 	COL 351 : ANALYSIS & DESIGN OF ALGORITHMS	
· · · · · ·	LECTURE 15	
· · · · · ·	GREEDY ALGORITHMS I:	
· · · · · ·	JOB SCHEDULING (CONTD.) AND HUFFMAN CODING	

•	· ·	· ·	•	•	•	•	•	•	•	•	•	•	•		6	Í	R	E	E]),),	1	•	A	ł	.6	á(ן כ נ	RI	17	Г 		n.	2	• •	• •		•	•	•	•	•	•	•	•	•	•	•	•	•	•	• •
		· ·	 •	•	•	•	•	•	•	•	•		•			•	•	•	•	•	•	•	•	•		• •	•	•	•	•	•	•	•	•	• •	• •		•	•	•	•	•	•	•	•	•	•	•	•	•		
		• •	 •	•	•	•	•	•		D	0	•	j.	Ч	h	rt		•) J	0.1	sk	- C	•	b	e	ct	: {	, , ,	ů,	p ł	it	•	'n	0 \ 0	λ	• •	G	in	d	•	•	•	•	•	•	•	•	•	•	•	•	• •
			 •	0	•	•	0	•	•	ĥ	0	pt	2		e	У	i V	у Л	Ħ	ů	ng	ł		5	0)	rk	Q	•	0v	t		<u>A</u> -	ł	•	th	e		er	d	•	•		•	•	•	•		•	0		0	• •
			 •	•	•	•	•	•	•	•	•					•	•	V N	•	•	Ų)	•			• •	0	•	•	•	•	•	•		• •	• •		•	•	•	•	•	•	•	•	•	•	•	•	•		• •
			 •	•	•	•	•	•	•	•	•	•				•	•	•	•	•	•	•	•	•		• •	•	•	•	•	•	•	•	•	• •	• •		•	•	•	•	•	•	•	•	•	•	•	•	•		
			 •	•	•	•	•	•	•	•	•	•	•			•	•	•	•	•	•	•	•	•		• •	•	•	•	•	•	•	•	•	• •	• •		•	•	•	•	•	•	•	•	•	•	•	•	•	•	
			 •	•	•	•	•	•	•	•	•						•	•	•	•	•	•	•	•		• •	•	•	•	•	•	•	•		• •	• •		•	•	•	•	0	•	•	•	•	•	•		0		
•		· ·	 •	•	•	•	•	•	•	•	•	•	•			•	•	•	•	•	•	•	•	•		• •	•	•	•	•	•	•	•	•	• •	• •		•	•	•	•	•	•	•	•	•	•	•	•	•	•	
•			 •	•	•	•	•	•	•	•	•	•	•			•	•	•	•	•	•	•	•	•		• •	0	•	•	•	•	•	•	•	• •	• •		•	•	•	•	•	•	•	•	•		•	•			
			•	•			0	•			0					•	•				0	•	•				0	•	•	•	•	•	•	•					•	•	0	0	0	•	•	0	0		•			• •
			 •	•	•	•	•	•	•	•	•		•			•	•	•	•	•	•	•	•	•		•	0	•	•	•	•	•	•	•	•	•		•	•	•	•	•	•	•	•	•	•	•	•	•	•	

			•										•						• •						• •								• •		•	
													-			n																				
													0	R	. 2	2 C	.H	E	D	11	11	17														
													To				- 11						1													
																							•													
	•	•	• •						•										• •						• •		•	• •	•							
						• •																			• •		•	• •	•			•			• •	
			• •	•									• •					•							• •			• •					• •		• •	
			• •										• •						• •						• •		•	• •		•		•	• •	•	• •	
•					•				•	• •		•	•		•			•	• •		•			•	• •			• •		•		•	• •		• •	
•	•	•	•		•		•		•	• •		•	• •		•			•	• •						• •	•		• •		• •		•	• •	•	• •	
					•				•				• •		•			•			•				• •			• •		• •		•	• •		• •	•
					•				•	• •		•	• •		•			•			• •							• •		• •		•	• •		• •	
			• •		•				•	• •			• •		•			•	• •		•				• •			• •				•	• •		• •	•
									•				• •															• •				•			• •	
																												• •							• •	
																	•																			
										•														0												
			•							• •			•						• •						• •			0 0		• •			• •		• •	
*			•										•						•									0 0		• •			0 0		• •	
			•						•	• •			• •	1				1	•								1	• •		• •		•	• •		• •	
•			•					1	1	•			•	1				•	•								1	• •		•			• •		• •	•

· · · ·	· · · · · · · ·		JOB SCHED	ULING	
	input :	a set of		positive lengthe	
· · · · ·	 		Ornd	positive weights	W_1, W_2, \cdots, W_n
· · · · ·	6. +1. +1				
· · · · ·				sequence) that	··· η ···· · · · · · · · · · ·
· · · · ·	· · · · · · · ·	the sum t	If weighted	completion times	$\sum_{j=1}^{N} W_j \cdot C_j$
· · · · ·	· · · · · · ·		· · · · · · · · · · · ·	· · · · · · · · · · · · · · ·	

· · ·		· · · · · · ·	J	B SCHE	DULING	· · · · · · ·	· · · · · ·		· · · · · ·
· · · · · · · · · · · · · · · · · · ·	input	a set	of n	jobs with Ound	positive positive	· · · · · · ·			
 	Output			nle (or weighted			n		· · · · · · · ·
 	Brute f	orce :	0 (n !)					· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·	 · · · · · · · · · · · · · · · · · · ·

•	•	•	•		•		•	•			•				•			C	,0 .0	M	I P	Ľ	E	T		01	N	-	T	ļr	16	2	•		•	•	· ·			•	•	•						•	•		
•	0	0	•		ħ	e e	•		201 201	m	þ١	et	tic	• •	•		Hi	m	e	•		Ċj	•	•	0.	f	•	Ì		0 1	· · ·		•		•	•	• • • •	•	•	•	•	•	• •	 • •	•	•	•	•	•	•	
•	•	•	•	•	•	•	•	•	•	•	•		ŝu	m	۰ ۱.		0		•	jo	6	•	 1	٩٢	g	th	ſ	•	u)))	ł	0.		٦r	d b	•	i	n (lu	rd	ìn (g	j	•	•	•	•	•	•	•	
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	0	•	•	•	•	•	•	•	•	· ·	•	•	•	•	•	• •	•	•	•	•	•	· ·	 •	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	· ·	•	•	•		•	• •	•	•	•	•	•			•	•	•	•			
•	•	•	•	•	•	•	•	•	•	•	0	•	•	•	•	•	•	•	•	•	•	0	•	•	•	•	0	•	•	•	• •	•	•	0	•	•	• •	•	0	•	•	•	• •	 	•	•	•	•	•	•	
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	· ·	•	•	•	•	•	· ·	•	•	•	•	•	• •		•	•	•	•	•	•	
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	· ·	•	•	•	•	•	• •	•	•	•	•	•	• •	 	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	· ·	•	•	•	•	•	• •	•	0	•	•	•	· ·		•	•	•	•	•	•	•

· · · · · · · · ·	COMPLETION TIMES
The	completion time Cj of job j =
· · · · · · · · ·	sum of job lengths up to and including j.
E·g.,	$l_1 = 1$, $l_2 = 2$, $l_3 = 3$
· · · · · · · · ·	time $c_1 = 1$ $c_2 = 3$ $c_3 = 6$
	$t=0 \qquad \frac{\#2}{\#1}$
· · · · · · · ·	· · · · · · · · · · · · · · · · · · ·

	•	• •	•	• •	•	• •	•	•	• •	•	• •	C	B	J	E	T	ĪV	E	• •	Fi	Jţ		T	0	N	•	• •	•	• •	•	• •	•	•	• •	• •	•		• •	•
· ·	•	go	al	• •	•	'n	nin	nii	mì	ZC	- -	-	th	1e	•	W	eie	jh	ted		2	u m	۰ ۱	0	f	•	Co	mþ]e-	tio	'n	-	jn	18_	S	•			•
· · ·	-	· · ·	•	· ·	•	· · ·	•	•	· · ·	•	• •		•	mì	n	•		\ > 	• • •	3	j.	C		· · ·	•	•	· ·	•	· ·	•	· · ·	•	•	• •	· ·	•	• •		
• •	•	• •	•	• •	•	· ·	•	•	• •	•	• •	• •	•	• •	•	•	∙ (Å ∙		• •	•	•	• •	•	• •	•	•	• •	•	• •	•	• •	•	•	• •	• •	•	• •		•
· ·	•	• •	•	· ·	•	· ·	•	•	· ·	•	• •	· ·	•	· ·	•	•	· ·	•	••••	•	•	· ·	•	· ·	•	•	· ·	•	· ·	•	· ·	•	•	• •	· ·	•	• •		•
· ·	•	· ·	•	• •	•	· ·	•	•	· ·	•	• •	• •	•	· ·	•	•	· ·	•	• •	•	•	· ·	•	· ·	•	•	• •	•	• •	•	• •	•	•	• •	• •	•	• •		•
• •	•	• •	•	• •	•	• •	•	•	• •	0	• •	• •	•	• •	•	•	• •	0	• •	•	•	• •	0	•••	•	•	• •	•	• •	•	• •	•	0	• •	• •	0	• •		•
· ·	•	· ·	•	• •	•	· ·	•	•	• •	•	• •	• •	•	· ·	•	•	· ·	•	• •	•	•	• •	•	· ·	•	•	••••	•	• •	•	• •	•	•	• •	• •	•	• •		•
• •	•	• •	•	• •	•	• •	•	•	••••	0	• •		•	· ·	•	•	• •	0	• •	•	•	• •	•	• •	•	•	• •	•	• •	•	• •	•	•	• •	• •	•	•		•

· · · · · · · · · · · · · · · · · · ·	OBJECTIVE	FUNCTION	· · · · · · · · · · · · · · · · · · ·	· · · · ·
goal minimize	the weight.	ed Sum of	Completion times	
	min $\sum_{i=1}^{n}$. .	
E.g. 3 jobs	J=1 lenaths	$l_1 = 1$ $l_2 = 2$	l_= 3	· · · · ·
E.g., 3 jobc	, weights	$W_1 = 3$, $W_2 = 3$	$\nu_{1,1} = 1$	· · · · ·
1 #3				· · · ·
time #2	· · · · · · · · · · · · ·			
t=0	· · · · · · · · · · · · · ·			· · · · ·

	OBJECTIVE FUNCTION
goal: minimize	the weighted sum of completion times
	min $\sum_{j=1}^{n} W_j \cdot C_j$
E.g., 3 jobc	, lengths $l_1 = 1$, $l_2 = 2$, $l_3 = 3$ weights $w_1 = 3$, $w_2 = 2$, $w_3 = 1$
1 #3 time #2	$\sum_{j=1}^{n} W_{j} C_{j} = 3 \times 1 + 2 \times 3 + 1 \times 6$ $\int_{W_{1}}^{C_{1}} W_{j} V_{j} V_{j} V_{j} = 3 \times 1 + 2 \times 3 + 1 \times 6$
t=0	= 15

•	•	· ·	•	••••	•••			· · · · ·		SPE	ici	AL CA	232		· · · ·	· · · ·		•	· ·	•	· ·	 •	
				· · · · · · · · · · · · · · · · · · ·				· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·		goal :	mì	$n \sum_{j=1}^{n}$	W	j Cj	 			· · · ·	· · · · · · · · · · · · · · · · · · ·				
•	• • • • •		• • • • •		L)		tU.	lengs	the	equal		schedi	Le ا	heavin	job	وم	nli	فل	· · · · · · · · · · · · · · · · · · ·	•	· · ·		· · ·
•	•		•	(1	L)	Â	U	Weigt	nts	lqnal		schedu		horter	job	٩	rlie	ጉ	· · · · · · · · · · · · · · · · · · ·	•	· · ·		· · ·
•	•		•	· ·	· · ·	• •		· · · · ·	· · · ·		· · ·	· · · · · · · · · · · · · · · · · · ·	· · · ·	· · · · ·	· · · ·			•	· · ·	•		•	· · ·

Heavier jobs may not be shorter — conflicting advin	
· · · · · · · · · · · · · · · · · · ·	
· · · · · · · · · · · · · · · · · · ·	

	•			• •	•	•	•	•	•	•	•	•	•	•	•	•	•		Í	E	N	E	R	Ą	L		ļr	J (P (*)T	2-		0	•			• •	•	•	•	•	•	•	•	•	•	•	•	• •		•
•	•	•	•	H	lo	Ň	ie	У	•	jo	b	20	•	n N	\A 	л Д	Υ Υ	۰ ۱0	t	•	6	<u>)</u>	•	42	10	rt	ะ ช	٤	•	• •		•	•	C.C.) M <	fli	ic	Î	J	0	zd	VÌ	دو	•	•	•	•	•	•	· ·	
•	•	•	•	1	de	0		•	U	l S	e	•	с С С		•	2 2 2	Co	λ. •)))		fr	i N N	- - - -	ti	ion		•	•	•	· ·		•	•	•	•	• •	• •	•	•	•	•	•	•	•	•	•	•	•	•	· ·	
•	•	•	•	• •	0	•	•	0	- }	¢.	•	ι ίγ	۰ ۲	'ይ _ገ	į	Ľ	-]]]		i'n	•		י קו י	eìe	<u>j</u> h	t	•	•	•	• •	0	0	0	•	•	• •	• •	•	•	•	•	•	•	0	0	•	•	•	•	· ·	•
•	•	•	•	• •	•	•	•	•	• • *			, t	ec	ر ال	م م	j)	, n (.		N N	•		ų	ng	ł	ĥ	•	•	•	• •	•	•	•	•	•	• •	• •	•	•	•	•	•	•	•	•	•	•		•	· ·	
•	•	•	•	• •	0	•	•	•	•	•	•	•	•	•	•	•	•		•	•	•	•	•	•	•	•	•	•	•	• •	0	•	•	•	•	• •	• •	•	•	•	•	•	•	•	•	•	•	•	•	· ·	
•	•		0	• •	0	•		0		•	•	•	•		0		•	•	•	0	•	•		0	•	•	•		•	• •	0	0	0		•	• •	• •			•				0	0		•		•		
•	•	•	•	· ·	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	· ·	•	•	•	•	•	- ·	· ·	•	•	•	•	•	•	•	•	•	•	•	• •	· ·	•
•	•		•		0	•	•	0	•	•	•	•	•	•	•	•	•	•	•	•	•	0	•	•	•	•	0	•	0	• •	•	•	•	•	•	• •	• •	•	•	•	•	•	•	•	•	•	•	•			•

GENERAL INPUT	27	 	· · · · · · · · ·
Heavier jobs may not be shorter -	conflicting	advice.	
Idea: Use a score function	· · · · · · · · · · · · · · ·	 	· · · · · · · · ·
* increasing in weight	· · · · · · · · · · · · · · ·	· · · · · ·	· · · · · · · · · ·
* decreasing in length	· · · · · · · · · · · · · · · · · ·	 	
Proposal 1 : schedule in decreasing	order of wj	- l;	
Proposal 2: schedule in decreasing			
		· · · · · ·	· · · · · · · ·

GENERAL INPU	٦٦		• •
Heavier jobs may not be shorter -	Conflicting	advice.	· · ·
Idea: Use a score function		· ·	· ·
* increasing in weight			• • •
* decreasing in length		Suboptimal	· ·
Proposal 1 : schedule in decreasing	order of wi	- l;	· · ·
Proposal 2: schedule in decreasing	order of Wj,	/ lj .	· · ·

	CORRECTNO	A0 223	ORDER-BY-RATIO	
Theorem	Scheduling the j	obs in dec	reasing order of natio	s Wj/lj
· · · · · · · · · · ·	minimizes the	weighted	Campletion time.	· · · · · · · · · · · · ·
		· · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	
	· · · · · · · · · · · · · ·	· · · · · · · · ·		
		· · · · · · · · ·		

	CORRECTNESS O	F ORDER-BY-RATIO
Theorem :	Scheduling the jobs in	decleasing order of natios willi
	minimizes the weight	ed completion time.
Proof:	(by an exchange ar	gument)

	CORRECTNESS OF ORDER-BY-RATIO
Theorem :	Scheduling the jobs in decreasing order of natios Will;
· · · · · · · · ·	minimizer the weighted completion time.
Proof:	(by an exchange argument)
. 	* by contradiction : Without ties
· · · · · · · · · · · ·	* by massaging; with fies
. .	

	CORRECTNESS OF ORDER-BY-RATIO	•
Theorem :	Scheduling the jobs in decleasing order of natios will;	0
· · · · · · · · ·	minimizer the weighted completion time.	
Proof:	(by an exchange argument)	•
. 	* by contradiction : Without ties	0
· · · · · · · · · ·		•
· · · · · · · · · ·	* by massaging ; with ties	•
· · · · · · · · · · ·		•

CORRECTNESS OF ORDER-BY-RATIO
Theorem: Scheduling the jobs in decreasing order of natios Wj/lj
minimizer the weighted completion time.
Proof: Two assumptions:
1) jobs are indexed in decreasing order of natios
$\frac{W_1}{l_1} = \frac{W_2}{l_2} = \frac{W_2}{l_2} = \frac{W_1}{l_1} = \frac{W_2}{l_1}$
2 no ties between natios
$\frac{W_i}{l_i} \neq \frac{W_j}{l_j} \text{whenever } i \neq j$

· · · · · · · · · · ·	CORRECTNESS OF O	RDER-BY-RATIO
Theorem :	Scheduling the jobs in dec	easing order of natios will;
· · · · · · · · · · · ·	minimizer the Weighted C	ampletion time.
Proof:	Greedy schedule : T	Optimal schedule: $\sigma^* \neq \sigma$

	CORRECTNESS	OF ORDER-BY-R	ATIO
Theorem :	-	in decleasing order	
	minimizer the We	ighted Campletion tim	1e.
Proof:	Greedy schedule :	0 Detimal	schedule: $\sigma^* \neq \sigma$
			consecutive inversion

	Corr	SSENT2E	0F	ORDER-BY-F	RATIO	•
Theorem :	0			V	of natios Willi	•
	minimizer	. the wei	ghted	completion tin	1e.	•
Proof :	Greedy s	chedule:	ר ה- היי ס- היי היי היי	Optimal	schedule: $\sigma^* \neq \sigma$	•
171	· · · · · · · · ·	· · · · · · · · · ·	· · · · ·	· · · · · · · · · · · · · · ·	consecutive inversion	•
Some stuff			· · · · ·		· · · · · · · · · · · · · · · · · · ·	•
		· · · · · · · · · ·	· · · · ·			•
Other Staff		· · · · · · · · · ·	· · · · ·		· · · · · · · · · · · · · · · · · · ·	•
· · · · · · · · · · · ·		· · · · · · · · · ·	· · · · ·	· · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	•

	CORRECTNESS OF OR	der-by-	RATIO	•
Theorem :	Scheduling the jobs in decled	nsing Order	of pratios Willi	•
· · · · · · · · · · ·	minimizer the weighted car	npletion til	me.	•
Proof:	Greedy schedule: T		schedule: $\sigma \neq \sigma$	
i7j	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · ·	consecutive inversion	•
Some stuff	exchange Some stuff			•
C i Other Staff	2 exchange i and j other stuff			•
C*	$\overline{\mathcal{I}}$	· · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	0
· · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	•

CORRECTNESS OF ORDER-BY-RATIO Scheduling the jobs in decreasing order of natios Willig Theorem minimizer the weighted completion time. Optimal schedule: $\sigma \neq \sigma$ Greedy schedule : T Proof: consecutive inversion $i \neq \frac{W_i}{L_i} < \frac{W_j}{L_i} \Rightarrow W_i \mid l_j < W_j \mid l_i$ Some stuff exchange Some stuff C i and j Other staff

CORRECTNESS OF ORDER-BY-RATIO Schednling the jobs in decreasing order of natios will; Theorem minimizer the weighted completion time. Optimal schedule: $\sigma \neq \sigma$ Proof: Greedy schedule : T consecutive inversion $i > j \Rightarrow \frac{W_i}{L_i} < \frac{W_j}{L_i} \Rightarrow W_i \cdot l_j < W_j \cdot l_i$ Some stuffexchangeSome stuffiiand jiiother stuffother stuff Objective (T) = Objective (σ^*) + $W_i l_j - W_j l_i$

CORRECTNESS OF ORDER-BY-RATIO Scheduling the jobs in decreasing order of natios Willig Theorem minimizer the weighted completion time. Optimal schedule: $\sigma \neq \sigma$ Proof: Greedy schedule : T consecutive inversion $i \neq \frac{W_i}{L_i} < \frac{W_j}{L_i} \Rightarrow W_i \cdot l_j < W_j \cdot l_i$ Some stuffexchangeSome stuffiiand jiiother stuffother stuff Objective (T) = Objective $(\sigma^*) + W_i l_j - W_j l_i$ < 0

CORRECTNESS OF ORDER-BY-RATIO Scheduling the jobs in decreasing order of natios Willey Theorem minimizer the weighted completion time. Optimal schedule: $\sigma \neq \sigma$ Proof: Greedy schedule : T consecutive inversion $i > j \Rightarrow \frac{W_i}{L_i} < \frac{W_j}{L_j} \Rightarrow W_i \cdot l_j < W_j \cdot l_i$ Objective (T) =Objective $(T) + W_i l_j - W_j l_i$ Some stuffexchangeSome stuffiiand jiiother stuffother stuff is strictly better than ot

	CORRECTNESS OF ORDER-BY-RATIO
Theorem :	Scheduling the jobs in decleasing order of natios Wj/lj
· · · · · · · · · ·	minimizer the weighted completion time.
Proof:	Two voviants:
· · · · · · · · · ·	* by contradiction : Without ties
· · · · · · · · · ·	
· · · · · · · · · ·	* by massaging ; with ties
· · · · · · · · · ·	
· · · · · · · · · ·	

	CORRECTNESS OF ORDER-BY-RATIO	
Theorem :	Scheduling the jobs in decreasing order of pratios	Wj/lj
· · · · · · · · · ·	minimizer the weighted completion time.	· · · · · · · · · · ·
Proof:	Two variants:	· · · · · · · · · · ·
· · · · · · · · · ·	* by contradiction : Without ties	· · · · · · · · · · ·
· · · · · · · · ·		· · · · · · · · · · ·
· · · · · · · · · ·	* by massaging : with ties	
· · · · · · · · · · ·		· · · · · · · · · · · ·
· · · · · · · · · ·		· · · · · · · · · · · ·

	HANDLING TIES
Theorem :	Scheduling the jobs in decreasing order of pratios Will;
· · · · · · · · · · ·	minimizer the weighted completion time.
Proof:	Recall the two assumptions:
	1) jobs are indexed in decreasing order of pratios
	$\frac{W_1}{l_1} = \frac{W_2}{l_2} = \frac{W_2}{l_2} = \frac{W_1}{l_1} = \frac{W_1}{l_1}$
· · · · · · · · · ·	2 no ties between natios
· · · · · · · · · ·	$\frac{W_i}{l_i} \neq \frac{W_j}{l_j} \text{whenever} i \neq j$
· · · · · · · · · ·	

HANDLING TIES Theorem: Schednling the jobs in decreasing order of natios will; minimizer the weighted completion time. Proof: Recall the two assumptions: 1) jobs are indexed in decreasing order of natios $\frac{W_1}{l_1} = \frac{W_2}{l_2} = \frac{W_2}{l_2} = \frac{W_1}{l_1} = \frac{W_1}{l_1}$ 2 no ties between natios $\frac{W_i}{l_i} \neq \frac{W_j}{l_i} \quad \text{whenever } i \neq j$

HANDLING TIES					
Theorem :	Scheduling the j	obs in deu	leasing order of natios Wj/lj	•	
· · · · · · · · · ·			Campletion time.	•	
Proof:	Let T = greedy	schedule,	, T = any other schedule (not necessarily optimal)	•	
			(1101 Ilectron in optimen)	•	
				•	
· · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	•	
· · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	•	
· · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · ·		•	
		· · · · · · · · · · ·		•	

· · · · · · · · · ·	HANDLING TIES
Theorem :	Scheduling the jobs in decreasing order of natios will;
· · · · · · · · · ·	minimizer the weighted completion time.
Proof:	Let $T = gravely$ schedule, $T = any$ other schedule
	Let $T = gravely$ schedule, $T = any$ other schedule (not necessarily optimal)
· · · · · · · · · ·	
· · · · · · · · · ·	Will show that σ is at least as good as τ \Rightarrow greedy schedule is optimal.
· · · · · · · · · ·	-/ fricaj schedrie is optimient
· · · · · · · · · ·	

HANDLING TIES Theorem: Scheduling the jobs in decreasing order of natios Will; minimizer the weighted completion time. Proof: Greedy schedule T is (1, 2, -, n); thus, $\frac{W_1}{L_1} = \frac{W_2}{R_2} = \frac{7}{L_1} \frac{W_1}{R_2}$

HANDLING TIES			
Theorem :	Scheduling the jobs in decreasing order of natios Wj/lj		
· · · · · · · · · ·	minimizer the weighted completion time.		
Proof:	Greedy schedule \overline{v} is $(1, 2, -, n)$; thus, $\frac{W_1}{l_1} \frac{W_2}{l_2} \frac{W_1}{l_1} \frac{W_2}{l_2}$		
· · · · · · · · · ·	Consider an arbitrary schedule 7.		
· · · · · · · · · ·			
· · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·		
· · · · · · · · ·			
· · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·		

· · · · · · · · · · ·	HANDLING TIES
Theorem :	Scheduling the jobs in decreasing order of natios will;
· · · · · · · · · · ·	minimizer the weighted completion time.
Proof:	Greedy schedule T is $(1, 2, -, n)$; thus, $\frac{W_1}{l_1} \frac{T}{T_2} \frac{W_2}{l_2} \frac{T}{T_1} \frac{W_n}{l_n}$
· · · · · · · · · · ·	Consider an arbitrary schedule 7.
· · · · · · · · · · ·	If $\sigma = \tau$, we're done!
· · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·
· · · · · · · · · · ·	
· · · · · · · · · · ·	

· · · · · · · · · ·	HANDLING TIES
Theorem :	Scheduling the jobs in decreasing order of natios Wj/lj
· · · · · · · · · · ·	minimizer the weighted campletion time.
Proof:	Greedy schedule σ is $(1, 2, -, n)$; thus, $\frac{W_1}{l_1} \frac{W_2}{l_2} \frac{T_1}{T_1} \frac{W_n}{l_n}$
· · · · · · · · · ·	Consider an arbitrary schedule 7.
· · · · · · · · · · ·	If $\sigma = \tau$, we're done!
· · · · · · · · · · ·	Else 7 contains a consecutive inversion.

	HANDLING TIES
Theorem :	Scheduling the jobs in decreasing order of natios Wj/lj
· · · · · · · · · · ·	minimizer the weighted completion time.
Proof:	Greedy schedule \overline{U} is $(1, 2, -, n)$; thus, $\frac{W_1}{l_1} \frac{\pi}{l_2} \frac{W_2}{l_2} \frac{\pi}{l_1} \frac{W_n}{l_n}$
· · · · · · · · · · ·	Consider an arbitrary schedule 7.
· · · · · · · · · · · ·	If $\sigma = \tau$, we're done!
· · · · · · · · · · · ·	Else 7 contains a consecutive inversion.
· · · · · · · · · · ·	Concecutive jobs i,j in Z such that i >j.
· · · · · · · · · · · ·	such that i > j.

	HANDLING TIES
Theorem :	Scheduling the jobs in decreasing order of natios Wj/lj
	minimizer the weighted completion time.
Proof:	Consecutive invasion i, j
	$i \neq j \Rightarrow \frac{W_i}{l_i} \leq \frac{W_j}{l_i}$
· · · · · · · · · · ·	
· · · · · · · · · · ·	
· · · · · · · · · · ·	
· · · · · · · · · · ·	

	HANDLING TIES
Theorem :	Scheduling the jobs in decleasing order of natios Willig
	minimizer the weighted completion time.
Proof:	Consecutive invasion i, j
· · · · · · · · · ·	$i \neq j \Rightarrow \frac{W_i}{l_i} \leq \frac{W_j}{l_i} \Rightarrow W_i \cdot l_j \leq W_j \cdot l_i$
· · · · · · · · · ·	
· · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·
· · · · · · · · · ·	

	HANDLING TIES
Theorem :	Scheduling the jobs in decreasing order of natios Wj/lj minimizer the Weighted Completion time.
Proof:	Consecutive invasion i_{ij} $i \neq j \Rightarrow \frac{W_i}{l_i} \leq \frac{W_j}{l_j} \Rightarrow W_i \cdot l_j \leq W_j \cdot l_i$
Observe,	$\sum_{k=1}^{n} W_{k} C_{k}(z^{new}) = \sum_{K=1}^{n} W_{k} C_{k}(z) + W_{i} l_{j} - W_{j} l_{i}$ $\sum_{k=1}^{n} W_{k} C_{k}(z) + W_{i} l_{j} - W_{j} l_{i}$ $\sum_{k=1}^{n} W_{k} C_{k}(z) + W_{i} l_{j} - W_{j} l_{i}$ $\sum_{k=1}^{n} W_{k} C_{k}(z) + W_{i} l_{j} - W_{j} l_{i}$

· · · · · · · · · · ·	HANDLING TIES
Theorem :	Scheduling the jobs in decreasing order of natios Wj/lj minimizer the weighted completion time.
Proof:	Consecutive invasion i_{ij} $i \ge j \implies \frac{W_i}{l_i} \le \frac{W_j}{l_j} \implies W_i \cdot l_j \le W_j \cdot l_i$
Observe,	$\sum_{k=1}^{n} W_{k} C_{k}(z^{new}) = \sum_{K=1}^{n} W_{k} C_{k}(z) + W_{i}l_{j} - W_{j}l_{i}$ $\sum_{k=1}^{n} W_{k} C_{k}(z) + W_{i}l_{j} - W_{j}l_{i}$ $\sum_{k=1}^{n} W_{k} C_{k}(z) + W_{i}l_{j} - W_{j}l_{i}$ $\sum_{k=1}^{n} W_{k} C_{k}(z) + W_{i}l_{j} - W_{j}l_{i}$

	HANDLING TIES
Theorem :	Scheduling the jobs in decreasing order of natios Willi
· · · · · · · · · · ·	minimizer the weighted completion time.
Proof:	2" is no worse than 2.
· · · · · · · · · · ·	
· · · · · · · · · · ·	
· · · · · · · · · · ·	

	HANDLING TIES
Theorem :	Scheduling the jobs in decleasing order of pratios Will;
· · · · · · · · · ·	minimizer the weighted completion time.
Proof:	2 ^{new} is no worse than 2.
· · · · · · · · · ·	After exchange of i and j, number of inversions between
· · · · · · · · · ·	J and 7 decreases by 1.
· · · · · · · · · ·	
· · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·
· · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·
· · · · · · · · ·	

· · · · · · · · · · ·	HANDLING TIES
Theorem :	Scheduling the jobs in decreasing order of natios Willig
· · · · · · · · · · ·	minimizer the weighted completion time.
Proof:	rew is no worse than 2.
	After exchange of i and j, number of inversions between
	J and 7 decreases by 1.
\Rightarrow	After at most nc exchanges, can transfirm 2 to o.
. .	

	HANDLING TIES
Theorem :	Scheduling the jobs in decreasing order of natios Willig
	minimizer the weighted completion time.
Proof:	2" is no worse than 2.
· · · · · · · · · · · ·	After exchange of i and j, number of inversions between
· · · · · · · · · · ·	J and 2 decreases by 1.
\Rightarrow	After at most nc exchanges, can transform 2 to o.
	J is at least as good as any other schedule

	HANDLING TIES
Theorem :	Scheduling the jobs in decreasing order of natios Willig
· · · · · · · · · · · ·	minimizer the weighted completion time.
Proof:	2° is no worse than 2.
· · · · · · · · · · ·	After exchange of i and j, number of inversions between
· · · · · · · · · · ·	J and 2 decreases by 1.
\Rightarrow	After at most nc exchanges, can transform 2 to o.
\Rightarrow	J is at least as good as any other schedule
\Rightarrow	J is at least as good as any other schedule J must be optimal

```
HUFFMAN CODING
```

							•															•			• •				
								0	IN		n		-			-	~												
								D	IN	A	KY		C	D	D	E.	S.												
	• •								• •																• •	•			
	• •								• •																• •	•			
	• •								• •																• •	•			
	• •								• •																• •	•			
							• •		• •																• •				
	• •								• •			• •				•			 			• •		•	• •				
	• •						• •		• •			• •							 			• •		•	• •				
	• •						• •		• •			• •							 			• •		•	• •				
	• •						• •		• •			• •				•						• •		•	• •	•			
	• •			•	•	•	• •		• •			• •				•			• •			• •		•	• •	•		•	•
	• •			•	•	•	• •		• •			• •				•			• •			• •		•	• •	•		•	•
	• •			•	•	•	• •		• •			• •				•			• •			• •		•	• •	•		•	•
	• •						• •		• •			• •				•						• •		•	• •	•			
	• •						• •					• •							 			• •		•	• •				
	• •								• •			• •				•			 			• •		•	• •				

•	•	•	• •	•	•	•	•	• •	· ·	•	•	•	•	•	•	-	B	IN	A	R	Y	•	C	0	D	E	S		•	•	•	· ·	•	•	· ·	•	•	•	•	• •		•	•	•	•••	•	•
•	•	•	· ·	A	lþI	ha	b	et			2	-	•	•	•	•	ſ	i in	it	و ا	•	n N	0 1 0	^ '	er	nt	s t	Y	•	s St	et	Ę	Ъf	•	12)2	j n	nk	- 20(ہ ک د	••••		•	•	•	•••	•	•
•	•	•	· ·	6	9))	•	2	Σ	•		•			A	, f	3,		· ·	•	۔ ر	7		J	•		· · ·		2	-	•	-	Ì	•	· · ·	- 	ŧ	3	. ,	· ·	<u>و</u>	tc	, .	•	•••	•	•
				•	•	•	•			•	•	•	•	•	•	•	•	•		•	•	•	•	•	•	•	• •		•	•	•		•	•		•	•	•	•			•	•	•		•	•
						•			• •																	•						• •			• •				•			•		•	• •		
•		•	• •				•		• •					•			•								•	•					•	• •		•	• •		•		•	•				•	•		
•	•	•						• •	• •				•	•	•	•	•		• •	•			•			•	• •								• •		•			•				•	• •		
														•																								•									
																																								•							
•									• •						•										•							• •			• •				•			•		•	• •		•
		•	• •	•				• •	• •			•		•			•	•	• •							•	• •				•	• •		•	• •				•	•				•	• •		•
•			• •	•				• •	• •	•		•		•	•		•	•	• •							•	• •					• •			• •			•	•	•				•	• •		•
•	•	•	• •					• •	• •					•	•		•	•	• •				•			•	• •					• •			• •			•		•				•	• •		•
•	•	•						• •	• •						•				• •				•			•	• •					• •			• •									•	• •		

• •	•	• •	· ·	• •	•	•	• •	•	•	• •	•	0	1	31	N/	A P	Y	•	C	01)E	S	, , , ,	0	• •	•	•	• •	•	• •	•	•	•	•••	•	•	• •	•	• •	· ·
· ·	•	••••	Al	þh	a k) 1 1	ŧ		Σ	· ·	•	•		fi	'ni	te	· · ·	n	ΰv	n e	-m	þł	Y	•	Se	ŧ	0 0	f	2	y '	n	60(2	•••	•	•	· ·	•	• •	· ·
· · ·	•		eq																				-													tc	• •	•	• •	· ·
· · ·	•	· · ·	Bi	no	ny	•	C	ode	2 2 2	· · ·	•	ŕ	a	29	•	e C	مرا	h		chi	ስ እት	RC.	ter	•	o.f		с Сла		2 () ()	16	ha	6	et	· · ·	to	-		•	· ·	
• •	•	• •		• •		•	• •		•	••••	•	6	îη (کر ا		ι 1	:t+	lin.	(•	• •	•			•	•••	•	• •	•	•	•	• •	•	•	• •	•	• •	
							• •								v .				v .					•																
							• •																											• •			• •			
• •		• •		• •		•	• •		•	• •			•	• •			• •			• •			• •			٠	•	• •		• •			•	• •		•	• •	•	• •	
• •		• •		• •			• •			• •		•	•	• •			• •			• •			• •			۰	•			• •			•	• •		•	• •	•	• •	
							• •		•					• •														• •						• •			• •		•	
• •		• •		• •		•	• •			• •							• •		•	• •			• •		•			• •		• •				• •		•	• •		•	
• •	•	• •		• •			• •		•	• •		•			•		•			• •			• •		•	•		• •		• •		•		• •			• •		•	
																													•					•						

	· · · · · · · · · ·	BINAR	y Cod	ES	· · · ·	· · ·	· · · · · ·			•
Alphak	nt Z	finite	none	mpty	Set	of	Symbol	2	· · · · ·	•
	$\sum = \int$									•
	· · · · · · · · ·									•
Binory	code	maps co	ich cha	hacter	of	Gn	alphabe	t to		•
		binary s	tring	· · · · · ·		· · ·	· · · · · ·			•
	A = 00		· · · · · ·						· · · ·	
· · · · · · · · · ·			· · · · · ·			· · ·	· · · · · ·			•
	B = 00	0010				· · ·				•
· · · · · · · · ·	C = 00	σιο	· · · · · ·	· · · · · ·	· · · ·	· · ·	· · · · · ·			•
										•

	BINARY C	LODES		
Alphabet Z		~		
eq, <u>Z</u> = S	LA, B,, Z	∫ , ∑ =		etc.
Binary code	maps each binary string	character of	an alphabet	to a
eg, A = (· · · · · · · · ·
ß = 0	000	fixed length	binary codes	
C = 0	ο οιο	· · · · · · · · · · · · · ·		
· · · · · · · · · · · · · · · · · · ·			· · · · · · · · · · · ·	· · · · · · · ·

•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	V	A	R	N F	\ <i>E</i>	SL	Ē	- " , .	L	E		7.6	Ĵ	Tł	1		<u>ک</u>	01	DI	E.	S	•	•	•	•	•	•	•						•	•	•	0	
•	•	•	•	ŀ	v.ł	14	N	•	2	Ογ	ne	2	0	S	4	m	6	ol	2	•	ନ ପ୍	f	•	H	1e	•	0 01	4	sh	0	oel	-) C	-C	ν? ·		'n	10	<u>у</u> н	•	4	י זר: נ	eg	5	m	H	4	•	•	•	•	•
•	•	•	•	ł)	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•		• •		•	•	•	•	•	•	•	•					J		•	•	•	•
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•		• •		•	•	•	•	•	•	•	•							•	•	•	•
•	•	•		•	•				•	•	•	•	•	•	•	•	•	•	•	•	•			•	•	•	•	•	•		•	•		• •		•	•		•		•		•							•	•		•
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	• •		•	•	•	•	•	•	•	•	• •						•	•	•	•
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•		• •		•	•	•	•	•	•	•	•							•	•	•	•
•	•	•	•	•	0	•	•	•	0	•	•	•	•	0	•	•	•	•	0	•	0	•	•	•	•	•	•	•	•			•	•	• •		•	•	•	•		0	•	•	• •						•	•	•	•
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	· ·		•	•	•	•	•	•	•	•	• •						•	•	•	•
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	••••		•	•	•	•	•	•	•	•	• •						•	•	•	•
	•	•	•	•	•			•	•	•	•	•	0	•	0	•	0		•	•	•	•	•	•	•		•	•	•				•	• •		•	•	•			•									•	•	•	•
•	•	•	•	•	•	•	•	•	•	•	•	•	•		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•		•	•	• •		•	•	•	•	•	•		•	• •						•	•	•	•

		VARIA	BLE LENGTH	CODES				· ·	•
When	9mo2	sym bols	of the alpha	bet occur	more	freq	rently	· · ·	
than	others	, , , , , , , , , , , , , , , , , , ,	· · · · · · · · · · · · · ·		· · · · · ·	· · · ·		• •	•
e g,	fixed	length	Variable	length	· · · · · · ·	· · · · ·	· · · · ·	· · ·	•
· · · · · · · · ·	A	D D	A		· · · · · ·	· · · ·			
	ß	Ø.	B B B B B B B B B B B B B B B B B B B	DI	· · · · · · ·	· · · · ·	· · · · ·	· · ·	•
	C	L O	С	l O	· · · · · ·	· · · · ·	· · · · ·	· ·	•
	\mathcal{D}	1.1.	\mathcal{D}			· · · · ·		· · ·	•
								• •	

· · · · · · · ·	· · · · · ·	VARIA	BLE	LENGTH	CODES	
When than		sym bols	of	the alpha	bet occh	r more frequently
e.g.,	fixed	length	· · · ·	variable	length	· ·
· · · · · · · ·			· · ·	A		Ambignons 😕
	В	O I	· · ·	в		How to interpret 001?
	C	Į O	· · ·	С	l 0	AB? AAD?
	\mathcal{D}		· · ·	\mathcal{D}	l . l	

									•				• •				• •								• •				• •								
											n		:- f	.			~^	. -	-																		
											۲	'R	Ėł	-1.2	۲·		- K	le	.E	, ,	C	01)E	S													
																. •		1			Ξ.	· ·															
							-																														
-																																					
																•									• •												
																•									• •												
			• •			•		•	• •				• •				• •			•					• •		• •										
		•	• •		•	•	 •	•					• •		•	•				•			•		• •		• •		• •								
			• •			•	 •		• •				• •		•		• •			•			•		• •		• •										
						•			•																									•			
			• •	•		•			• •	•			• •			•	• •			•				•	• •		• •		•				•	•			
			•			•			• •																												
•		•	• •		•	•	 •	•	•		•		• •		•	•	• •			•			•	•	• •		• •	•	• •					•	•		
			• •			•			• •				• •			•	• •			•					• •		• •		•					•	•		•
			• •			•			•				•							•				•			• •		•			•			•		
			• •			•			• •				• •			•	• •			•				•	• •		• •		• •	•	•		•	•	•		•
			• •			•			• •				• •				• •			•				•	• •		• •		• •			•		•	•	• •	•
			• •			•		•	• •											•									•			•		•	•		•
			• •			•			• •				• •							•				•	• •		• •		• •			•					
			• •			•							• •							•									• •			•			•		
																																•			•		
						•							• •							•					• •												

• •	•	••••	•	• •	•	•	• •	· ·	•	•	•	· ·	f	^R	E	FI	X	-	Fl	Re	E 6		C	0	D	E.	S	• •	•	· ·	•	•	• •	•	•	• •		•			•	•
· ·	•	Fo	K.	e		h		þø	i U L		0	f	•	d	- - - -	Ìn	t	-			5	ol	2	• •	ι, ι,	ţ	E	2	$\sum_{i=1}^{n}$	· ·	, , ,	•	· ·	•	•	• •		•	• •		•	•
• •	•	t	he	· ·	ev	nC	00	liv	y J	•	0,	f	•	l.	Ì	2		n'c	it	. (× ∧	ŧ	571 1	e-f	י רי גר	ہ م م	D D	f	ł	· ·	0r	d		Ji Ji	Ce.	· •	Ve	12R	ሊ		•	•
• •	•	• •		• •		•	• •			•	•	• •		•	•	• •	•	•	•	•	• •	•	•	• •	•	•	•		•	• •	•	•	• •	•	•			•			•	•
• •	•	• •	•	• •		•	• •			•	•		•	•	•	• •	•	•	•	•	• •	•	•	• •		•	•		•	• •	•	•	• •	•	•			•			•	•
		• •																		•								• •							•	•			•	• •		
• •	•	• •		• •			• •				•	• •		•		• •				•				• •				• •	•	• •	•	•	• •		•	•	•		•	•	•	•
• •	•	• •	•	• •	•		• •				•	• •		•		• •	•	•		•				• •		•	•	• •	•	• •	•	•	• •		•	•			•		•	•
	•	• •										• •		•		• •												• •	•	• •		•										
		• •		• •																								• •												• •		
		• •		• •			• •				•	• •				• •				•				• •			•	• •							•				• •		•	
• •		• •		• •			• •				•					• •				•			•	• •			•	• •	•		•		• •		•				•		•	•
• •		• •		• •	•		• •				•	• •				• •				•			•	• •		•	•	• •	•		•	•	• •			•		•	•		•	
• •		• •		• •			• •					• •				• •				•				• •				• •		• •			• •			• •						

· ·	•	• •	•	•	· · ·	•	•	• •	· ·	•	•	• •	ĺ	DR	E	FI	X	•	F	R	E	E	C	<u>`0</u>	D	E.	S	••••	•	•	• •	•	•	•	• •	•	•	•	• •	•	•	••••
· ·	•	Fo	K	, 6	20	th	•	þo	NU		0	f	• •	d	- 2 î	tìr	t		י 2 (jn	nb		2 2	•	i,	ţ	e		2	•	,	•	•	•	· ·	•	•	•	· ·	•	•	· ·
· ·	•	ł	the	•	و	N [°]	20(liv	Ŋ	•	0	f	· ·	ί.	•	2.i	· ·	n	st	•	a		þ'n	e-	ſij,	۲ ۲ ۲	Ĩ	γf		•	0	nd		l V V	iC	و	v v	'er	02	د :	•	· ·
· ·	•	e g			fì)	ced	L.	le	ng	th	- - -	G	9d	ų ۲	•	i N	re		þ	he	fì	X		ᡶᠧ᠍	يو		•	· ·	•	•	· · ·	•	•	•	• •	•	•	•	• •	•	•	•••
•••	•	• •		•		•	•			•	•	• •		•	•	•		•	•	•	• •		•	•		•	•	• •	•	•		•	•	•			•			•		
• •		• •			• •			•				• •					• •				• •				• •			• •			• •			•	• •	•	•	•	• •	•	•	• •
• •		• •		•	• •	•	•	• •		•		• •				•	• •				• •		•	•	• •			• •	•		• •	•		•	• •	•	•	•	• •	•		• •
• •		• •			• •		•									•	• •	•			• •			•	• •			• •			• •			•	• •			•	• •			• •
• •																												• •							• •							• •
• •		• •			• •			•				• •				•	• •	•			• •				• •			• •			• •			•	• •	•		•	• •			• •
• •		• •		•	• •		•	•	•			• •			•	•	• •				• •				• •			• •		•	• •			•	• •	•	•	•	• •	•		• •
• •		• •			•			•		٠		•					• •			٠	• •				•			• •			•				• •				• •			• •
• •		•			•			•				•					•		•	•	• •				•			•			•				• •			*	• •			• •

P	REFIX - FRE	ECODES		
For each pair of o	listinct symb	$\leq s_{j,i} $ also	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · ·
the encoding of i	is not a	prefix of j	and vic	e vara
e.g., fixed length codes				
variable length				
A D			· · · · · · · ·	
BOI	· · · · · · · · · · ·	· · · · · · · · · · · ·	· · · · · · · ·	· · · · · · · · · · ·
	· · · · · · · · · · ·		· · · · · · · ·	· · · · · · · · · · ·
D Not prefix-free				

Prefi	X-FREE CODES
For each pair of distin	it symbols i, $j \in \Sigma$,
the encoding of i is	not a prefix of j and vice versa
e.g., fixed length codes a	
variable length	variable length
A D	A D
BOI	Blo
С 10	C 110
\mathcal{D} ι	\mathcal{D}
not prefix-free	prefix-free

						-	_	_											<u> </u>																		•			
					. [٤Ì	-	FI	C	1	E	N	C	.4	1.	0)F	.	21	21	2	-1	X	÷	F	- P	F	- (5	. (' ſ)T	F	C						
											Ϋ.			- r																										

	• •	0	•	• •	 •	•	•	•	E	F	F		21	E	Ņ	C	- Y	, 1) ()F			PI	RE	F		X	•	F	R	E	E		C	0 0	D	E.	S	 •	0	•	0				•		•
•		Sy	m f	bo t		•	•	•			91 50				•	•	•	•		fi)			C		ng	H		•	· · ·			N N N	` Ο		al	•]e 0		Le	zt	h	, 1 1 1 1 1) (روم	fix		fre	ورک)
•	• •	0	B) .	 •	•	•	•	•	2	5	- - - - - - - - - - - - - - 		•	•	•	•	•	•	•	•	C C) .	•	•	•	•	•	• •		• •	•	0	•	•	[())	- ·	 •	•	•	0	•	•	•	•		•
•	· ·	•	Ċ	-	 •	•	•	•	•	1	0	7	•	•	•	•	•	•	•	•	•	ļ	0		•	•	•	•	••••		· ·	•	•	•	•		0	• •	 •	•	•	•	•	•	•	• •		•
•	• •	•	I)		•	•	•	•	•	5	7.	•	•	•	•	•	•	•	•	•	ŀ	ŀ	•	•	•	•	•	· ·		· ·	•	•	•	•	[1	• •	 •	•	•	•	•	•	•	• •		•
•	• •	•	•	• •		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	· ·		• •	•	•	•	•	•	•		 •	•	•	•	•	•	•	• •	•••	•
•	••••	•	•	• •	 •	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	· ·		· ·	•	•	•	•	•	•	- ·	 •	•	•	•	•	•	•			•
•	•••	•		• •		•	•	•	•	•	•	•	•	•	•	0	•	•	•	•	•	•	•	•	•	•	•	•	• •		• •	•	•	•	•	•	•		 •	•	•	•	•		•	• •		•
•	• •	•	•		 •	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	• •		• •	•	•	•	•	•	•	•	 •	•	•	0	•	•	•	• •		•

	EFFICIENC	1 OF PREFIX-1	FREE CODES
Symbol	frequency	fixed length	voriable length (prefix-free)
A	60 7.	00	0 <
B B B B B B B B B B B B B B B B B B B	257.	0 l	ίο
Ċ	10 7.		
\mathbb{D}	57.	· · · · · · · · · · · · · · · · · · ·	
· · · · · · · · · · · · · ·	On average:	2 bits/symbol	li55 bits/symbol = 0.6x1 + 0.25x2 + 0.15x3
· · · · · · · · · · · · ·	· · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	$= 0.6 \times 1 + 0.25 \times 2 + 0.15 \times 3$
· · · · · · · · · · · · ·			

· · · · · · · · · · ·	EFFICIENC	OF PREFIX-	FREE CODES
Symbol	frequency	fixed length	variable length (prefix-free)
A	60 7.	00	0
В	25%	0 (l
C	10 7.	0	Į l O
\mathcal{D}	57.	· · · · · [· [· · · · · · ·	[t1
 	On average:	2 bits/symbol	liss bits/symbol
· · · · · · · · · · · ·		· · · · · · · · · · · · · · ·	$= 0.6 \times 1 + 0.25 \times 2 + 0.15 \times 3$
· · · · · · · · · · ·			

· · · · · · · · ·	EFFICIENCY	OF PREFIX	· FREE CODES	· · · · · · · · · · · · ·
symbol	frequency	fixed length	voriable les	ngth (prefix-free)
A	60 7.	0 0	0	
B B B	25%			· · · · · · · · · · · · · ·
Ċ	10 7.	0	ĮĮO	
\mathcal{D}	57.		į tu	
· · · · · · · · · · ·	On average:	2 bits/symb	$= 0.6 \times 1 + 0.25$	more efficient Symbol
			$= 0.6 \times 1 + 0.25$	X2 + 0.15X3
· · · · · · · · · ·	How to compute	an optimal	prefix-fhee code	9