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input : a path graph G = (V ,
E) with nonnegative weights on vertices(over

output : an independent set SXV of G with maximum [No
UES

subset of non-adjacent vertices

VI Ve Vs Va
Brute force

Greedy
Divide and Conquer
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G = VI
...

2
- in

S : maxwot independent set of graph G

if UnS

=>S must be a max wo ind set of G := G153 .

if in S

=> sliv] must be a max wo ind set of G" := GlE+ , 43
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A RECURSIVE ALGORITHM

input : a path graph G with vertices r
,
V

,
--

, Un , nonnegative weights [W:]

output : a maximum-weight independent set of G

if n = 1

return [V , 3

1/ recursion when n 2

S:= recusively compute an MWIS of GlEvn

S2 : = recusively compute an MWIS of GlEVnasins

return S
, or SUSVn3 ,

whichever has higher weight
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A RECURSIVE ALGORITHM

Claim : The recursive algorithm for MWIS is correct.

Proof : Exercise
, by induction on number of vertices n.

Claim : The recursive algorithm for MWIS takes exponential time.

Proof : Thl = T(n +1) + T(n 2) + O(1)

branching factor = 2 -
but very little progress

T(n) > Fibonacci (n) ~ const." No better than brute force
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Among the exponentially -

many
recursive calls ,

how distinct subproblems are considered ?many

A(n)

The prefixes of graph G V
, -R

- Y ... v
- Viti" In
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ELIMINATING REDUNDANCY

The first time we solve a subproblem ,
cache its solution

in a global table for PC1) time lookup later on.

(i. e
., memorization)
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BLENDING CACHE INTO PSEUDOCODE

Let G
-

:= first : vertices of graph G and corresponding edges
V - v- ...

- Vi - V

Plan : populate away A left to right with A[i] = value of MWIS of G:.

I/ initialization

A[o] = 0

computes the weight of Ind Set ,

A [l] = Wi but not the set itself

// main loop
for i = 2

,
3

,
---

,
n :

Ali) : = max & Ali+ ] ,
Alive] + W].
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RECONSTRUCTION ALGORITHM

Idea : Trace back through away A to reconstruct optimal solution.

key point :

Vertex vi belongs to Wit
- MWIS of Pir

MWIS of Gi MWIS of Give

S :=

While i 7, I 1/ scan from right to left
if Ali-1], Ali-2] + wi 11 vi MWIS

decrease i by I
else 1/ Vie MWIS

add v; to 9 , decease i by 2

Return S
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A DAG VIEW OF DYNAMIC PROGRAMMING

S S & >

Subproblem2 subproblem 2 subproblem 3 Subproblem 4 subproblem 5

T T T

1
. Identify a small number of subproblems

e. g., max not independent set of G: for 190 ,
1 , 2, . . .,

n ?

2. Show how to quickly and correctly solve "large" subproblems
given solution of "smaller" ones.

e. g ., recurrence Ali] = max &Ali-1] , Ali-2] + Wi 3.
3. 11 1s IS ↑ S "final problem

given solutions of all other subproblems.
e . g.. return A[n]
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KNAPSACK

input : On items
,
each having a

-value v: (non negative
-size si (non negative and integral)

② capacity C (non negative and integral

output : a subset 29 1 , 2
,

--

, n]
that maximizes [vi

itS

subject to Is
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item value size

1 3 4

2 2 3 capacity = 6

3 4 2

4 4 3



APPLICATIONS



APPLICATIONS

Scheduling advertisements Profit-maximizing cutting



APPLICATIONS

Scheduling advertisements Profit-maximizing cutting

Other applications : Credit assignment , Cryptosystems, ...
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OPTIMAL SUBSTRUCTURE

Let S := a max value solution of given knapsack instance

Case I : item n pS

=> I must be optimal for the first (n-1) items

and residual capacity C.

Case I : item nes

=> S/SuS must be optimal for the first (n-1) items

and residual capacity C-Sn
buffer for item n


