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GREEDY ALGORITHMS

Do what looks best right now and

hope everything works out at the end
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JOB SCHEDULING

input : a set ofn jobs with positive lengths 1 , % ,..., In

and positive weights W , We --- We

output : a job schedule (or sequence) that minimizes

the sum of weighted completion times I W
j. G.

j = 1

Brute force : O(n ! )
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COMPLETION TIMES

The completion time I of job j =

sum of job lengths up to and including j.

E. g ., l = 1
, 1 = 2 , ly= 3

↑ #3

time a = 12= 36 = 6

#2

# I
t= 0
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OBJECTIVE FUNCTION

goal : minimize the weighted sum of completion times

min Z wi .

E.g ., 3 jobs, lengths 11 = 1
, 1 = 2 , 1= 3

weights Wi = 3 , W= 2 , We=

C 2 3
↑ #3 & wj . G = 3x1 + 2x3 + 1x6time I

#2 j = 1
Wi wa his

# I
t= 0 = 15



SPECIAL CASES

goal : min my. G
j = 1

(1) All lengths equal : schedule heavie job earlier

(1) All weights equal : schedule shorter job earlier
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GENERAL INPUTS

Heavier jobs may not be shorter-conflicting advice.

Idea : Use a scone function

* increasing in weight
A decreasing in length

suboptimal

Proposal 1 : schedule in decreasing order of wy-l

Proposal 2 : schedule in decreasing order of Wj/lj.
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CORRECTNESS OF ORDER-BY- RATIO

Theorem " Scheduling the jobs in decreasing order of ratios Willy
minimizes the weighted completion time.

Proof : Greedy schedule : r Optimal schedule : *** 5

consecutive inversion
ij WiW

Some stuff exchange
Some stuff Objective (1) =

I i&
i 2 i and j

7
j

Objective (r* + Wil-wil;
im

other stuff other stuff 20

↓ T ↳ is strictly better than
F
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HANDLING TIES

Theorem : Scheduling the jobs in decreasing order of ratios Willy
minimizes the weighted completion time.

Proof : Let v = grudy schedule
,i

=

any other schedule
not necessarily optimal)

will show that r is at least as good as I

=> greedy schedule is optimal.
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HANDLING TIES

Theorem : Scheduling the jobs in decreasing order of ratios Willy
minimizes the weighted completion time.

Proof :

Greedy schedule w is (1 , 2, -- , n) ; thus,
Consider an arbitrary schedule 5.

If v = I ,
we're done !

Else I contains a consecutive inversion.

consecutive jobs ij in E
such that isj.



HANDLING TIES

Theorem : Scheduling the jobs in decreasing order of ratios Willy
minimizes the weighted completion time.

Proof : Consecutive invasion i
, j

ij



HANDLING TIES

Theorem : Scheduling the jobs in decreasing order of ratios Willy
minimizes the weighted completion time.

Proof : Consecutive invasion i
, j

izj =Will-



HANDLING TIES

Theorem : Scheduling the jobs in decreasing order of ratios Willy
minimizes the weighted completion time.

Proof : Consecutive invasion i
, j

itj Wi-

Observe
,

N

& w .R(-(1) + Will- Wil
k= 1 k=1

objective for objective for I effect of exchange
new schedule



HANDLING TIES

Theorem : Scheduling the jobs in decreasing order of ratios Willy
minimizes the weighted completion time.

Proof : Consecutive invasion i
, j

itj Wi-

Observe
,

N O

& w .R(-(1) + Will- Wil
k= 1 k=1

objective for objective for I effect of exchange
new schedule



HANDLING TIES

Theorem : Scheduling the jobs in decreasing order of ratios Willy
minimizes the weighted completion time.

new

Proof :
I is no worse than t



HANDLING TIES

Theorem : Scheduling the jobs in decreasing order of ratios Willy
minimizes the weighted completion time.

new

Proof :
T is no worse than t.

After exchange of i and j , number of inversions between

5 and I decreases by 1.



HANDLING TIES

Theorem : Scheduling the jobs in decreasing order of ratios Willy
minimizes the weighted completion time.

new

Proof :
T is no worse than t.

After exchange of i and j , number of inversions between

5 and I decreases by 1.

-> After at most vc exchanges ,
can transform I to r.



HANDLING TIES

Theorem : Scheduling the jobs in decreasing order of ratios Willy
minimizes the weighted completion time.

new

Proof :
T is no worse than t.

After exchange of i and j , number of inversions between

5 and I decreases by 1.

-> After at most vc exchanges ,
can transform I to r.

=> W is at least as good as any
other schedule



HANDLING TIES

Theorem : Scheduling the jobs in decreasing order of ratios Willy
minimizes the weighted completion time.

new

Proof :
T is no worse than t.

After exchange of i and j , number of inversions between

5 and I decreases by 1.

-> After at most vc exchanges ,
can transform I to r.

=> W is at least as good as any
other schedule

=> I must be optimal Ma
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Alphabet I : finite nonempty set of symbols

eg ,
= [A ,

B, ..., I] ,
I = S :, * ] ,

etc.

Binary code : maps each character of an alphabet to a

binary string
e. g. A = 00000

B = 00001 fixed length binary codes

c = 00010

i
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VARIABLE LENGTH CODES

When some symbols of the alphabet occur more frequently
than others

e . g., fixed length variable length
A 00 A O Ambiguous
B OI B OI How to interpret 001 ?

C 10 C 10 AB ? AAD ?

D Il D I
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PREFIX-FREE CODES

For each pair of distinct symbols i.jeI ,
the encoding of i is not a prefix of j and vice versa

e . g, fixed length codes are prefix-free

variable length variable length
A O A O

B OI B 10

C 10 C 110

D I D 111

not prefix-free prefix-free
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EFFICIENCY OF PREFIX- FREE CODES

symbol frequency fixed length variable length (prefix-free)
A 60 % 00 O

B 25 % Ol
10

2 10 % 10 110

D 5 % 11 11I

more efficient
On
average : 2 bits/symbol 1 .55 bits/symbol

= 0 . 6x1 + 0 .25x2 + 0 . 15X3

How to compute an optimal prefix-free code ?


