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SEQUENCE ALIGNMENT

input : strings X = M
, x2 ... I'm Y = Y , ye-- Yu Over alphabet I

output : an alignment of X and Y with minimum total penalty.

X = AGGCT

Y = ACGGCC

Which is better :

AGGCT-
or

A
- GGC - T

?
AcGGCC A CGGCC-
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input : strings X = M
, x2 ... I'm Y = Y , ye-- Yu Over alphabet I

a gap penalty [gap 70 ,
a mismatch penalty Kny AnyeZ.

output : an alignment of X and Y with minimum total penalty.

Example :Egap = 1 Lay
= 2 # nycz

X = AGT AC G
Is penalty <3 possible ? No !

y = A CAT AG
Strings of equal length =>> #gaps is even

If #gaps = O
,
then #mismatches = 4

If #gaps = 4 , then penalty 4

If #gaps = 2 ,
then #mismatches 1 .



SEQUENCE ALIGNMENT

input : strings X = M
, x2 ... I'm Y = Y , ye-- Yu Over alphabet I

a gap penalty [gap 70 ,
a mismatch penalty Kny AnyeZ.

output : an alignment of X and Y with minimum total penalty.

Example :Egap = 1 Lay
= 2 # nycz

X = AGT AC G
NW Score = 4
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SEQUENCE ALIGNMENT

input : strings X = M
, x2 ... I'm Y = Y , ye-- Yu Over alphabet I

a gap penalty [gap 70 ,
a mismatch penalty Kny AnyeZ.

output : an alignment of X and Y with minimum total penalty.

(Exercise)

# alignments between X and Y : exponential in (n + m) .

Brute force is prohibitive



OPTIMAL SUBSTRUCTURE



OPTIMAL SUBSTRUCTURE

X + gaps

Y + gaps



OPTIMAL SUBSTRUCTURE

equal length &
X + gaps

Y + gaps



OPTIMAL SUBSTRUCTURE

equal length &
X + gaps

Y + gaps



OPTIMAL SUBSTRUCTURE

How
many

relevant cases ?

equal length &
X + gaps

Y + gaps



OPTIMAL SUBSTRUCTURE

How
many

relevant cases ? Three

equal length &
X + gaps

Y + gaps



OPTIMAL SUBSTRUCTURE

How
many

relevant cases ? Three

either u or a gap

equal length &
X + gaps

Y + gaps



OPTIMAL SUBSTRUCTURE

How
many

relevant cases ? Three

either u or a gap

equal length &
X + gaps

Y + gaps
either yn or

a gap



OPTIMAL SUBSTRUCTURE

How
many

relevant cases ? Three

either u or a gap
X + gaps

equel length[1 + gaps
either yn or

a gap

Ygap30
=> both can't be gaps !
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OPTIMAL SUBSTRUCTURE

Let X : = X- um Y : = y - yu
- X + gaps-
- y + gaps-

Case I : Final characters are um and you
induced alignment

=> induced alignment of Xandy' is optimal.

Case I : Final characters are um and gap
=> induced alignment of Xand Y is optimal.

Case I : Final characters are gap and yu
=> induced alignment of X and Y' is optimal.

Exercise : Prove formally.



RELEVANT SUBPROBLEMS

subproblems are two-dimensional (like knapsack)

Xi := first : letters ofX

Y := first letters of Y
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THE RECURRENCE

Define Pij == penalty of optimal alignment of Xi and Yy

For all i = 1
,
2
,
--

,
m and j = 1

,
2
, -- n

S
Criyj T Pit , (j) 1/ case I

Pij = min Lgap + Pit
, j /1 case I

L
gap

+ Pi
, (j) 1 case I

Base cases : Pro : = i
. &gap Po

, j
: = j . Xgap
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THE ALGORITHM
A = two-dimensional away of size (m+ 1) X (n +1)

1/ base cases

Ali , 0] = i . Xgap # :

Alo , j] = j . <gap j
1/ main loop
for i = 1 , 2, ..., m

for j = 1
,
2, -- n

S
All-

, j-1) + Kniyj
Allj] = min Alit , j] + Lgap

Ali , j-1] + Xgap
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THE ALGORITHM

Correctness : By induction (Exercise

Running time : 0 (m . n) O (1) work each of

O(mn) subproblems

Reconstruction : Easy Case I
,
I

,
Il explicitly tells us

where a gap is inserted.
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SINGLE-SOURCE SHORTEST PATH PROBLEM

input : A directed graph G = (V , El , starting vertex s ,
a non negative lengthle for each edge eE

output : dist(s, v) for every
vetex veV.

length of the shortest path from stor if swer path exists
& otherwise
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ON DIJKSTRA'S ALGORITHM

O(mlogn) running time with heaps

not always correct with negative edge lengths
(e . g .. if edges > financial transactions)

highly centralized

(need distributed algorithm for internet routing)
Solution : Bellman- Ford algorithm
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How to define shortest paths in the presence of negative cycles ?
4
-

S -4
↑
-5

V

7

3

If we require shortest cycle-free path

then the problem is NP-complete (no known poly-time algo .)

encodes" longest path" problem
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NEGATIVE CYCLES

How to define shortest paths in the presence of negative cycles ?
4
-

&
S -4 -5

V

7

3

solution : Allow negative length edges but not negative cycles.

will show how to quickly check this


