
COL 351 : ANALYSIS & DESIGN Of ALGORITHMS

LECTURE 22

DYNAMIC PROGRAMMING I :

WEIGHTED INDEPEDENT SET

SEPT 20
,
2024 / RONT VAISH

MAX WEIGHT INDEPENDENT SET ON PATHS

MAX WEIGHT INDEPENDENT SET ON PATHS

input : a path graph G = (V , E) with nonnegative weights on vertices(over

MAX WEIGHT INDEPENDENT SET ON PATHS

input : a path graph G = (V , E) with nonnegative weights on vertices(over

VI Va Vs Va

MAX WEIGHT INDEPENDENT SET ON PATHS

input : a path graph G = (V , E) with nonnegative weights on vertices(over

output : an independent set SXV of G with maximum [No
UES

VI Ve Vs Va

MAX WEIGHT INDEPENDENT SET ON PATHS

input : a path graph G = (V , E) with nonnegative weights on vertices(over

output : an independent set SXV of G with maximum [No
UES

subset of non-adjacent vertices

VI Ve Vs Va

MAX WEIGHT INDEPENDENT SET ON PATHS

input : a path graph G = (V , E) with nonnegative weights on vertices(over

output : an independent set SXV of G with maximum [No
UES

subset of non-adjacent vertices

VI Ve Vs Va

MAX WEIGHT INDEPENDENT SET ON PATHS

input : a path graph G = (V , E) with nonnegative weights on vertices(over

output : an independent set SXV of G with maximum [No
UES

subset of non-adjacent vertices

VI Ve Vs Va

MAX WEIGHT INDEPENDENT SET ON PATHS

input : a path graph G = (V , E) with nonnegative weights on vertices(over

output : an independent set SXV of G with maximum [No
UES

subset of non-adjacent vertices

VI Ve Vs Va

MAX WEIGHT INDEPENDENT SET ON PATHS

input : a path graph G = (V , E) with nonnegative weights on vertices(over

output : an independent set SXV of G with maximum [No
UES

subset of non-adjacent vertices

How
many independent sets ?

VI Ve Vs Va

MAX WEIGHT INDEPENDENT SET ON PATHS

input : a path graph G = (V , E) with nonnegative weights on vertices(over

output : an independent set SXV of G with maximum [No
UES

subset of non-adjacent vertices

How
many independent sets ? 8

VI Va V3 Va 6)
, four singletons , [U ,V3] , Eve, 93 , SV , Va]

MAX WEIGHT INDEPENDENT SET ON PATHS

input : a path graph G = (V , E) with nonnegative weights on vertices(over

output : an independent set SXV of G with maximum [No
UES

subset of non-adjacent vertices

How
many independent sets ? 8

VI Ve Vs Va 6)
, four singletons , [U ,V3] , Eve, 93 , SV , Va]

in geneal : exponential in

A GREEDY APPROACH

A GREEDY APPROACH

Among feasible vertices
,
select one with maximum weight.

A GREEDY APPROACH

Among feasible vertices
,
select one with maximum weight.

VI Va Vs Va

2 4 5 4

A GREEDY APPROACH

Among feasible vertices
,
select one with maximum weight.

VI Va Vs Va

2 4 5 4

A GREEDY APPROACH

Among feasible vertices
,
select one with maximum weight.

VI Va V3 Va

X X
2 4 5 4

A GREEDY APPROACH

Among feasible vertices
,
select one with maximum weight.

VI Va V3

X M wt = 6
2 4 5 4

A GREEDY APPROACH

Among feasible vertices
,
select one with maximum weight.

VI Va V3

X M wt = 6
2 4 5 4

VI Va V3 Va
wit = G

2 45 4

A GREEDY APPROACH

Among feasible vertices
,
select one with maximum weight.

VI Va V3

X M wt = 6
2 4 5 4

VI Va V3 Va
wit = G

2 45 4

A DIVIDE & CONQUER APPROACH

A DIVIDE & CONQUER APPROACH

Recursively compute ind . Set for left and right halves and combine the solutions

A DIVIDE & CONQUER APPROACH

Recursively compute ind . Set for left and right halves and combine the solutions

VI Va V3 Va

2 4 5 4

A DIVIDE & CONQUER APPROACH

Recursively compute ind . Set for left and right halves and combine the solutions

VI Va V3 Va·
2 454

A DIVIDE & CONQUER APPROACH

Recursively compute ind . Set for left and right halves and combine the solutions

VI Va V3 Va·
2 454

A DIVIDE & CONQUER APPROACH

Recursively compute ind . Set for left and right halves and combine the solutions

vi Unins va

1454

Not clear how to resolve conflicts.

A DIVIDE & CONQUER APPROACH

Recursively compute ind . Set for left and right halves and combine the solutions

VI Ve Vs Va·
1454

Not clear how to resolve conflicts.

On algorithm with four recursive calls.

OPTIMAL SUBSTRUCTURE

OPTIMAL SUBSTRUCTURE

Idea : Optimal solution of overall problem built up from

optimal solution of subproblems in a prescribed way.

OPTIMAL SUBSTRUCTURE

Idea : Optimal solution of overall problem built up from

optimal solution of subproblems in a prescribed way.

Hope : Need to consider only a few subproblems - manageable !

OPTIMAL SUBSTRUCTURE

Notation : Path graph G =, E) "E ... We in

OPTIMAL SUBSTRUCTURE

Notation : Path graph G =(, El VI V
-- -2 -

in

Let &V be a max weight independent set (MWIS)·

OPTIMAL SUBSTRUCTURE

Notation : Path graph G =(, El VI V
-- -2 -

in

Let &V be a max weight independent set (MWIS)·

Case analysis : Either US or UnES.

OPTIMAL SUBSTRUCTURE

Notation : Path graph G =(, El VI V
...

2
- in

Let &V be a max weight independent set (MWIS)·

Case analysis : Either US or UnES.

Case I : Un S

CaseI : In S

OPTIMAL SUBSTRUCTURE

Notation : Path graph G =(, El VI V
...

2
- in

Let &V be a max weight independent set (MWIS)·

Case analysis : Either US or UnES.

Case I : Un S

Let G' := G153 .

CaseI : In S

OPTIMAL SUBSTRUCTURE

Notation : Path graph G =(, El VI V
-- -2 -

in

Let &V be a max weight independent set (MWIS)·

Case analysis : Either US or UnES.

Case I : Un S

Let G := G153 . Then
,

S is also an independent set of G

CaseI : In S

OPTIMAL SUBSTRUCTURE

Notation : Path graph G =(, El VI V
...

2
- in

Let &V be a max weight independent set (MWIS)·

Case analysis : Either US or UnES.

Case I : Un S

Let G := G153 . Then
,

S is also an independent set of G
=>S must be a max we ind set of G

CaseI : In S

OPTIMAL SUBSTRUCTURE

Notation : Path graph G =(, El VI V
...

2
- in

Let &V be a max weight independent set (MWIS)·

Case analysis : Either US or UnES.

Case I : Un S

Let G := G153 . Then
,

S is also an independent set of G
=>S must be a max we ind set of G

CaseI : In S

Then
,Un- ES.

OPTIMAL SUBSTRUCTURE

Notation : Path graph G =(, El VI V
-- -2 -

in

Let &V be a max weight independent set (MWIS)·

Case analysis : Either US or UnES.

Case I : Un S

Let G := G153 . Then
,

S is also an independent set of G
=>S must be a max we ind set of G

CaseI : In S

Then
,U- S

.

Let G" := G(Ey , 43·

OPTIMAL SUBSTRUCTURE

Notation : Path graph G =(, El VI V
-- -2 -

in

Let &V be a max weight independent set (MWIS)·

Case analysis : Either US or UnES.

Case I : Un S

Let G := G153 . Then
,

S is also an independent set of G
=>S must be a max we ind set of G

CaseI : In S

Then
,U- S

.

Let G" := G(Ey , 43·
Then

, S19Vn] is an independent set of G"

OPTIMAL SUBSTRUCTURE

Notation : Path graph G =(, El VI V
-- -2 -

in

Let &V be a max weight independent set (MWIS)·

Case analysis : Either US or UnES.

Case I : Un S

Let G := G153 . Then
,

S is also an independent set of G
=>S must be a max we ind set of G

CaseI : In S

Then
,U- S

.

Let G" := G(Ey , 43·
Then

, S19Vn] is an independent set of G"
=> sliv] must be a max we ind set of G"

OPTIMAL SUBSTRUCTURE

if UnS

=>S must be a max wo ind set of G := G153 .

if in S

=> sliv] must be a max wo ind set of G" := GlE+ , 43

OPTIMAL SUBSTRUCTURE

if UnS

=>S must be a max wo ind set of G := G153 .

if in S

=> sliv] must be a max wo ind set of G" := GlE+ , 43

We don't know which case we are in.

Only need to think about two subproblems !

OPTIMAL SUBSTRUCTURE

Idea : Try both possibilities and return the better solution.

OPTIMAL SUBSTRUCTURE

Idea : Try both possibilities and return the better solution.

V I

You : Are you crazy ? Isn't this just brute force ?

OPTIMAL SUBSTRUCTURE

Idea : Try both possibilities and return the better solution.

V I

You : Are you crazy ? Isn't this just brute force ?

OPTIMAL SUBSTRUCTURE

Idea : Try both possibilities and return the better solution.

V

You : Are you crazy ? Isn't this just brute force ?
"

This is recursively organized brute force.

OPTIMAL SUBSTRUCTURE

Idea : Try both possibilities and return the better solution.

V

You : Are you crazy ? Isn't this just brute force ?
"

This is recursively organized brute force.

By eliminating redundant computations,
we can solve the problem in linear time.

