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input : a path graph G = (V , E) with nonnegative weights on vertices(over

output : an independent set SXV of G with maximum [No
UES

subset of non-adjacent vertices

How
many independent sets ? 8

VI Ve Vs Va 6)
, four singletons , [U ,V3] , Eve, 93 , SV , Va]

in geneal : exponential in
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A DIVIDE & CONQUER APPROACH

Recursively compute ind . Set for left and right halves and combine the solutions

VI Ve Vs Va·
1454

Not clear how to resolve conflicts.

On algorithm with four recursive calls.
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Idea : Optimal solution of overall problem built up from

optimal solution of subproblems in a prescribed way.

Hope : Need to consider only a few subproblems - manageable !
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if UnS

=>S must be a max wo ind set of G := G153 .

if in S

=> sliv] must be a max wo ind set of G" := GlE+ , 43

We don't know which case we are in.

Only need to think about two subproblems !
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Idea : Try both possibilities and return the better solution.

V

You : Are you crazy ? Isn't this just brute force ?
"

This is recursively organized brute force.

By eliminating redundant computations,
we can solve the problem in linear time.


