COL 351 : ANA	lyeis &	DESIGN	of	ALGORITHMS	
	· · · · · · · · · ·		· · · · ·	· · · · · · · · · · · · ·	· · · · · · ·
	-ECTU	RE 21	· · · · ·	· · · · · · · · · · · · ·	· · · · · · · ·
INTRODUCTION	TO DY	NAMIC	PRO	GRAMMING	· · · · · · ·
	AND		· · · · ·		
MII	D-TERM	REVIEW			
	· · · · · · · · · ·	· · · · · · · · ·	· · · · ·	· · · · · · · · · · · ·	· · · · · · ·
SEPT 11, 20	24	R	OHIT	NAICH	

		•																			•								•		• •
											 C		_ 6					<u> </u>													
											 2		OR	(Y)	S).		FA	łK												
												• •												• •							
												• •												• •							
												• •												• •							
		• •	• •									• •				• •			• •		• •						•				
										• •		• •							• •		• •										
										• •		• •							• •								•			•	
						• •				• •		• •		• •		• •			• •		• •						•	•			
		• •	• •			• •	•			• •				• •		• •			• •		• •			• •					• •	•	• •
		• •	• •			• •	•			• •				• •		• •			• •		• •			• •					• •	•	• •
		• •	• •			• •	•			• •				• •		• •			• •		• •	• •		• •					• •	•	• •
	•		• •		•	• •	•			• •		• •		• •		• •	•		• •	•	• •	• •		• •				•	• •	•	• •
	•		• •		•	• •	•			• •		• •		• •		• •	•		• •	•	• •	• •		• •				•	• •	•	• •
			• •			• •				• •		• •		• •		• •			• •		• •	• •			•	• •	•	•	• •		• •
	•		• •	•	•	• •			•	• •		• •		• •		• •			• •	•	• •	• •	•		•	• •	•	•	• •	•	• •
		• •				• •				• •		• •		• •		• •			• •		• •	• •		• •	•	• •	•	•	• •	•	• •
	•		• •			• •				• •		• •		• •		• •			• •		• •	• •		• •	•	• •	•	•	• •	•	• •
	•	• •	• •			• •	•			• •		• •		• •		• •	•		• •		•	• •		• •		• •		•	• •	•	• •
		• •				• •				• •		• •		• •		• •			• •		• •	• •		• •	•	• •	•	•	• •	•	• •
	•	• •	• •			• •	•			• •		• •		• •		• •	•		• •		•	• •		• •		• •		•	• •	•	• •
	•	• •	• •			• •	•			• •		• •		• •		• •	•		• •		•	• •		• •		• •		•	• •	•	• •
		• •				• •				• •		• •		• •		• •			• •		• •	• •		• •	•	• •	•	•	• •	•	• •
		• •				• •				• •		• •		• •		• •			• •		• •	• •		• •	•	• •	•	•	• •	•	• •
			• •		•	• •		•		• •		• •		• •		• •			• •		• •	• •		• •		• •		•	• •	•	
	•	• •	•		•	• •	•			•		• •		• •		• •		•	• •	•	• •	• •	•	•		•		•	• •	•	• •
			• •		•	• •		•		• •		• •		• •		• •			• •	•	• •	• •		• •		• •		•	• •	•	

· · · · · · · · · · · · · · · · · · ·		STORY	so fai			
.	input –	→ AL	GORITHM		\rightarrow outp	rt
	A recipp	for solving	Some	combutatio	nal pro	blem .
		(

- Divide - and - congner - Graph algorithms - Greedy algorithms Designing fast algorithms Dynamic programming Network flow Linear programming Proving that a fast algorithm NP- completiness probably doesn't exist Approximation Coping with NP-completeners - Randomization Prameterization

-Divide - and - congruer - Graph algorithms So far - Greedy algorithms Designing fast algorithms Dynamic programming Network flow Linear programming Proving that a fast algorithm NP- completiness probably doesn't exist Approximation Coping with NP-completeners - Randomization Parameterization

-Divide - and - congner - Graph algorithms So far - Greedy algorithms Designing fast algorithms Dynamic programming -> today Network flow Linear programming Proving that a fast algorithm NP- completiness probably doesn't exist Approximation Coping with NP- completeners - Randomization Parameterization

```
The algorithm design space is surprisingly rich!
```

	•					*	•																				•			• •		•		*
									~	~					2					<u>م</u>		-	Λ.	• •										
										V	V	ID	いて		8		. (0	N	6	U	E	K											
																•																		
																													•			• •		
	• •		• •								• •																• •	•		• •		• •		•
	• •		• •								• •																• •	•		• •		• •		•
	• •				•	•																							•	• •		• •		
	• •				•	•																							•	• •		• •		
	• •				•	•																							•	• •		• •		
	• •		• •		•	•	• •				• •																	•	•	• •		• •		•
	• •		• •		•	•	• •				• •																	•	•	• •		• •		•
	• •		• •			•	• •				• •			• •				•	•				• •				• •		•	• •		• •		•
	• •		• •			•	• •				• •			• •				•	•				• •				• •		•	• •		• •		•
	• •		• •			•	• •				• •			• •				•	•				• •				• •		•	• •		• •		•
	• •		• •			•	•			•	• •	•	•	• •	•		•	•	•		•	•	• •	•		•			•	• •		• •		•
	• •		• •			•	• •				• •			• •				•	•				• •				• •		•	• •		• •		•
	• •		• •		•	•				•	• •							•				•						•	•	• •		• •		•
	• •		• •		•	•				•	• •							•				•						•	•	• •		• •		•
	• •		• •		•	•				•	• •							•				•						•	•	• •		• •		•
	• •		• •		•	•				•	• •							•				•						•	•	• •		• •		•
	• •		• •		•	•				•	• •							•				•						•	•	• •		• •		•
	• •		• •		•	•				•	• •							•				•						•	•	• •		• •		•
	• •		• •		•	•				•	• •							•				•						•	•	• •		• •		•
	• •		• •		•	•				•	• •							•				•						•	•	• •		• •		•
	• •		• •		•	•				•	• •							•				•						•	•	• •		• •		•
	• •		• •			•	• •				• •			• •				•	•				• •				• •		•	• •		• •		•
	• •		• •			•	• •				• •			• •				•	•				• •				• •		•	• •		• •		•
	• •		• •				• •				• •			• •				•					• •						•			• •		•
	• •		• •				• •				• •			• •				•					• •						•			• •		•
	• •		• •																													• •		

	DIVIDE	\$ CONQUER	
Integr	multiplication :	Gnade school v	11s knuatsuba
Matrix	multiplication :	Gnade school v	Vs Strassen

· · · · ·	· · · · · · · · · · · · · · · · · · ·	DIVIDE	\$ CONQUER	
· · · · ·	Integr	multiplication :	Gnade school VIs	Kniatsuba
· · · · ·	Matrix	multiplication :	Gnade school V/s	Strassen
· · · · ·	· · · · · · · · · · ·	Merge Sort;	Recussion tree an	olysis
	· · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·
· · · · ·	· · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·	
· · · · ·	· · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·	
· · · ·	· · · · · · · · · · · ·			

	· · · · · · · · · · ·	DIVIDE	\$ CONQUER	
	Integar	multiplication :	Gnade school V/s kavat	snba
· · ·			Gnade school V/s Strag	
		Merge Sort;	Recursion tree analysis	
· · · ·	Co	unting inversions:	Piggyback on muge s	ort
	<u>.</u>			

· · · · · ·		DIVIDE & CONQUER
	Intega	
· · · · · ·	Matrix	multiplication : Gnade school V/s karatsuba multiplication : Gnade school V/s Strassen
		Merge Sort ; Recursion tree analysis
 	Cou	unting inversions: Piggyback on mege sort
· · · · ·		Binary Search : Halving the Search space

	DIVIDE & CONQUER
Integr	multiplication: Gnade school V/s kavatsuba
Matis	n multiplication : Gnade school V/s kavatsuba (multiplication : Gnade school V/s Strassen
. .	Merge Sort : Recussion tree analysis
	Counting inversions: Piggyback on mege sort
	Binary search : Halving the search space
	Master theorem : General tool for analyzing recurrences

									•													• •		•	• •				
							•	0	0	n f																			
							. (ব	R	ħ1	H	 A	Ŀ	6	0	R	17	11	1	<u>S</u> .									
								. •						1															

· ·		GRAPH	ALGORITHMS	
••••	Applications : R	ead networks,	social networks,	Web,
• •				
• •				
• •				
• •				
• •				
• •				
• •				
• •				
• •				
• •				

			•	•	•	•	•	•		• •	· ·	•	•	•	•	e	1 f	C,F	łł	}	1		Å	L	q	0	R		T	H	۲	י בי נ		•	•	•		•	•	•	•	•			•	•	•	• •	
• •	A	iþ	5 l	λ λ ι	20	łì) On	ų U V	· · ·	• •	R	I I I	rd rd	L.	r Y Y	ne Ne	t.	ہ مہ د	י אר נ	 		י י י	s S	0	نې ب	z.J	•	n M	et	h	دھ ر		• • • •	ĥ	Je	ь,			•	•	•	•	• •	· ·	•	•	•	· ·	
• •	R	e	ריכ ריכ	e	2 د	n N	to	n t	ì	on	 		•	•	e Q	d	Ì	ہ م ر	1	י ר נ	4	•	l L	ה 2 א 2	t	•			A	Y	2	Cu	ר ה ה	u .u		. 1	no	t	17	ہ د ر	•	•	• •	•••	•	•	•	· ·	
•								•	•		• •						٠												•												•	•			•	•	•	• •	1
																																										•							
•									•																				•	•					•	•					•	•	• •				•	• •	
•									•	• •		•					•			•							•		•						•	•					•	•	• •			•	•	• •	
•		-					•			• •		•		•	•		•			•			•				•		•		-		•		•						•	•	• •			•	•	• •	
•						•	•			• •					•		•			•									•					•				•			•	•	• •	• •		•	•	• •	
										• •		•											•						•							•						•	• •	• •			•	• •	
																			•		•																												
•																																									•	•					•	• •	
•		-																		•									•		-		•		•						•	•	• •		•	•	•	• •	
•						•	•	•	•	•					•								•		•	•	•	•	•	•				•	•	•		٠		٠		•	• •			٠		•	
•						•	•	•	•					•									•			•	•	•	•	•				•	•	•						•	•	•			•	•	
•						•	•	•	•	•					•	•		•				•	•		•	•	•	•	•	•					•	•					•	•	• •	• •				•	
																																											•	•				•	f

· ·	· · · · ·	· · · · · ·		GRAPH	ALGOR	ITHMS	· · · · · · · · · ·	
· ·	Appli	cations	' Rend	networke,	social	networks, W	чь,	· · · · · · · · · · ·
· ·	Repri	e senta.	tion :	Adja uncy	list,	adja cency	matrix.	
· · ·	BFS		shortest	paths L compone	24n			
· ·	· · · ·	· · · · · ·				· · · · · · · · · · ·		
	· · · · ·	· · · · · ·	· · · · · · · ·	· · · · · · · · · ·		· · · · · · · · · · ·		
•••	· · · ·	· · · · · ·		· · · · · · · · ·	· · · · · ·	· · · · · · · · · · ·		
•••	· · · · ·	· · · · · ·		· · · · · · · · · ·	· · · · · ·	· · · · · · · · · · ·		· · · · · · · · · ·
· ·	· · · · ·	· · · · · ·	· · · · · · · ·	· · · · · · · · · ·	· · · · · ·	· · · · · · · · · · ·		
			· · · · · · · ·	· · · · · · · · · · ·		· · · · · · · · · · ·	· · · · · · · · · ·	· · · · · · · · · ·

	GRAPH ALGORITHMS
Application	ne: Read networks, social networks, Web,
Represento	ation : adja uncy list, adja uncy matrix.
	- shortest paths - connected components
	- topological ordering
	- strongly connected components & kosangin's algo.

	GRAPH ALGORITHMS
Applicatio	ns: Read networks, social networks, Web,
Represent	ation : Adja uncy list, adja uncy matrix.
	- shortest paths - connected components Linear time!
	- topological ordering
	- strongly connected components & Kosangju's algo.
. .	

	GRAPH ALGORITHMS
Applicatio	ne: Read networks, social networks, Web,
Represente	tion: Adja uncy list, adja uncy matrix.
RFC	- shortest paths
	- shortest paths - connected components Linear time!
DFs	- topological ordering
	- strongly connected components & Kosangju's algo.
Dijkstra's	algorithm: Single-source shortest paths in Weighted directed graphs (+ heaps)

															• •																÷ •				
									6	0	-	-	~							•		÷.		•											
								. 1	9	K	E	Ł	D	7		P	11	.4	0	K	ľ		1 P	13	5.										
																Ū.,	- -							19											
																													•						
																													•						
																													•						
																						•							•	•			•	•	
																						•							•	•			•	•	
																						•							•	•			•	•	
																						•							•	•			•	•	
																						•							•	•			•	•	
																						•							•	•			•	• •	
																						•							•	•			•	• •	
																						•							•	•			•	• •	
															• •																			•	
															• •																			•	

•	· · · · · · · · · · ·		GREEDY ALGORI	THMS	
•	Correctnes	analysis i	s non-trivial	exchange	orgument
		U		induction	
	· · · · · · · · · · ·	· · · · · · · · · ·			
•		· · · · · · · · · · ·			

	GREEDY ALGORIT	HMS
Correctness analysis	is non-trivial <	xchange augument induction
Job schednling:	using special case	s to build general solution
	· · · · · · · · · · · · · · · · · · ·	
	· · · · · · · · · · · · · · · · · · ·	

	GREEDY ALGO	RITHMS
Converting	ic now to iveral	- exchange argument
Current and St.S.		- exchange argument - induction
Job schednling.	using special c	ases to build general solution
Huffman cooling <		ferently (codes as trees)
· · · · · · · · · · · · · · · · · · ·	"completing" a	partial optimal solution

	GREEDY ALGORITHMS
Correctness analysis	
Job scheduling:	using special cases to build general solution
Huffman cooling <	— thinking differently (codes as trees) — "completing" a partial optimal solution
Minimum spanning tr	es Porim's and Kounskal's algorithms Empty cuts, lonely edges, Cut property

```
DYNAMIC PROGRAMMING
```

I spent the Fall guarter (of 1950) at RAND. My first task was to find a name for multistage decision processes. An interesting guestion is, "Where did the name, dynamic programming, come from?" The 1950s were not good years for mathematical research. We had a very interesting gentleman in Washington named Wilson. He was Secretary of Defense, and he actually had a pathological fear and hatred of the word "research". I'm not using the term lightly; I'm using it precisely. His face would suffuse, he would turn red, and he would get violent if people used the term research in his presence. You can imagine how he felt, then, about the term mathematical. The RAND Corporation was employed by the Air Force, and the Air Force had Wilson as its boss, essentially. Hence, I felt I had to do something to shield Wilson and the Air Force from the fact that I was really doing mathematics inside the RAND Corporation. What title, what name, could I choose? In the first place I was interested in planning, in decision making, in thinking. But planning, is not a good word for various reasons. I decided therefore to use the word "programming". I wanted to get across the idea that this was dynamic, this was multistage, this was time-varying. I thought, let's kill two birds with one stone. Let's take a word that has an absolutely precise meaning, namely dynamic, in the classical physical sense. It also has a very interesting property as an adjective, and that is it's impossible to use the word dynamic in a pejorative sense. Try thinking of some combination that will possibly give it a pejorative meaning. It's impossible. Thus, I thought dynamic programming was a good name. It was something not even a Congressman could object to. So I used it as an umbrella for my activities.

-Richard Bellman, Eye of the Hurricane: An Autobiography (1984, page 159)

I spent the Fall guarter (of 1950) at RAND. My first task was to find a name for multistage decision processes. An interesting guestion is, "Where did the name, dynamic programming, come from?" The 1950s were not good years for mathematical research. We had a very interesting gentleman in Washington named Wilson. He was Secretary of Defense, and he actually had a pathological fear and hatred of the word "research". I'm not using the term lightly; I'm using it precisely. His face would suffuse, he would turn red, and he would get violent if people used the term research in his presence. You can imagine how he felt, then, about the term mathematical. The RAND Corporation was employed by the Air Force, and the Air Force had Wilson as its boss, essentially. Hence, I felt I had to do something to shield Wilson and the Air Force from the fact that I was really doing mathematics inside the RAND Corporation. What title, what name, could I choose? In the first place I was interested in planning, in decision making, in thinking. But planning, is not a good word for various reasons. I decided therefore to use the word "programming". I wanted to get across the idea that this was dynamic, this was multistage, this was time-varying. I thought, let's kill two birds with one stone. Let's take a word that has an absolutely precise meaning, namely dynamic, in the classical physical sense. It also has a very interesting property as an adjective, and that is it's impossible to use the word dynamic in a pejorative sense. Try thinking of some combination that will possibly give it a pejorative meaning. It's impossible. Thus, I thought dynamic programming was a good name. It was something not even a Congressman could object to. So I used it as an umbrella for my activities.

0 0

- Richard Bellman, Eye of the Hurricane: An Autobiography (1984, page 159)

MAX WEIGHT INDEPENDENT SET ON PATHS	•				•	•			• •	N	1 à	- 1	K.	•	لما	Ē	E I	6	H	T	IÅ	J'	5	- 1	Þ	-	17		E n	J -	Т		SF	T	-	0	N		>A		H	י כי	•	•	•		• •	
										U	U r	\ '						٦	11		H.	• 1				-1	N J		51		1					U			. • •									
									• •	-							•	•										•																•				
									• •								•	•		•								•	•	•					•									•		•		•
								•	• •						•	•	•	•	•	• •		•				•	•	•	•	•	• •	•			•				•	• •		•		•		•	• •	
				•				•	• •				•			•	•	•	•	•		•						•	•	•	• •	•			•				•	• •				•		•	• •	•
		•		•					• •		•				•		•	•	•	•						•		•	•				•		•					• •				•	•	•		
								•	• •							•		•	•	•		•							•	•	• •				•				•	• •						•	• •	
									• •						•			•	•							•									•													
				•				•	• •					•		•		•	•								•		•	•				•				•	•	• •							• •	
								•	• •									•				•									• •				•				•									
																														•										• •								
									• •								•	•		• •								•	•		• •				•				•	• •						•		•
· · · · · · · · · · · · · · · · · · ·									• •								•	•										•	•						•									•		•		•
· · · · · · · · · · · · · · · · · · ·								•	• •						•	•	•	•	•	• •		•				•	•	•	•	•	• •	•			•				•	• •		•		•		•	• •	•
	•		•	•		•	•	•	• •			•	•	•		•	•	•	•	•		•		•	•	•	•	•	•	•	• •				•				•	•		•		•			• •	•
	•					•		•	• •			•		•		•	•	•	•	•				•			•	•	•	•	• •				•			•	•	•		•	•	•		•	• •	•
					•			•	• •							•	•	•	•	•							•	•	•	•	•				•				•	•						•	• •	•
								•	• •				•		•					• •										•	• •			•			0		•							0	• •	

•	· · ·			• •	1	1	łX		W.	EI	91	1 T	ļ	N	ÞE	P	E١	١D	En	17	•	SE	Т	01	J	PA	T	HS	• •	• •		• •	
•	inpu	t:	· · ·	0	þ	ath	, , , , , , , , , , , , , , , , , , ,	gra	þh	, ,	ء ۲	- (V	', E	,) , () , () , () , () , () , () , () ,	Ьń	th	r Y)07)	ne	ga	tiν	e	We	igh	Ь	0Y	י י י	1 er	lic	ور ا	ξu	و کو موارق	eV
•	• • •	• •		• •		•••	•	• •	• •	•	•••	• •	•	• •	•	•••	•	• •	• •		• •	•	• •	• •	• •		• •	•		• •	•	•••	• •
	• • •			• •		• •	•	• •	• •	•	• •	•••	•	• •	•	• •	•	• •	• •	•	• •	•	• •	• •	• •	•				• •		• •	• •
	• • •	• •	0	• •		• •	0	• •	• •	0	• •	• •	0	• •	0	• •	0	• •	• •	0	• •	•	0 0	• •	• •	8	• •		• •	• •		• •	• •
•	• • •	• •		• •		•••	•	• •	• •	•	• •	••••	•	• •	•	• •	•	• •	• •	•	• •	•	• •	• •	• •	•	• •	•	• •	• •	•	• •	• •
•	• • •			• •		• •	•	• •	• •	•	• •	••••	•	• •	•	• •	•	• •	• •	•	••••			• •	• •	•	• •			• •		• •	• •
•	· · ·		•			• •			• •	•	• •	• •	•	•••		• •	•	• •		•	• •		• •	• •	• •	•	• •	•	• •	• •		• •	• •
•	· · ·	• •	0	• •		• •		• •	• •		• •	• •	0	• •		• •	•	• •	• •	•	• •	•		• •	• •		• •	•	• •	• •	•	• •	• •
•	· · ·	• •		• •		• •	•	• •	• •	•	• •	• •	0	• •	•	• •	•	• •	• •	•	•••	•	• •	•••	• •	•	• •	•	• •	• •	•	• •	• •
•	· · ·	• •		• •		• •	•	• •	• •	•	• •	• •	0	• •	•	• •	•	• •	• •	•	•••	•	• •	•••	• •	•	• •	•	• •	• •	•	• •	• •
•	· · ·	• •		• •		• •	•	• •	• •	•	• •	• •	0	• •	•	• •	•	• •	• •	•	•••	•	• •	•••	• •	•	• •	•	• •	• •	•	• •	• •
•	· · ·	• •		• •		•••	•	• •	••••	•		••••	•	• •	•	• •	•	• •	• •		••••	•	• •	• •	• •	•	• •	•		••••	•	••••	• •
•	• • •			• •		••••	•	• •	••••	•	• •	••••	•	• •	•	• •	0	• •	• •	•	••••		• •	• •	• •	•	• •	•		• •		• •	• •
0	• • •	• •	•	• •		• •	•	• •	• •	•	• •	• •	•	• •	•	• •	0	• •	• •	•	• •	•	• •	• •	• •	•	• •	•		• •	•	• •	• •
								• •	• •					• •													• •					• •	

•	• •	• •	•	• •	•	M	14	- X		l	N	EI	9	H	Т	0	IN	Ð	E	P	EI	N]	Þ	N	T		S	E7	-	0	N		PA	T	H.	S		• •		•	• •	
•	inf	out	•			þa	th		gr Sr	oþ	sh	. (G	, W	(V	, 1	E)	. (ง งา	th	Υ	107	A 1	م الا ()]a:	Ηiν	le	ŀ	งยั	gl	nts	•	0r	· · ·	ง 1 ปั	vt'	i Ce	<u>د د</u>	Į	wg	?] 9e	
	Out									• •					• •					• •				• •			• •			• •									•	•	• •	•
	• •	• •	•	• •	•	• •	•	•	•	••••		•	•	•	• •	•	•	•	•	• •		•	•	• •	•	•	• •	•	•	• •	•	•	•	• •			•	• •	•	0	•	
•	• •	• •		• •	•	• •		•	•	• •	•	•	•	•			•		•	• •	•	•		• •			• •	•	•	• •	•	•	•	• •		•	•	• •				
	• •	• •	•	• •		• •	•		•				•	•			•		•				•									•										
																	٠																									
		• •	٠																									٠								٠		• •				
•	•	• •		• •		• •		•	•					•	• •		•	•	•	• •			•			•	• •		•		•		•	• •	•		•	• •				
	•	• •	٠	• •		• •	•				•			•	• •	•			•									٠			•					۰		• •				
•								•	•							•											• •										•					
		• •		• •		• •									• •												• •											• •				
	• •	• •		• •		• •			•						• •	•	•	•		• •			•			•	• •		•				•	• •				• •				
	•	• •	٠	• •		• •	•				•			•	• •	•			•									٠			•					۰		• •				
			•	• •		• •		•	•						• •		•	•		• •	•	•				•	• •	•	•			•	•	• •		•	•	• •	•	•		

	•	•	• •	•	•	•	• •	M	A	X	•	W (EI	9	H	٢	IN	I⊅	E	Pe	EN	D	EN	17		SE	γ T)N		PA	T)	15) 	•	• •	•	• •	•
	i	nþ	ut	•	•	Q Q	þ	att	h	g,	2	þh	. (9	= (ν,	E)	- - -	sił	h	ŝ	ο 2 2 1	7 C	gai	tiv	le	W	eig	ht	5	0n	۰ ۱	10	tic	تور	ž	wg	2] 9e	V
•	0 0	ut	þυ	nt		CA CA	n	i i i	nd	lep	en	di	nt	• •	sē	t	2	<u> </u>	₽V		of	1	Ģ		51-	h	m	1A)	cìn	1 h r	n n	2) e s	ង	4	• •	•	· ·	
•	•	•	· ·	•	•	•	• •	•	• •	•	•	Υ ^π					•		•							Cen	•		•		•	•		• •	•	• •		• •	
•	•	•	•••	•	•	•	••••	•	• •	•	•	• •	•	• •		•	• •	•	· ·	•		•		•			• •	•		•		•	•	• •	•	• •	•		•
•	•	•	• •	•	•	•	• •	•	• •	•	•	• •	•	•		•	• •	•	• •	•	· ·	•	· ·	•	•	• •	• •	•	• •	•	• •	•		• •	•	• •	•	• •	•
•	•	•	· ·	•	•	•	••••	•	•••	•	•	• •	•	• •	· ·	•	••••	•	· ·	•	· ·	•	· ·	•	•	• •	· ·	•	· ·	•	· ·	•	•	• •	•	•••	•	• •	•
•		•	• •		•		• •	•	• •	•	•	• •			• •		• •		• •				• •			• •	• •		••••			•		• •		• •		• •	•
•	•	•	• •	•	•	•	••••	•	•••	•	•	• •	•	• •	• •	•	• •	•	••••	•	• •	•	· ·	•	•	• •	•••	•	•••	•	• •	•	•	••••	•	•••	•	• •	•
•	•	•	· ·	•	•	•	· ·	•	•••	•	•	• •	•		· ·	•	••••	•	••••	•	· ·	•	· ·	•	•	• •	· ·	•	· ·	•	· ·	•	•	· ·	•	· ·	•	•••	

MAX WEIG	ht indep	ENDENT SET ON PAT	CH S
input: a path graph G	= (V, E) with	nonnegative weights on	vertices {wo}
output: an independent			
		non-adjacent vertices	
· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · ·
$\sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{i$	· · · · · · · · · · · · · · · · · · ·		
$\bigcirc \bigcirc $	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · ·
· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · ·		
	· · · · · · · · · ·		
	· · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	

MAX W	EIGHT INDEPI	ENDENT SET ON F	Paths
input: a path graph	G = (V, E) with	nonnegative weights o	n vertices {wo}
output. an independ			
		non-adjacent vertices	
· · · · · · · · · · · · · · · · · · ·			
V_1 V_2 V_3	ο Vα		
	· · · · · · · · · · · · · · · ·		
	· · · · · · · · · · · · · · ·		

Max we	IGHT INDEP	ENDENT SET ON PAT	Ths
input: a path graph	G = (V, E) with	nonnegative weights on	vertices {wo}
output: an independent	nt set SEV	of G with maximum	$\sum_{v \in S} \omega_v$
		non-adjacent vertices	· · · · · · · · · · · · · · · · · · ·
· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · ·
V_1 V_2 V_3	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · ·
· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · ·
· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · ·

MAX WEIG	ht indepi	ENDENT SET ON PAT	rhs.
input: a path graph G	= (V, E) with	nonnegative weights on	vertices {wo}
output: an independent	set S E V	of G with maximum	$\sum_{v \in S} \omega_v$
		non-adjacent vertices	· · · · · · · · · · · · · · · · · · ·
· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · ·
\mathbf{v}_{t}	· · · · · · · · · · · · · · · · · · ·		
V_1 V_2 V_3		· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · ·
· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · ·		
· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · ·
	· · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	

· · · · · · · · · · ·	MAX W	EIGHT IND	EPEND	ENT SI	T ON PA	THS	
input: a	path graph	G = (V, E) 6	sith non	negative	weights on	vertices	{wg}
		nt set SS					· · · · · ·
· · · · · · · · · · ·		- subset			• • • • • • • •		· · · · · ·
			How	many	independent	sets ?	
	V ₂ V ₃	ν _μ	· · · · · · · ·	· · · · · · · · ·	· · · · · · · · · · · ·	· · · · · · ·	· · · · · ·
· · · · · · · · · · ·	· · · · · · · · · ·	· · · · · · · · · ·	· · · · · · ·	· · · · · · ·	· · · · · · · · · · ·	· · · · · · ·	· · · · · ·
		· · · · · · · · · ·	· · · · · · ·	· · · · · · ·	· · · · · · · · · ·	· · · · · · ·	· · · · · ·

	MAX WEI	GHT INDER	PENDENT S	ET ON PA	Ths
input: a	path graph	G = (V, E) with	nonnegative	weights on	vertices {wo}
			of G with		
· · · · · · · · · · · ·			non-adjacen		
· · · · · · · · · · · ·		How many	independent	sets ? 8
V ($V_2 V_3$	V ₄	\emptyset , four sing	$ etone, \{v_1, v_3\}$	$\{v_2, v_4\}, \{v_1, v_4\}$
· · · · · · · · · · ·	· · · · · · · · · · · ·	· · · · · · · · · · · ·	· · · · · · · · · · · · ·	· · · · · · · · · ·	· · · · · · · · · · · · · ·

· · · · · · · · · ·	MAX WEIG	int indep	ENDENT SET ON PATHS
input: a	, path graph G	= (V, E) with	nonnegative weights on vertices {wojoev
			of G with maximum Z Hu Ves
			non-adjacent vertices
			How many independent sets? 8
V₁ ○	V ₂ V ₃		\emptyset , four singletone, $\{v_1, v_3\}$, $\{v_2, v_4\}$, $\{v_1, v_4\}$
· · · · · · · · · ·			in general : exponential in n 😕
· · · · · · · · · ·	· · · · · · · · · · · · · · · ·	· · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·