y	1		٥v	د وبر ا	.	al	þh	ab	t	× Z	
	• •	•	•	•	•	•					\sim																																						Σ
•	C) W	tþ	nt	- - 2 -	•													•																											Jł			• •
	• •			•		•														•		•			•	• •		0					0					• •	0			•			• •	0			• •
•	• •	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•			• •		•	•	•	• •		•	•	•	•	•	• •	•	•	•	•	•		• •	•	•	•	• •
•	• •	•		•	•	0	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•		• •		•		•	• •			•	•	•	•	• •	•		•	•			• •	•		•	• •
•	• •	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•		• •	•	•	•	•	• •	•	•	•	•	•	•	•••	•	•	•	•	•	•	• •	•	•	•	• •
	• •	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•		• •		•	•	•	• •		•	•	•	•	•	• •	•	•	•	•	•		• •	•	•	•	
		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•		•	•			•	•	•	•		•	•	•	•	•			•	•	•	•	•		• •	•	•	•	• •
0		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•			• •		•	•	•	• •		•	•	•	•		• •	•	•	•	•	•		• •	0	•	•	• •
•	• •	•	•	•	•	•	•	•	•	•		•	•	•		•	•	•	•	•	•	•	•			• •		•	•	•	• •		•	•	•	•	•	• •	•	•	•	•	•		• •	0	•	•	• •
•	• •			•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	• •	• •	•	•	•	•	• •	•		•	•	•	•	• •	0	•	•	•	•		• •	0	•	•	• •
•	• •		0	•	•	•	•	•	•	•		•		•	•	•		•	•	•	•	•	•	•		• •		•	•		• •		•	•		•		• •	•			•	•		• •	•	0		• •

	•	•	•	•		•	•	•		•	•		2	•	•		0	0	•	2	2	E	:6	2	i L)) (E	N	1	С	: 6	- (11	•			4	L	-1	e	3	1	1	1	1	E	Ī	1		Γ		•	•	0		0	•	•		•	•	•		•	•		•	•			•	•	
•	•	i	n	Þ١	ut	- U		•		<u>۶</u> -	tı	v	n	g	2		•	•	ľ V	X	. =			1	L	•	ſ	42	Ļ				•	1	L Y	m		•	•	•	Y	-	-	•	y	1	•	y	2	~	•	•		y	n	•	•	0	V	ีย	r		0	l	þl	ha	rp	って	*	N Z	2	
•	•	•	•	•		•	•			0	K.		(g	.0	ŀ	•	•	þ	e	n i	al	U	fr ((•	(2	/ - (<i>]</i>	M	, ,	-	7/	· (0			بر	•	0	r	•	γ γ	η	1.	2	n ^r	19	. †•	ŀ	l.		61	ยา	N	J	t. (y	•	C	X	י קר.	ly	ŀ	-	ŀ.	h	, L (1 e	2 2 1	· · ·
•	•	0	nt	[þ	N.	t		•																																																															0	•
•	•	•				•		•		•	•			•			0		•		0	•			•			•	•			•			•			•	•	•			•			•	•					•				/	/	/	/	•			•			•		•			•	
•	•	•	•	•		•	•	•		•	•			•	•		0	•	•		0	•	•		•	•		•	•	•			Si	1 1	m	۱.	(0-	f	•	P	J	l	•	g	ļa	Ý) .	(ንሳ	~~	ł	•	m	11	2	p	\ (z	ζ	h		ł	9e	'n	(7	Ļ	h	e	2	•	
•	•	•	•	•			•	•		•	•			•	•		0	•	•		0	•			•	•		•	•	•		•																						cł																	0	•
•	•	•	•	•		•	•	•		•	•			•	•		•	•	•		•	•	•		•	•		•	•	•		•	•		•	•		•	•	•			•	•		•	•	•			•	•	•		•	•	•	-		•			•	•		•	•			•	0	0
•	•	•	•	•		•	•	•		•	•			•	•		•	•	•		•	•	•		•	•		•	•	•		•	•		•	•		•	•	•			•	•		•	•	•			•	•	•		•	•	•		•	•			•	•		•	•		•	•	•	•
•	•	•	•	•		•	•	•		•	•			•	•		0	•	•		0	•	•		•	•		•	•	•		•	•		•	•		•	•	•			•	•		•	•	•			•	•	•		0	•	•		•	•	•		•	•		•	•			•	•	•
•	•	•	•	0		•	•	•		•	•			•	•		•	•	0		0	•			•	•		•	•	•		•	•		0	•		•	•	•			•	•		•	•	•			•	•	•		0	•	•		•	•			•	•		•	•			•	•	•

	• •	•	•	0	•	•	•	•	•	•	•	•	•	•	•	S	E	Q		9E	N	10	26		• •	A	L	(i t	Ĵ	M	E	N	T	-	•	•	• •	•	•	•	•	•		• •	•	•	•	
•		in	Þ٩	t		•	•	5	tn	ir İ	g.	2	•	•	X	(:	-		×,	. ^	N ₂		- ^	.•	2	m		•	Y	' =	 	y	1	y,	, ,		•	y	1		٥v	د وبر ا	.	al	þh	ab	t	× Z	
	• •	•	•	•	•	•					\sim																																						Σ
•	C) W	tþ	nt	- - 2 -	•													.																											Jł			• •
	• •			•		•														•		•			•	• •		0					0					• •	0			•			• •	0			• •
•	• •	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•			• •		•	•	•	• •		•	•	•	•	•	• •	•	•	•	•	•		• •	•	•	•	• •
•	• •	•		•	•	0	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•		• •		•		•	• •			•	•	•	•	• •	•		•	•			• •	•		•	• •
•	• •	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•		• •	•	•	•	•	• •	•	•	•	•	•	•	•••	•	•	•	•	•	•	• •	•	•	•	• •
	• •	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•		• •		•	•	•	• •		•	•	•	•	•	• •	•	•	•	•	•		• •	•	•	•	
		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•		•	•			•	•	•	•		•	•	•	•	•			•	•	•	•	•		• •	•	•	•	• •
0		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•			• •		•	•	•	• •		•	•	•	•		• •	•	•	•	•	•		• •	0	•	•	• •
•	• •	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•			• •		•	•	•	• •		•	•	•	•	•	• •	•	•	•	•	•		• •	0	•	•	• •
•	• •			•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	• •	• •	•	•	•	•	• •	•		•	•	•	•	• •	0	•	•	•	•		• •	0	•	•	• •
•	• •		0	•	•	•	•	•	•	•		•		•	•	•		•	•	•	•	•	•	•		• •		•	•		• •		•	•		•		• •	•			•	•		• •	•	0		• •

input: strungs $X = x_1 x_2 - x_m$ $Y = y_1 y_2 - y_n$ over alphabet Σ a gap penalty $\alpha_{gap} = 70$, a mismatch penalty $\alpha_{xy} \neq x_y \in \Sigma$ Output: an alignment of X and Y with minimum total penalty. Example: $\alpha_{gap} = 1$ $\alpha_{xy} = 2 + x_1 y \in \Sigma$ X = A G T A C G Y = A C A T A G			SEQUE	ENCE AL	IGNMENT		
a gap penalty $X_{gap} = 70$, a mismatch penalty $X_{ay} \neq x_{ay} \in \mathbb{Z}$ output: On alignment of X and Y with minimum total penalty. Example: $X_{gap} = 1$ $X_{ay} = 2 \neq x_{ay} \in \mathbb{Z}$ $X = A \in T A \subset G$	input :						ver alphabet Z
Output: On alignment of X and Y with minimum total penalty. Example: $X_{gop} = 1$ $X_{ny} = 2 + x, y \in \mathbb{Z}$ X = A G T A C G							
$\chi = A G T A C G$			· · · · · · ·				
	Example :	× gop	= [× _{ry} =	$2 + \chi_{1}$	εZ	
Y = A C A T A G	· · · · · · · · · · · ·		χ =	А	ACG	· · · · · · · · · ·	
· · · · · · · · · · · · · · · · · · ·			Y =	ACA	TAG		
	· · · · · · · · · · · ·		· · · · · · · ·			· · · · · · · · · · ·	

	SEQUENCE ALIGNMENT
input :	strings $X = x_1 x_2 - x_m$ $Y = y_1 y_2 - y_n$ over alphabet \geq
	a gap penalty Xgap ZO, a mismatch penalty Xxy # x,yeZ
	on alignment of X and Y with minimum total penalty.
Example :	$X_{gop} = 1$ $X_{ny} = 2 + x_{iy} \in \Sigma$
· · · · · · · · · · · ·	$\chi = A G T A C G$
· · · · · · · · · · ·	Y = A C A T A G
	NW score = ?

SEQUENCE ALIGNMENT	
input: strings $X = x_1 x_2 - x_m Y = y_1 y_2 - y_n$	over alphabet Z
a gap penalty Xgap 70, a mismatch per	nulty Kny Hn, yeZ
Output: On alignment of X and Y with minimum -	
Example: $X_{gap} = 1$ $X_{ny} = 2 + x_{ny} \in \mathbb{Z}$. .
$\chi = A G T A C G$	· · · · · · · · · · · · · · · · · ·
Y = A C A T A G	· · · · · · · · · · · · · · · · · ·
	· · · · · · · · · · · · · · · · · · ·

Sequ	ENCE ALIGNMENT
input: strings X = x	$n_2 - m_m Y = y_1 y_2 - y_n \text{over alphabet } \Sigma$
	Xgap 7,0, a mismatch penalty Xay # 1, yez
	of X and Y with minimum total penalty.
Example: Xgap = 1	$X_{ny} = 2 + x_{iy} \in \mathbb{Z}$
X = AGTAC	9
$\gamma = A C A T A$	G
. .	

	SEQUENCE ALIGNMENT
input :	strings $X = x_1 x_2 - x_m Y = y_1 y_2 - y_n$ over alphabet \geq
	a gap penalty Xgap 7,0, a mismatch penalty Xay # ayez
output:	an alignment of X and Y with minimum total penalty.
Example :	$X_{gap} = 1$ $X_{ny} = 2 + n, y \in \mathbb{Z}$
χ =	$A \in T \land C \in Q$ No gaps \implies penalty = 8
Υ =	ACATAG
	· · · · · · · · · · · · · · · · · · ·
· · · · · · · · ·	

SEQUENCE A	LIGNMENT
input: strings $X = x_1 x_2 - x_m$ a gap penalty $\alpha_{gap} = 7.0$, a mismatch penalty Xxy triyez
output: an alignment of X and	
Example: Xgap = 1 Xny =	$2 + x_y \in \mathbb{Z}$
$\chi = A G T A C G$	AGTACG
Y = A C A T A G	ACA-TA-9
	For gaps \Rightarrow penalty = 4

		SEQUE	NCE AL	IGNMENT		
input :	strings	$X = \mathbf{x}_{1} \mathbf{x}_{2}$	$k_2 - k_m$	$\gamma = \gamma_1 \gamma_2$	yn over	alphabet Z
	a gap	penalty	Xgap 7,0	, a mismat	ch penalty c	Xny Hn,yeZ
				Y with minin		
						· · · · · · · · · · · ·
Example :	× gop		$X_{ny} = $	2 + x,y	eΣ	· · · · · · · · ·
				penalty <		. ?
Χ =	Aqt	A C e	7		· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · ·
4 =	ACA	TAG		· · · · · · · · · · ·	· · · · · · · · · · ·	· · · · · · · · · ·
· · · · · · · · · ·	· · · · · · · ·	· · · · · · · ·	· · · · · · · · · ·	· · · · · · · · · · ·	· · · · · · · · · · ·	· · · · · · · · · · ·

		SEQUE	ENCE AL	IGNMEN	T		
imput :				Y = y,		yn over	alphabet Z
	a gap	penalty	Kgap 7,0	, a mis	match k	senalty x	'ny tri,yeZ
output:				Y with m			
							· · · · · · · · · · · · · · · · · · ·
Example :	×g°þ		$\propto_{ny} =$	2 + x	y eZ	• · · · · · ·	· · · · · · · · · ·
· · · · · · · · · · ·				s penalty			? No!
χ =	Aqt	A C C	9		· · · · · ·		· · · · · · · · · · · ·
Y =	A C A	TA	<u></u>	· · · · · · · · · ·	· · · · · ·	· · · · · · ·	· · · · · · · · · ·
	· · · · · · · ·	· · · · · · · ·					· · · · · · · · ·
· · · · · · · · ·				· · · · · · · · · ·			· · · · · · · · · ·

SEQUENCE ALIGNMENT
input: strings $X = x_1 x_2 - x_m Y = y_1 y_2 - y_n$ over alphabet \geq
a gap penalty Xgap ZO, a mismatch penalty Xny HrigeZ
output: an alignment of X and Y with minimum total penalty.
Example: $X_{gap} = 1$ $X_{ny} = 2 + x_{ny} \in \mathbb{Z}$
$X = AGTACG$ Is penalty ≤ 3 possible? No!
Y = ACATAG Strings of equal length => #gaps is even

	SEQUENCE ALIGNMENT
input: s	strings $X = x_1 x_2 - x_m$ $Y = y_1 y_2 - y_n$ over alphabet \geq
	a gap penalty Xgap ZO, a mismatch penalty Xay trigez
	an alignment of X and Y with minimum total penalty.
Example :	$X_{gap} = 1$ $X_{ny} = 2 + x_{iy} \in \mathbb{Z}$
$\chi = \ell$	AGTACG Is penalty < 3 possible? No!
Y = A	ICATAG If # gaps = 0, then $#$ mismatches = 4
· · · · · · · · · · · ·	

SEQUENCE ALIGNMENT
input: strings $X = x_1 x_2 - x_m$ $Y = y_1 y_2 - y_n$ over alphabet \geq
a gap penalty Xgap 70, a mismatch penalty Xny thyez
output: an alignment of X and Y with minimum total penalty.
Example: $X_{gap} = 1$ $X_{ny} = 2 + x_{ny} \in \mathbb{Z}$
$X = AGTACG$ Is penalty ≤ 3 possible? No!
Y = A C A T A G Y = A C A T A G If # gaps = 0, then # mismatches = 4 If # gaps = 4, then penalty 7.4
· · · · · · · · · · · · · · · · · · ·

SEQUENCE ALIGNMENT
input: strings $X = x_1 x_2 - x_m Y = y_1 y_2 - y_n$ over alphabet \geq
a gap penalty Xgap ZO, a mismatch penalty Xny trigez
Output: On alignment of X and Y with minimum total penalty.
Example: $X_{gap} = 1$ $X_{ny} = 2 + x_{ny} \in \Sigma$
$X = AGTACG$ Is penalty ≤ 3 possible? No!
Y = A C A T A G Y = A C A T A G If # gaps = 0, then # mismatches = 4 If # gaps = 4, then penalty 7.4
If $\#$ gaps = 2, then $\#$ mismatches $7/$.

SEQUENCE ALIGNMENT
input: strings $X = x_1 x_2 - x_m$ $Y = y_1 y_2 - y_n$ over alphabet \geq
a gap penalty Xgap ZO, a mismatch penalty Xay trigez
output: an alignment of X and Y with minimum total penalty.
Example: $X_{gap} = 1$ $X_{ny} = 2 + x_{iy} \in \mathbb{Z}$
$\chi = A G T A C G$ NW score = 4.
Y = A C A T A G
· · · · · · · · · · · · · · · · · · ·

	SEQUENCE ALIGNMENT	
input :	strings $X = x_1 x_2 - x_m Y = y_1 y_2 - y_n$ over alphabet \geq	•
	a gap penalty Xgap 70, a mismatch penalty Xny # 1, yez	
output :		•
· · · · · · · · ·	(Exurise)	•
	alignments between X and Y: exponential in (n+m).	•
· · · · · · · ·		•
· · · · · · · ·	Brute force is prohibitive	•
 	· · · · · · · · · · · · · · · · · · ·	0
		•

					• •						• •							•	• •							•					• •				1	1 1				· · ·	
										•	•	-							•	-						• •	F	► .													
										.0	17	T.	IN	١A	łL	•.	. 5	, U	B	S	T	ĸ	<u>v (</u>	\Box	U	K	C														
														Ţ																											
					• •						• •								• •																						
		•			• •				•		• •				•	•			• •						•	• •				•	• •										
											• •															• •					• •			•							
	•	•	•	•	• •	•			•		• •				•	•	•	•	• •						•	• •				•	• •	•		•					•	• •	
	•	•	•	•	• •	•			•	•	• •				•	•	•	•	• •						•	• •				•	• •	•		•	•			•	•	•	
			•							•						•															•		•	•	•			•	•	• •	
	•	•	•	•	• •	•			•	•	• •				•	•	•	•	• •						•	• •				•	• •	•	•	•	•				•	• •	
			•	•	• •				•	•	• •					•	•	•							•	• •				•	• •		•	•	•						
											• •														•						• •			•	•				•		
				•												•															• •			•					•		
				•	• •						• •								• •										•												
				•	• •						• •						•								•	• •					• •			•		3 1		0	•	0 0	
			1	•					•	•	•				•	•	•	•	•						•	• •				•	• •			1	•				•		

														•	-													•									÷ •
										•							<i>~</i> .	. 1								F	•										
										-0) p :	1.1	M	A	L		21	JĮ	55	57	ĸ	V.	C	[U) K	Ę											
										•				· ·			÷				• •																
									 		· ·			- /	X	-	t		91	ab	20	-	•		• •												1
			•	• •				• •							•		v.		1	: I	• •			•									•				
														• •																							
	•	•	•	• •		•	•	• •	•	•	• •		•	•						•	• •			•	•			•	•	•				•	• •	•	
			•							•	•		•	. /	1 .		╞		Cla	àL	Ċ	· -			•			• •							• •		
		•	•	• •		•	•	• •		•	•			• •		•	ŀ.		Ĩ.	P				•	•			•		•	• •		•	•	• •	•	
							•	• •						• •					. V	•	• •				•						• •			•	• •		
							•	• •						• •						•	• •				•						• •			•	• •		
			•							•	• •			• •					•	•				•	•			• •							• •	•	
			•	• •			•	• •		•	• •			• •					•	•	• •			•	•			• •			• •			•	• •	•	•
														• •						•	• •															•	
																												• •				•				•	
																				•	• •										• •					•	•

	OPTIMAL	SUBSTRUCTURE					
equal le		t gaps t gaps					
· · · · · · · · · · · ·							
			• • •				•
					· · · ·		
			· · ·				•
				• • • •			
		· · · · · · · · · · · · · · · · · · ·					•
			· · ·		· · · ·		•
· · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	· · ·	· · · ·	· · · ·	· · · · · · · ·	•

OPTIMAL SUBSTRUCTURE + gaps

How many relevant		SUBSTRUCTURE				
equal length {		t gaps —— + gaps ——		 <	
· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	· · · · ·	· · · · · · ·	· · · · · · · · ·	· · · · ·
· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · ·			· · · · · · ·	· · · · · · · · ·	
	· · · · · · · · · ·		· · · · ·		· · · · · · · · ·	· · · · ·

	OPTIMAL	SUBSTRUCTURE		· · · · ·		
How many relevant	casus?	Three	· · · ·	· · · · ·	· · · · · ·	· · · · · · · · · ·
equal length {	<u> </u>	t gaps ——	 	· · · · ·	· · · · · ·	· · · · · · · · · ·
	······································	+ gaps —	· · ·	· · · · ·	· · · · · ·	· · · · · · · · ·
			· · ·	· · · · ·		
· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · ·		· · ·	· · · · ·	· · · · ·	
			· · ·	· · · · ·		· · · · · · · · · ·
· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	· · ·	· · · · ·	· · · · ·	
· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·		· · · · ·		

	OPTIMAL SUBSTRUCTURE	
How many nelevant	cases ? Three	either n or a gap
equal length {	——————————————————————————————————————	
	— Y + gaps —	<pre></pre>
· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·
· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·

How many helevant case? Three equal length $\begin{cases} & & & \\$		OPTIMAL	SUBSTRUCTURE	
equal length $\begin{cases}X + gaps \\Y + gaps \end{cases}$	How many nelevant	casus ?	Three	either n or a gap
Land gaps	equal length f			
		· · · · · · · · · · · · · · · · · · ·	+ gaps —=	- either yn o'r a gap

	OPTIMAL SUBSTRUCTURE	•
How many nelevant	casus? Three	either n or a gap
equal length {	——————————————————————————————————————	
	— Y + gaps —	either yn or a gap
Xgap Z	$>0 \implies$ both can't be	gaps!
· · · · · · · · · · · · · · · · · · ·		

									• •												-											• •							•			
														-		^ `1	• •			×	. ^		<u> </u>	• •			r e e	. 0	E	•												
												્ય	X		1	44	4L	•	. 2		6	S		K	V		I.U	ļK	E													
																																	۰.	7	+							
																																	. 7	(. T .	{	Pal	گم		-	.)
																																					J . I					
																																	 \	1	+		d N	5.0				
																																• •		ſ.	. • .		11					· ·
																																			• •				• •			• •
																																• •			• •				• •			• •
																																• •			• •				• •			• •
						•	•	•	• •					•						•	•						•	•			•	• •		•	• •				• •			• •
						•	•	•	• •					•						•	•						•	•			•	• •		•	• •		•		• •		•	• •
														•						•							•					• •			• •				• •			• •
			•		•	•	•		• •					•		•				•	•	• •					•	•	• •		•	• •		•	• •				•			• •
			•		•	•	•	•	• •					•		•				•	•	• •	•			•	•	•			•	• •		•	• •		•		•	•	•	• •
						•	•	•	• •					•						•	•						•	•			•	• •		•	• •				•	•		• •
•		•				•								•				•		•		• •			•	•	•				•			•					• •			• •
			•	•	•	•	•	•	• •		•			•		•			•	•	•	• •					•	•	• •		•	• •		•	• •				•		•	• •
			•	•	•	•	•	•	• •		•			•		•			•	•	•	• •					•	•	• •		•	• •		•	• •				•		•	• •
			•		•	•	•	•	• •					•		•		•	•	•	•	• •	•				•	•			•	• •		•	• •		•		•		•	• •
							•	-	• •					•						•		• •					•	•			•	• •			• •	• `			•			• •
			•		•	•	•	•	• •					•		•				•		• •					•	•	• •		•	• •		•	• •		•		•		•	• •
		•	•		•	•	•	•	• •					•		•				•	•	• •	•			•	•	•			•	• •		•	• •		•		•		•	• •
		•	•		•	•	•	•	• •					•		•				•	•	• •	•		•	•	•	•	• •		•	• •		•	• •		•		•		•	• •
														•						•																			•			• •
														•						•		• •				•	•												•			• •
														•						•		• •				•	•												•			• •
														•						•		• •				•	•												•			• •
			•		•		•	•	• •											•	•	• •	•				•	•	• •		•	• •		•	• •		•		•			• •
								•	• •													• •										• •							• •			• •
								•	• •													• •										• •							• •			• •
	•	•					•	•	• •											•	•		•						• •		•	•		•	• •		•		•			
			•		•		•	•	• •										•	•	•		•					•	• •		•	•		•	• •				•			• •
								0	0 0												0 1					0		0														

•	•	•	•			•	•	•	•	•	•	•	•	•	()	T.1	R	17	H			SI	J	B	Ś-	Ť	R	V (Ċ	Ū	R	K E		•	•	•	•	•	•	•						•	•	•	
•	•	Le	et		· ·		۲ ۲	/		•	· · · ·	× K			י ראר י	- N	n'	•	•	•	•	Y	, "/ , ' , '				Y Y				fn	•	•	•	· · ·	•	•		•		° • • •	(+		ga ga	1 1 1 1	- ז - ז	•			· ·
		٠			• •		٠																												• •									•		•	٠				• •
•			•		• •											•			•			•	•	•	•		•			•	•			•			•		•	•	•		•	•						•	• •
																																																•			• •
•			•	•																							•			•			•		• •	•			•	•	•		•				•	•	•	•	• •
•	•	•	•						•							•					•		•		•				•	•	•	•	•		• •	•			•	•	•	•	•						•	•	• •
	•						•																																												
																																																•			• •
•			•								•		•	•	•														•					•				•	•	•	•	•	•			•			•	•	• •
	٠		•		• •			•		•	•		•	•	•		•	•	•	•		•		•				•	•	•	•	•	•	•	• •		•	•	•	•	•	•	•			•					• •
•	•	•			• •											•							•		•		•			•			•		• •	•			•	•	•		•						•		• •
																																																			• •
			•	•							•		•	•	•				•			•		•			•			•	•	•	•		• •			•	•	•	•	•	•			•		•	•	•	• •
•			•	•	• •					•	•		•	•	•	•		•			•	•	•	•	•			•	•	•	•	•	•	•	• •			•	•	•	•	•	•	•		•	•	•	•	•	• •
			•	•	• •						•		•	•	•			•	•			•		•					•	•	•	•	•		• •			•	•	•	•	•	•	•					•	•	

· · · · · · · · · ·	01710	AL SUBS	TRUCTURE												
Let x	$X' := X - \pi_m$	Y':= Y	- Yn	— X + gaps — — Y + gaps —											
Case I:	Final characters	are n _m	and yn												
· · · · · · · · · ·	· · · · · · · · · · · · · · · · ·	· · · · · · · · · ·	· · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·											
Case II:	Case II: Final characters are xm and gap														
· · · · · · · · ·	· · · · · · · · · · · · · · · ·	· · · · · · · · ·	· · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·											
Case III:	Final characters	are gap	and Yn												
· · · · · · · · ·	· · · · · · · · · · · · · · · · ·	· · · · · · · · · ·	· · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·											
· · · · · · · · · ·	· · · · · · · · · · · · · · · · ·		· · · · · · · · · · · ·												

· · · · · · · · ·		IMAL SUBSTRUCTURE	
Let X	$X' := X - n L_m$	Y':= Y - Yn	— X + gaps — — Y + gaps —
Case I:	Final character	u are nm and yr	induced alignment
	· · · · · · · · · · · · · · · ·		
Case II:	Final characte	u are nm and gap	
Case III:	Final characte	ns are gap and yn	· · · · · · · · · · · · · · · · · · ·
· · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·
· · · · · · · · ·	· · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·

· · · · · · · · ·		01 TIN	IAL S	UBST	RUCT	TURE			· · · · · · · ·	
Let x	< <i>'</i> :=	X — nu _m	۲ [′]	:= Y	- Yn			— X — Y	+ gaps - + gaps -	
Case I:	Final	characters	are	n m	and	Yn		induced	alignment	
· · · · · · · · · · · · · · ·	≥ indu	iced alignr	nent	of x	and	Υ' <u>)</u>	s oþ	timal	· · · · · · · · ·	· · · · ·
Case II:	Final	characters	Me	K _m	and	gap	· · · ·	· · · · · · ·	· · · · · · · · · ·	· · · · ·
· · · · · · · · · ·	· · · · · ·	· · · · · · · · · ·	· · · · ·		· · · · ·	· · · · ·	· · ·	· · · · · ·	· · · · · · · · ·	· · · · ·
Case III:	Final	characters	are	gap	and	y n	· · ·	· · · · · ·	· · · · · · · · ·	· · · · ·
· · · · · · · · · ·	· · · · · ·	· · · · · · · · · · ·	· · · · ·	· · · · ·	· · · · ·	· · · · ·	· · ·	· · · · · ·	· · · · · · · · ·	· · · · ·
· · · · · · · · ·	· · · · · ·	· · · · · · · · · ·	· · · ·			· · · · ·		· · · · · ·	· · · · · · · ·	· · · · ·

OPTIMAL SUBSTRUCTURE	
Let $X' := X - \pi_m$ $Y' := Y - y_n$	- X + gaps - - Y + gaps - induced alignment
Case I: Final characters are nm and yn	induced alignment
\Rightarrow induced alignment of X' and Y' is	optimal.
Case II: Final characters are xm and gap	
\Rightarrow induced alignment of X' and Y is	optimal
Case III: Final characters are gap and Yn	

OPTIMAL SUBSTRUCTURE	
Let $X' := X - n_m$ $Y' := Y - y_n$	- X + gaps - - Y + gaps - induced alignment
Case I: Final characters are nm and yn	
\Rightarrow induced alignment of X' and Y' is	optimal
Case II: Final characters are nm and gap	· · · · · · · · · · · · · · · · · · ·
\Rightarrow induced alignment of X and Y is	optimal
Case III: Final characters are gap and yn	· · · · · · · · · · · · · · · · · · ·
\Rightarrow induced alignment of X and Y' is	optimal.

OPTIMAL SUBSTRUCTURE	
Let $X' := X - \pi_m$ $Y' := Y - y_n$	- X + gaps - - Y + gaps - induced alignment
Case I: Final characters are nm and yn	induced alignment
\Rightarrow induced alignment of X' and Y' is	0ptimal
Case II: Final characters are nom and gap	· · · · · · · · · · · · · · · · · · ·
\Rightarrow induced alignment of X and Y is	optimal
Case III: Final characters are gap and yn	
\Rightarrow induced alignment of X and Y' is	optimal
Exercise : Prove for mally	

· ·		RELEVANT SUBPROBLEMS	
· · ·	Subproblems	s one two-dimensional (like knapsack)	
· · · · · · · · · · · · · · · · · · ·		Xi := first i letters of X	
· · ·		Y; := first j letters of Y	
· · ·	· · · · · · · · · · · ·		

																								•		
		 					. •	Ti	-	D	المعاد ا							r								
		 						Tł	1E	K	E	C	J.	K	、ヒ	; N	I.C	, E								

THE RECURRENCE															
Define P _{i,j} :=	penalty of optimal	align ment	of X; and Y;												
	· · · · · · · · · · · · · · · · · · ·														

Define $P_{i,j} := penalty of optimal alignment of X; and Yj For all i = 1, 2,, m and j = 1, 2,, n$	THE RECURRENCE															
For all $i = 1, 2,, m$ and $j = 1, 2,, n$	Define	· · · · · · · · · · · · · · · · · · ·														
	For all	. ì = 1,	2,, m	and j	= 1, 2,,	η	· · · · · · · · · · · ·									
	· · · · · · · · · ·	· · · · · · · ·	· · · · · · · ·	· · · · · · · · · · ·	· · · · · · · · · · · ·	· · · · · · ·										
	· · · · · · · · · ·	· · · · · · · ·	· · · · · · · ·	· · · · · · · · · · · ·	· · · · · · · · · · · ·	· · · · · · ·	· · · · · · · · · · ·									
	· · · · · · · · · ·	· · · · · · · ·	· · · · · · · ·	· · · · · · · · · · · ·	· · · · · · · · · · · ·	· · · · · · ·	· · · · · · · · · · · · ·									
	· · · · · · · · · ·	· · · · · · · ·	· · · · · · · ·	· · · · · · · · · · · ·	· · · · · · · · · · · · ·	· · · · · · ·	· · · · · · · · · · · ·									
	· · · · · · · · · ·	· · · · · · · ·	· · · · · · · ·	· · · · · · · · · · · · ·	· · · · · · · · · · · · ·	· · · · · · ·	· · · · · · · · · · · ·									
	· · · · · · · · · ·	· · · · · · · ·	· · · · · · · ·	· · · · · · · · · · · ·	· · · · · · · · · · · · ·	· · · · · · ·	· · · · · · · · · · ·									
	· · · · · · · · · ·	· · · · · · · ·	· · · · · · · ·	· · · · · · · · · · · ·	· · · · · · · · · · · ·	· · · · · · ·	· · · · · · · · · · ·									

THE RECURRENCE														
Define $P_{i,j} := penalty of optimal alignment of X; and Yj$														
For all $i = 1$,	2,, m and j	= 1, 2,, n												
· · · · · · · · · · · · · · · · · · ·		// Case I												
$P_{i,j} =$		// case I												
. .		// case III												
· · · · · · · · · · · · · · · · · · ·	· ·													

THE RECURRENCE														
Define P _{i,j} := penalty of optimal alignment of X; and Y;														
For all	i = 1, 2,, m and $j = 1, 2,, n$													
· · · · · · · · · · ·	$X_{n_i} y_j + P_{(i-1)}, (j-1) // Case I$													
Pij	= // case I													
· · · · · · · · · ·	\parallel case III													
· · · · · · · · · ·														

THE RECURRENCE														
Define Pi, := penalty of optimal alignment of X; and Y;														
For all $i = 1, 2,, m$ and $j = 1, 2,, n$														
Xni yj + P(i-1), (j-1) // Case I														
$P_{i,j} = \chi_{gap} + P_{(i-1),j} // case II$														
11 case III														

THE RECURRENCE													
Define $P_{i,j} := penalty of optimal alignment of Xi and Yj$													
For all $i = 1, 2,, m$ and $j = 1, 2,, n$													
Xn; y; + P(i-1), (j-1) // Case I													
$P_{i,j} = \chi_{gap} + P_{(i-1),j} // case II$													
Xgap + Pi,(j-1) // case Ⅲ													

THE RECURRENCE														
Define P _{i,j} := pe	nalty of optimal alignment of X; and Y;													
For all $i = 1, 2,$, m and $j = 1, 2,, n$													
	$\left(\begin{array}{c} \alpha_{n_i} y_j + P_{(i-1)}, (j-1) \end{array} \right) \right) \left(\begin{array}{c} case I \end{array} \right)$													
$P_{ij} = \min$	Xgap + P _(i-1) , j // case II													
. .	$l \propto_{gap} + P_{\hat{c}}, (j-1) // case III$													
. .														

	THE RECURR	RENCE
Define Pi, := peno	nty of optime	nt alignment of X; and Y;
For all $i = 1, 2,$, m And	j = 1, 2,, n
		P(i-1), (j-1) // Case I
$P_{ij} = \min \int$	≪gap +	P _(i-i) , j // case II
	- Xgop +	Pi, (j-1) // case III
Base cases: Pi, o :=	?	

	THE RECURN	RENCE
Define P _{i,j} := peno	Ity of optime	al alignment of X; and Y;
For $all i = 1, 2,$, m and	$\dot{f} = 1, 2,, n$
		P(i-1), (j-1) // Case I
$P_{ij} = \min$	Xgap +	$P_{(i-1)}, j \parallel case II$
	, agop +	Pi, (j-1) // case III
Base cases: Pino :=	i. Xgap	

Τ	HE RECURR	ENCE
Define $P_{i,j} := penalt$	y of optima	Lalignment of X; and Y;
For all $i = 1, 2,, r$	n and	$\dot{f} = 1, 2,, n$
		P(i-1), (j-1) // Case I
$P_{ij} = \min$	Xgap +	P _(i-1) , j // case II
	Xgop +	Pi, (j-1) // case III
Base cases: Pino :=	i. «gap	$P_{0,j} := j \cdot \alpha_{gap}$

	•					•									•							•			• •		• •
								-		_	•					_	• •										
									Н	Ł	A	L	50) (217	Tł	11	1									
									H				<u>,</u> ,														

•	THE ALGORITHM															•	•																															
•	A = two-dimensional away of size (m+1) X (n+1)															•																																
																																									•				•			•
					• •						•			•													•		•	• •						•	•	•						•	•		•	•
	•				• •					•	•	•	•	•			•	•		•	•		•			•	•		•	• •	•	•		•		•	•	•			•			•		•	•	•
•		• •			• •	•				•	•	•	•	•	•							•		•	•	•	•	•	•	•			•	•	•	•	•	•	• •								•	•
•	•	• •			• •					•	•	•	•				•	•	•	•			•	•	•	•	•	•	•	• •		•	•	•	•	•	•	•			•							
		• •				•			•																		•	•								•	•	•			•							
						•									•																																	
																																					•	•							•			
					• •						•			•													•		•	• •						•	•	•						•	•		•	•
		• •			• •							•	•	•	•	•	•			•		•	•	•	•		•		•	• •			•	•	•	•				1		-		•	•			•
•		• •			• •	•			•			•			•			•						•	•		•	•	•	•		•	•	•	•	•	•	•	•		•							
	•	• •			• •					•	•													•		•	•	•		•			•				•	•			•		1					*
	•	• •	•		• •					•			•			•	•	•						•		•	•	•		• •		•	•				•	•										
		• •			• •	•			•																		•	•								•	•	•			•							
			•			•				•	•															•		•									•	•										

THE ALGORITHM															
	A = two-dimensional away of size (m+1) X (n+1) // base cases														
// . k	pase ca	ses	•••••												
			• • • • • • •												
· · · <i>F</i>	t [ι, ο,		i. Xgap	¥	ι										
 A		י י י	· · · · · · · · · · · · · · · · · · ·												
F	۱LO, J.		f Xgap	÷ +											
				 	J 										
	• • • • •														
• • • •	• • • • •				• • • •										

	The A	LGORIT	ГНМ		
A = two-dimensio	nal ano	y of	size	(m+1) X	(n+1)
// base cases					
$A[i,0] = i \cdot \alpha_{gap}$	+ i				
$A[0,j] = j \cdot \alpha_{gap}$		· · · · · · ·		· · · · · · · · ·	
· · · · · · · · · · · · · · · · · · ·	f.	· · · · · · ·	· · · · · ·	· · · · · · · · ·	· · · · · · · · · · · · · · ·
$for i = 1, 2, \cdots, m$	· · · · · · ·	· · · · · · ·	· · · · · ·	· · · · · · · · ·	· · · · · · · · · · · · · · ·
for $j = 1, 2,, n$	n	· · · · · · ·	· · · · · ·	· · · · · · · · · ·	· · · · · · · · · · · · · · · ·
	· · · · · · ·	· · · · · · · ·	· · · · · ·	· · · · · · · · · ·	· · · · · · · · · · · · · · · · ·
· · · · · · · · · · · · · · · · · · ·	· · · · · · ·	· · · · · · · ·	· · · · · ·	· · · · · · · · · ·	· · · · · · · · · · · · · · ·
· · · · · · · · · · · · · · · · · · ·	· · · · · · ·	· · · · · · ·	· · · · · ·	· · · · · · · · · ·	

Th	e Ale	ORI	гнм			
A = two-dimensional	anay	of	size	(m+1) X	(n+1)	
// base cases		· · · · ·				
$A[i,0] = i \cdot \alpha_{gap} +$	i i i i i i i i i i i i i i i i i i i	· · · ·	· · · · · ·	· · · · · · · ·	· · · · · · ·	
$A[0,j] = j \propto_{gap} +$		· · · ·	· · · · · ·	· · · · · · · ·	· · · · · · ·	
	ł.	· · · ·	· · · · · ·	· · · · · · · ·	· · · · · · ·	· · · · · · · ·
// main loop	· · · · · ·	· · · · ·	· · · · · ·	· · · · · · · · ·	· · · · · · ·	
for $l = 1, 2,, m$	· · · · · ·	· · · · ·	· · · · · ·		· · · · · · ·	
fon j = 1, 2, -, n		· A[i	-1, [-1]	+ ani, y	· · · · · · · ·	
$A[i_j] =$	min	Aſ	i-1, j]	+ dgap		
· · · · · · · · · · · · · · · · · · ·				+ Xgap		
			, 0, , ,	0 ſ		

•	•	•	•	•	• •	•	•	•	•	•	•	•	•	•	•	•	•	T	H	E	0	-	A	L	ĝ.		21.	T	HI	4	•	•	• •	•	•	•	• •	•	•	•	•	· ·	•	•	•	•	•	•	•
•	•	•	•))) (0)	y-e	t	īn	201	۔ بر ۲	•	-	•	•	•	B	y	•	Ìr	d	M	t	וסן	2 1 1	•	•	•	. (E	- R	فر	ú	Se	n V	•	•	· ·	•	•	•	•	· ·	•	•	•	•	•	•	•
•	•	•	•	•	••••	•	•	•	•	•	•	•	•	•	•	•	0	•	• •		•	•	•	•	•	•	•	•	· ·	•	•	•	•••	•	•	•	•••	•	•	•	•	• •	•	•	•	•	•	•	•
•	•	0	0	•	• •	•	•	•	•	•	•	•	•	0	•	•	0 0	•	• •		0	•	•	•	•	•	•	•	• •	•	•	•	• •	•	•	•	••••	•	•	•		••••	•	•	•	•	•	•	•
•	•	•	•	•	• •	•	•	•	•	•	•	•	•	•	•	•	•	•	• •		•	•	•	•	•	•	•	•	•••	•	•	•	• •	•	•	•	•••	•	•	•	•	••••	•	•	•	•	•	•	•
•	•	•	•	•	• •	•	•	•	•	•	•	•	•	•	•	•	•	•	• •		•	•	•	•	•	•	•	•	· ·	•	•	•	• •	•	•	•	• •	•	•	•	•	· ·		•	•	•		•	•
0	•	•	•	•	• •	•	•	•	•	•	•	•	•	•	•	•	•	•	• •		•	•	•	•	•	•	•	•	• •	•	•	•	• •	•	•	•	• •	•	•	•	•	••••	•	•	•	•	•		•
•	•	•	•	•	• •	•	•	•	•	•	•	•	•	•	•	•	•	•	• •		0	•	•	•	•	•	•	•	• •	•	•	•	• •	•	•	•	•••	•	•	•	•	· ·	•	•	•	•	•	•	•
•	•	•	•	•	· ·	•	•	•	•	•	•	•	•	•	•	•	•	•	· ·		•	•	•	•	•	•	•	•	••••	•	•	•	••••	•	•	•	•••	•	•	•	•	· ·	•	•	•	•	•	•	•
	•	•	•	•		•	•		•	•	•	•	•	•	•	•	•	•	• •		•	•		•	•	•	•	•	• •		•	•	0 0 0 0	•	•	•		•	•	•		• •	0		•	0		•	•

• •	• •	• •	· ·	· ·	· ·	•	••••	· •				T	ΗI	10	 	A	LE	40	R	17	H	M	•	• •	•			•	• •	•	· ·	•	•	•	· ·	•	•	• •
· · ·	· · ·	· · · · · · · · · · · · · · · · · · ·	י ז ג ג ג ג ג ג	ert	nea	2 3	· · ·		· · ·	Ŕ	y J	· · ·	Ìn	du du	.ct	וסר		· · · · · · · · · · · · · · · · · · ·	•	· · ·) ({ }	Ex	فرمر	ú	٢٤					•	· · · · · · · · · · · · · · · · · · ·	•	•	•	· · ·	•	•	· · ·
· · ·	• •	R		ning	· · ·	tin	ne		· · ·				m	, N N)	•	•	· · ·	•									eai ole			۲f	•	•	•	· · ·	•	•	· ·
	• •	• •	• •	• •	•••	•	•••		• •	•	•	• •	•	•	· ·	•	•	•••	•	•				. .	× v()	P	101	910	M.	•	••••	•	•	•	• •	•	•	•••
· ·	• •		• •	· ·	• •	•	• •		• •		•	· ·	•	•	· ·	•	•	• •	•	•	•	· ·	•		•				· ·	•	••••	•	•	•		•	•	
• •		• •	• •	• •	•••	•	• •		• •		•	••••	•	•	· ·	•	•	•••	•	•	•	• •	•	• •	•	• •			· ·	•	• •	•	•	•	• •	•	•	•••
		• •	• •	• •	• •	•	• •		• •		•	• •	•	•	· ·	•	•	• •	•	•	•	• •	•	• •	•		•					•	•	•	• •	•	•	
• •	• •	· ·	• •	• •	• •	•	• •		• •		•	• •	•	•	· ·	•	•	• •	•	•	•	· ·	•	• •	•	• •				•	· ·	•	•	•	• •	•	•	• •

· · · · · · · · · · · · · · · · · · ·	THE ALG	orithm
Correctneer :	By induction	(Exercise)
Running time :	0 (m n)	O(1) Work each of O(mn) subproblems
Reconctruction :	Easy	Case I, II, III explicitly tills us
<pre></pre>		khere a gap is inserted.

REVISITING SINGLE SOURCE SHORTEST PATHS

· · · · · · · ·	SINGL	e - Source	SHORTEST	PATH PROBLEM	
input:	A directed A non neg	graph $G = ($ ative length	(V, E), star L for each	rting vertex s, r edge e e E	
		for every			
· · · · · · · ·	· · · · · · · · · · ·	· · · · · · · · · · · ·	· · · · · · · · · · ·	· · · · · · · · · · · · · · · ·	· · · · · · · · · · · · ·
· · · · · · · · ·	· · · · · · · · · · ·				
· · · · · · · ·	· · · · · · · · · · ·	· · · · · · · · · · ·	· · · · · · · · · · ·	· · · · · · · · · · · · · · · · ·	· · · · · · · · · · · ·
· · · · · · · ·	· · · · · · · · · · ·	· · · · · · · · · · · ·	· · · · · · · · · · ·		
· · · · · · · ·	· · · · · · · · · · ·				· · · · · · · · · · · ·
	· · · · · · · · · · · · · ·	· · · · · · · · · · · ·	· · · · · · · · · · ·	· · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · ·

	SINGLE - SOURCE SHORTEST PATH PROBLEM
input:	A directed graph $G = (V, E)$, starting vertex S ,
· · · · · · · ·	a non negative length le for each edge e E E
Output:	dist (s, v) for every vertex v eV.
	length of the shortest path from s to v if s ~> v path exists
	92ivretto 00
· · · · · · · ·	

	•		•														•										•						
									<u>.</u>							• `^		1	^		n .	•											
									0J	Ν.	D		I K	2	. 1	K	<u>A</u>	2	A	L	άC) K	1.1	\H	M								
									• 1												1.												
																														•			
	• •		• •																				• •				• •						
	• •		• •				• •											•									• •					• •	
	• •		• •				• •											•									• •					• •	
	• •		• •				• •											•									• •					• •	
	• •		• •				• •											•									• •					• •	
	• •		• •				• •																• •				• •					• •	
	• •		• •				• •	•				•	• •			•	• •			• •			• •		• •		• •					• •	•
	• •		• •				• •	•				•	• •			•	• •			• •			• •		• •		• •					• •	•
	• •		• •				• •	•				•	• •			•	• •			• •			• •		• •		• •					• •	•
	• •		• •				• •	•				•	• •			•	• •			• •			• •		• •		• •					• •	•
	• •		• •				• •	•				•	• •			•	• •			• •			• •		• •		• •					• •	•
	• •		• •	•			• •	•		• •		•				•				• •			• •		• •		• •		•			• •	•
	• •		• •	•			• •	•		• •		•				•				• •			• •		• •		• •		•			• •	•
	• •		• •				• •			• •		•					• •			• •			• •		• •		• •		•			• •	•
	• •		• •				• •			• •		•	• •			•	• •			• •			• •		• •		• •					• •	•
	• •		• •				• •			• •		•	• •			•	• •			• •			• •		• •		• •					• •	•
	• •		• •			•	• •			• •						•	• •	•		• •					• •		• •	•				• •	•
	• •		• •				• •			• •		•	• •			•	• •			• •			• •		• •		• •					• •	•
	• •		• •				• •			• •		•	• •			•	• •			• •			• •		• •		• •					• •	•
	• •		• •				• •			• •		•			•	•	• •			• •			• •		• •		• •		•			• •	•
	• •		• •				• •			• •		•	• •			•	• •			• •			• •		• •		• •					• •	•
	• •		• •				• •			• •		•	• •			•	• •			• •			• •		• •		• •					• •	•
	• •		• •				• •			• •		•					• •			• •			• •		• •		• •		•			• •	•
	• •		• •				• •			• •		•	• •				• •			• •			• •		• •		• •		•			• •	
	• •		• •				• •			• •		•	• •				• •			• •			• •		• •		• •		•			• •	
	• •		• •				• •			• •							• •			• •			• •		• •		• •					• •	•

	· ·	•	•	• • • •	•	•	• •	•	•	•	())			Þ١]	٦K	ر ع د	.Т	R	A	2'	· · · ·	A	L	G1) f	217	۲ŀ	t r	1	· ·	•	•	•		•	•	• •		•	•
	· ·		•	· ·	0 0		m	l X	log		n v	· · ·	•	91	UY	١n	in (g J		ŧ	m	e		ן ה ה	ן יין	ħ	•	he	۵	5 <u>5</u>	•	•	•	•	•	· ·	•			· ·	•	•
	• •	•	•	• •			• •								•			•		•	• •			•						•		• •	•	•								
•		٠					• •					• •				•				•	• •										•	• •							•			
	• •		•	• •		•	• •				•	• •				•				•	• •				•	• •		•		•	•	• •	•		•			•	•			•
٠	• •		•	• •		•	• •				•	• •				•					•				•	• •				•	•	•	•						•			
							• •					• •									• •					• •									•			•				
	• •		•	• •			• •					• •				•					• •				•	• •					•	• •	•		•			•	•			
	• •		•	• •		•	• •				•	• •				•		•			• •				•	• •		•		•	•	• •						•	•			
	• •		•	• •		•	• •				•	• •				•					• •				•	• •				•	•	• •	•									
	• •			• •			• •					• •				•					• •				•							•							•			
																	•			•						• •																

ON DIJKSTRA'S ALGORITHM Jo (m log n) nunning time with heaps not always connect with negative edge lengths (e.g., if edges <> financial transactions)

ON DIJKSTRA'S ALGORITHM I (m log n) nunning time with heaps not always connect with negative edge lengths (e.g., if edges <> financial transactions) + highly centralized (need distributed algorithm for internet nouting)

	ON DIJKSTRA'S ALGORITHM
🡍 O (r	n log n) running time with heaps
	t always connect with negative edge lengths g., if edges <> financial toransactions)
👎 hìg	hly centralized
nee	d distributed algorithm for internet houting) Solution : Bellman - Ford algorithm

•	NEGATINE CYCLES How to define shortest pathe in the presence of															•	•	•	•	•	•	•	•	• •	•	•		• •																			
•	· ·	H	Oh)	to	•	d	efi	ìn	٩	•	S	ho	入	te	st	•	Þ	<u>a</u>	Hh	L C		Ìn	•	+1	ne	0	þ	re	92	'n	ce	•	D	f	r	, γe	gi	at	ìv	e		ey T	d	<u>وع</u>	9	• •
•			•	• •	•	•		• •																•									•	• •	•								. N	•		•	• •
				• •				• •																																						•	• •
				• •				• •						•	•	•	•																	• •							•	•				•	• •
•				• •		•	•	• •			•					•	•	•		-	•	•			•			•	•				•	• •	•				•	•	•	•	• •			•	• •
•		•		• •		•	•	• •						•	•	•	•	•			•	•			•			•	• •					• •		•			•	•	•	•	• •			•	• •
•				• •		•	•	• •						•	•	•	•	•											• •					• •			•			•	•	•	• •			•	• •
				• •	•	•		• •				•				•	•	•				•											•	• •								•	• •			•	
				• •				• •										•				•					•														•		• •			•	
				• •				• •																																						•	
				• •				• •									•	•		-									•					• •									• •			•	• •
				• •				• •								•	•	•		-														• •								•	• •			•	• •
				• •			•	• •						•	•	•	•															•	•	• •								•				•	• •
		•		• •	•	•	•	• •					•	•	•	•	•	•				•					•	•						• •			•	•	•	•	•	•	• •				• •
				• •			•	• •						•	•	•	•	•									•	•	•					•					•	1	•	•	• •			•	• •
•				• •			•	•						•	•	•	•	•									•		•					•					•	•	•	•	•				•
				• •				• •									•	•									•		• •					• •						1	•	•	• •				• •
				•				• •																					• •																		
				• •				• •																					•					• •									• •				• •

• •	· · · ·		• • •		· · ·		EGAT	rive	C`	ICLE	23	· · ·			• •		• •	•
· ·	How	s to	def	ine	sho	rtest	patho	- in	the	pre	sence	- of	ne	gative	- cn 5	راقع	. 7	•
· ·	· · · ·	· · · · ·		· · ·	· · · ·	· · · · ·	7)~~	4		· · · ·	· · · ·	· · · ·	· · · · ·	· ·	· · · ·	· ·	•
· ·	· · ·	· · · · ·		· · ·			-4		· · ·		-5	· · ·	· · · ·	· · · · ·	· ·	· · · ·	· ·	•
· ·	· · ·	· · · · ·		· · ·	· · · ·	· · · · ·			3		· · ·	· · · ·	· · · ·	· · · · ·	· ·	· · · ·	· ·	0
••••	· · · ·	· · · · ·		· · · ·	· · ·	· · · · ·	· · · · ·	· · · ·	· · ·	· · · · ·	· · · ·	· · ·	· · · ·	· · · · ·	· ·	· · ·	•••	•
• •	· · · ·	· · · · ·	• • •	· · ·	· · ·	· · · · ·	· · · · ·	· · ·	· · ·	· · · · ·	· · ·	· · ·	· · ·	· · · ·	• •	· · ·	• •	•
• •	· · · ·			· · ·	· · ·	· · · · ·		· · ·	· · ·	· · · · ·	· · · ·	· · ·	· · · ·	· · · · ·	· ·		• •	•
		· · · ·		· · ·	· · ·	· · · ·		· · ·	· · ·	· · · ·			· · ·		• •	· · ·		•

NEGATIVE CYCLES How to define shortest pathe in the presence of negative cycles? eycle with weight -2 S -5 **.** . .

· · · · · · · · · · · · · · · · · · ·	NEGATIVE	CTCLES	· · · · · · · · · · · ·	· · · · · · · · · ·
How to define	shortest pathe in	the presence	of negative	cycles 7
	704	4		
· · · · · · · · · · · · · · · · · · ·	S -4 ↓		· · · · · · · · · · · ·	· · · · · · · · · ·
· · · · · · · · · · · · · · · · · · ·		\rightarrow	· · · · · · · · · · · · · ·	· · · · · · · · · · ·
If we inclu	de cycles in shore	test paths	· ·	
then length	of the shortest pa	th is undefined	$l(on -\infty)$)
· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · ·	· · · · · · · · · · · ·	· · · · · · · · · ·

· · · · · · · · · · · · · · · · · ·	NEGATIVE	CICLES	 		· · · · · · · · ·
How to define	shortest pathe in	the presen	nce of	negative	cycles ?
· · · · · · · · · · · · · · · · · · ·					· · N · · · · · · · ·
· · · · · · · · · · · · · · · · · · ·	S -4	1-5	· · · · · · · ·	· · · · · · · ·	
· · · · · · · · · · · · · · · · · ·	${}$	\rightarrow	• • • • • •	· · · · · · ·	· · · · · · · · ·
	· · · · · · · · · · · · · · · · · · ·		· · · · · · ·	· · · · · · ·	· · · · · · · · ·
	re shortest cycle		· · · · · · · ·	· · · · · · · ·	· · · · · · · · ·
then the prob	lem is NP-com	plete (no	Known þ	oly-time	algo.)

NEGATIVE CYCLES								
How to define	shortest pa	the in the	presence	e of	negative	cy des		
· · · · · · · · · · · · · · · · · · ·						· · N · · · ·	· · ·	
· · · · · · · · · · · · · · · · · · ·	S -l		1-5		· · · · · · · ·	· · · · · ·	· · · ·	
· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	$\bigcirc \xrightarrow{}_{}$		· · · ·	· · · · · · · ·	· · · · · ·	· · ·	
			· · · · · · · · · · · · · · · · · · ·	· · · · ·	· · · · · · · ·	· · · · · ·	· · ·	
If we negvis				· · · ·	· · · · · · ·	· · · · · ·	· · ·	
then the prob	lem is NP	'- complete	(no Kn	own þ	oly-time	algo.)	· · ·	
encoder longest path problem								

NEGATIVE CYCLES								
How to defin	e shortest pa	the in the	presence	of	negative	cycles 7		
· · · · · · · · · · · · · · · · · ·				· · · · ·	· · · · · · · · · · · ·	· · · · · · · · · ·		
· · · · · · · · · · · · · · · ·	(S) -l					· · · · · · · ·		
· · · · · · · · · · · · · · ·		\bigvee \longrightarrow (· · · · · · · ·	· · · · · · · ·		
	· · · · · · · · · · · · · ·	3			· · · · · · · · ·	· · · · · · · · ·		
Solution : Al	low negative	length ed	ges but	not	negative	cycles.		
· · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·	V	· · · ·	· · V · · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · ·		
· · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · ·	· · · · · · · · · · ·	· · · · · · · ·			· · · · · · · ·		

NEGATIVE CYCLES								
How to defin	o shortest	pathe in	the presence	of	negative	cycles ?		
		$\rightarrow \bigcirc \leftarrow$		· · · · ·	· · · · · · · · · · · ·			
		-4	1-5	· · · · ·				
			\rightarrow	· · · · ·				
				· · · · ·				
Solution : AU	low negat	ive length	edges but	not	negative	cycles.		
	will show	1 how to 0	lwickly cheek	this				