
COL 351 : ANALYSIS & DESIGN Of ALGORITHMS

LECTURE 16

Quiz 2

AUG 30 , 2024 / RONT VAISH

Problem 1

Construct an undirected and weighted graph G = /E, W) where

the vertices in V denote junctions , the edges in Edenote the pipes ,
and the weights W denote the lengths of the pipes.

Size : IEI = n · (v) is PC) since max degree is four.

Thus
,(V + It is O(n) ·

The algorithm proceeds in the following three steps :

① First
,
it computes the safety distance for every ratex v , i . e.,

the shortest distance from v to a vatex with motion sensor.

This computation involves running Dijkstra's algorithm on graph G
with an auxiliary Vertex.

② Then
,
it computes the maximum sensitivity s* via binary search.

For
any sensitivity levels (whue stakes values in the safety distance

&

away) ,the algorithm constructs a graph Gs by removing all

unsafe junctions from G and looks for the desired path (via BFS or DFS).

③ Having determined the maximum sensitivity s* , the algorithm
returns the corresponding path in the graph Gy*

input : an undirected and weighted graph G =(, E, W)
a starting vatex y (Byomkeh's starting location)

a destination Vertex 2 (Anukul's mansion)

Output : a path from y
to 2 that goes through safe junctions at

maximum sensitivity
/ compute" safety distance" away via Dijkstra on modified graph

* initialize an n-length away D
= 0

&

* Create an new graph G by adding an auxiliary vatex
"n" to G
.

Connect u to junctions with motion sensors via zeo-weight edges.

* Run Dijkstra on G starting from 2 .

* Update away D with the distance values of the vatice of G.

* Let D'be the sorted version of D in ascending order.

(say , using mage sort)
*

// compute maximum sensitivity s via binary search

A Choose sensitivity via binary search on the away D :

* create graph Gs by deleting junctions v with D[v] < S.

I A check if a y-2 path exists (using BFS or DFS)

A if y-z path exists , resume binary search in the larger
half ; otherwise continue in the smaller half.

* Let st be the laught value in D for which a y-2 path exists.

/ thus ,
in Ggt 1 Y and I are in the same connected component

and in G*1, Y and I are in different connected components.

* return the y-2 path in Gx (using BES or DFS).

max

Let s denote the actual maximum sensitivity of graph G.

To prove correctness
,
we should show that the path returned by

the algorithm is a valid y-2 path at sensitivity shax

We make two intermediate observations :

Lemma 1 : The algorithm correctly computes the safety distances.

hemmal: "the maximum sensitivity.

Lemma 1 : The algorithm correctly computes the safety distances D.

Proof : Dijkstra's algorithm on the auxiliary graph
.G'correctly

computes the safety distance for each vertex because

length shortestpath from) = legthe (shortest path fromv to a I(
motion sensor juncture w in Gord

t
O

gte (edge (,w)
A

Lemma 2 : The algorithm correctly computes the maximum sensitivity.

Proof : By correct computation of safety distances (Lemmal) :

a vutexv is safe at sensitivity Es belongs to Gs-

Let D' = (d/
, de, ..., dn) . For

any sensitivity value

between consecutive entries of D' (i . 2 ., d! > < dix)

the structure of G, does not change.

Thus
,
it suffices to guess the sensitivity from only among

the entries of D'

Comutness of BFS = our algorithm correctly discovers a safe path

for any sensitivitys, Whenever such a path exists.

Correctness of binary search=> the values is the largest

sunsitivity for which a safe path exists.
A may

=>S =S Es

(end of proof of Lemma 2)

Finally , from Lemmas 1
,
2 and correctness of BES , it follows that

the path returned by algorithm is safe for maximum sensitivity.
Thus

,
the algorithm is correct.

* The graphs G , G' and Gs (for anys) all have O(n) vertices
and 0/m) edges . Thus

, BFS/DFS takes Olu) time and

Dijkstra's algorithm takes 0 (nlogn) time.

* Sorting the array D take O(logn) time

* Binary search considers O(logn) values ↑ S
,
and for each

such value ,
BFS and graph construction take O(m) time.

This phase takes O (nlogn) time.

Overall
,
the running time is Onlogn)·

