
COL 351 : ANALYSIS & DESIGN Of ALGORITHMS

LECTURE 21

INTRODUCTION TO DYNAMIC PROGRAMMING
AND

MID-TERM REVIEW

SEPT 11
,
2024 / RONT VAISH



STORY SO FAR



STORY SO FAR

input > ALGORITHM > output

A recipe for solving some computational problem.



Divide-and-conquer

Graph algorithms

Designing fast algorithms Greedy algorithms
Dynamic programming
Network flow

Linear programming
Proving that a fast algorithm NP-completeness

probably doesn't exist

Approximation
Coping with NP-completeness Randomization

Parameterization



Divide-and- Conquer

Graph algorithms & So far

Designing fast algorithms Greedy algorithms
Dynamic programming
Network flow

Linear programming
Proving that a fast algorithm NP-completeness

probably doesn't exist

Approximation
Coping with NP-completeness Randomization

Parameterization



Divide-and- Conquer

Graph algorithms & So far

Designing fast algorithms Greedy algorithms
Dynamic programming- > today
Network flow

Linear programming
Proving that a fast algorithm NP-completeness

probably doesn't exist

Approximation
Coping with NP-completeness Randomization

Parameterization



The algorithm design space is surprisingly rich !



DIVIDE E CONQUER



DIVIDE E CONQUER

Intege multiplication : Grade school vIs Kaatsuba

Matrix multiplication : Grade school " Strassen



DIVIDE E CONQUER

Intege multiplication : Grade school vIs Kaatsuba

Matrix multiplication : Grade school " Strassen

Merge Sort : Recursion thee analysis



DIVIDE E CONQUER

Intege multiplication : Grade school vIs Kaatsuba

Matrix multiplication : Grade school " Strassen

Merge Sort : Recursion thee analysis

counting inversions : Piggyback on muge
zort



DIVIDE E CONQUER

Intege multiplication : Grade school vIs Kaatsuba

Matrix multiplication : Grade school " Strassen

Merge Sort : Recursion thee analysis

counting inversions : Piggyback on muge
zort

Binary search : Halving the search space



DIVIDE E CONQUER

Intege multiplication : Grade school vIs Kaatsuba

Matrix multiplication : Grade school " Strassen

Merge Sort : Recursion thee analysis

counting inversions : Piggyback on muge
zort

Binary search : Halving the search space

Master theorem : General tool for analyzing recurrences



GRAPH ALGORITHMS



GRAPH ALGORITHMS

Applications : Road networks
,
social networks

,
Web, ...



GRAPH ALGORITHMS

Applications : Road networks
,
social networks

,
Web, ...

Representation : adjacency list , adjacency matrix.



GRAPH ALGORITHMS

Applications : Road networks
,
social networks

,
Web, ...

Representation : adjacency list , adjacency matrix.

BFS
shortest paths
connected components



GRAPH ALGORITHMS

Applications : Road networks
,
social networks

,
Web, ...

Representation : adjacency list , adjacency matrix.

BFS
shortest paths
connected components

DFS topological ordering
strongly connected components & Kosarajn's algo.



GRAPH ALGORITHMS

Applications : Road networks
,
social networks

,
Web, ...

Representation : adjacency list , adjacency matrix.

BFS
shortest paths
connected components Linear time !

DFS topological ordering
strongly connected components & Kosarajn's algo.



GRAPH ALGORITHMS

Applications : Road networks
,
social networks

,
Web, ...

Representation : adjacency list , adjacency matrix.

BFS
shortest paths
connected components Linear time !

DFS topological ordering
strongly connected components & Kosarajn's algo.

Dijkstra's algorithm : single-source shortest paths in weighted
directed graphs (theaps)



GREEDY ALGORITHMS



GREEDY ALGORITHMS

correctness analysis is non-trivial exchange argument
induction



GREEDY ALGORITHMS

correctness analysis is non-trivial exchange argument
induction

Job scheduling : Using special cases to build general solution



GREEDY ALGORITHMS

correctness analysis is non-trivial exchange argument
induction

Job scheduling : Using special cases to build general solution

thinking differently (codes as trees)
Huffman coding

11

completing " a partial optimal solution



GREEDY ALGORITHMS

correctness analysis is non-trivial exchange argument
induction

Job scheduling : Using special cases to build general solution

thinking differently (codes as trees)
Huffman coding

11

completing " a partial optimal solution

Prim's and Kruskal's algorithms
Minimum spanning trees

Empty cuts
, lonely edges , Cut property



DYNAMIC PROGRAMMING







MAX WEIGHT INDEPENDENT SET ON PATHS



MAX WEIGHT INDEPENDENT SET ON PATHS

input : a path graph G = (V , E) with nonnegative weights on vertices(over



MAX WEIGHT INDEPENDENT SET ON PATHS

input : a path graph G = (V , E) with nonnegative weights on vertices(over

output : an independent set SXV of G with maximum [No
UES



MAX WEIGHT INDEPENDENT SET ON PATHS

input : a path graph G = (V , E) with nonnegative weights on vertices(over

output : an independent set SXV of G with maximum [No
UES

subset of non-adjacent vertices



MAX WEIGHT INDEPENDENT SET ON PATHS

input : a path graph G = (V , E) with nonnegative weights on vertices(over

output : an independent set SXV of G with maximum [No
UES

subset of non-adjacent vertices

VI Ve Vs Va



MAX WEIGHT INDEPENDENT SET ON PATHS

input : a path graph G = (V , E) with nonnegative weights on vertices(over

output : an independent set SXV of G with maximum [No
UES

subset of non-adjacent vertices

VI Ve Vs Va



MAX WEIGHT INDEPENDENT SET ON PATHS

input : a path graph G = (V , E) with nonnegative weights on vertices(over

output : an independent set SXV of G with maximum [No
UES

subset of non-adjacent vertices

VI Ve Vs Va



MAX WEIGHT INDEPENDENT SET ON PATHS

input : a path graph G = (V , E) with nonnegative weights on vertices(over

output : an independent set SXV of G with maximum [No
UES

subset of non-adjacent vertices

VI Ve Vs Va



MAX WEIGHT INDEPENDENT SET ON PATHS

input : a path graph G = (V , E) with nonnegative weights on vertices(over

output : an independent set SXV of G with maximum [No
UES

subset of non-adjacent vertices

How
many independent sets ?

VI Ve Vs Va



MAX WEIGHT INDEPENDENT SET ON PATHS

input : a path graph G = (V , E) with nonnegative weights on vertices(over

output : an independent set SXV of G with maximum [No
UES

subset of non-adjacent vertices

How
many independent sets ? 8

VI Va V3 Va 6)
, four singletons , [U ,V3] , Eve, 93 , SV , Va]



MAX WEIGHT INDEPENDENT SET ON PATHS

input : a path graph G = (V , E) with nonnegative weights on vertices(over

output : an independent set SXV of G with maximum [No
UES

subset of non-adjacent vertices

How
many independent sets ? 8

VI Ve Vs Va 6)
, four singletons , [U ,V3] , Eve, 93 , SV , Va]

in geneal : exponential in


