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DEPTH-FIRST SEARCH

Iterative version

mark all vertices as unexplored
Si = a stack data structure (LIFO) , initialized with s

while S

remove the topnode of S , say ("pop")
if V is unexplored

mark v as exploredI I for each (v , W) in adj· list of v

L add w to the front of S ("push"



DEPTH-FIRST SEARCH

Recursive version

Drs (G , s) I all vertices unexplored before the call

marks as explored

for each (S , v) in adj· list of s

I if v is unexplored

L Drs (G , v)
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TOPOLOGICAL ORDERING

Directed graph G = (V , E)

A labelingf o G's vertices such that :

* unique f(u) - 3 1 , 2,.
-

, ng for every ver

* for every (V ,
WSE f(r) < f(w).
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Theorem : Every directed acyclic graph has at least one topological

ordering.

hemma : Every directed acyclic graph has at least one sink.

a vertex with no outgoing edges



TOPOLOGICAL ORDERING

Theorem : Every directed acyclic graph has at least one topological

ordering.
Proof : Assign f(v] =n to sink vetex v (exists !)

Recuse on GISVI -> must be directed acyclic. Ah
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Theorem : Every directed acyclic graph has at least one topological

ordering.

Algorithm

1. Find a sink Vertex v.

2. Assign to it the largest available label
and recuse on GlEv].



TOPOLOGICAL ORDERING

Theorem : Every directed acyclic graph has at least one topological

ordering.

Algorithm
correctness

1. Find a sink Vertex v. If flr]=i ,
2. Assign to it the largest available label no edges from v to

and recuse on GlEv]. vertices with flu] < i.
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Theorem : Every directed acyclic graph has at least one topological

ordering.

Algorithm
Running time

1. Find a sink vertex v. -> O(n)

2. Assign to it the largest available label
O(r)

and recuse on GlEv].



TOPOLOGICAL ORDERING

Theorem : Every directed acyclic graph has at least one topological

ordering.

Algorithm
Running time

1. Find a sink vertex v. -> O(n)

2. Assign to it the largest available label
O(r)

and recuse on GlEv]. Can we do better

for sparse graphs ?
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TOPOLOGICAL ORDERING via DFS

DFs pseudocode (
Drs (G , s) I all vertices unexplored before the call

marks as explored

for each (S , v) in adj· list of s

I if v is unexplored

L Drs (G , v)



TOPOLOGICAL ORDERING via DFS

DFS (G , s) / all vertices initially unexplored
marks as explored

for each (S , v) in adj· list of s

I if v is unexplored

L Drs (G , v)



TOPOLOGICAL ORDERING via DFS

DFS-Loop (G) DFS (G , s) / all vertices initially unexplored
marks as explored

for each (S , v) in adj· list of s

I if v is unexplored

L Drs (G , v)
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DFS-Loop (G) DFS (G , s) / all vertices initially unexplored
mark all vertius unexplored

marks as explored
current-label : = IV) / labeling f

for each (S , v) in adj· list of s

I if v is unexplored

L Drs (G , v)



TOPOLOGICAL ORDERING via DFS

DFS-Loop (G) DFS (G , s) / all vertices initially unexplored
mark all vertius unexplored

marks as explored
current-label : = IV) / labeling f

for each (S , v) in adj· list of s
for each veV

if v is unexplored
if v is unexploredI ↓ DrS(Giv)

I L Drs (G , v)



TOPOLOGICAL ORDERING via DFS

DFS-Loop (G) DFS (G , s) / all vertices initially unexplored
mark all vertius unexplored

marks as explored
current-label : = IV) / labeling f

for each (S , v) in adj· list of s
for each veV

if v is unexplored
if v is unexploredI ↓ DrS(Giv)

I L Drs (G , v)

Set fls] = count-label

decease coment-label by 1
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, DES-Loop Consides t

but it is already explored
so skip it.
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flu] = 3
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TOPOLOGICAL ORDERING via DFS
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TOPOLOGICAL ORDERING via DFS

flu] = 3
v
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f(s] = 1
S

'

+ f(t) = 4
T

S
W

f(w] = 2

DFS-Loop runs out ofVatica - done !
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Claim 1 : DFS-Loop algorithm runs in O (m +n) time.
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If v visited beforea no vuou path (no cycle ! )



TOPOLOGICAL ORDERING via DFS

Claim 1 : DFS-Loop algorithm runs in O (m +n) time.

Claim 2 : Under DFS-Loop ,

if (n ,v) E then flut < flu].

Proof Sketch : Ifi visited beforev recusive call for
finishes before that ofa

=> us label < vs label

If v visited beforea no vuou path (no cycle ! )
=> DES (v) Won't discover u



TOPOLOGICAL ORDERING via DFS

Claim 1 : DFS-Loop algorithm runs in O (m +n) time.

Claim 2 : Under DFS-Loop ,

if (n ,v) E then flut < flu].

Proof Sketch : Ifi visited beforev recusive call for
finishes before that ofa

=> us label < vs label

If v visited beforea no vuou path (no cycle ! )
=> DES (v) Won't discover u

=> v's reausive call finishes before us



TOPOLOGICAL ORDERING via DFS

NOTE : DFS-Loop algorithm terminates on any input graph
and returns some labeling f



TOPOLOGICAL ORDERING via DFS

NOTE : DFS-Loop algorithm terminates on any input graph
and returns some labeling f not necessarily

a DAGnot topological ordering
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can be reached from every other vertex by a directed path.
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A directed graph is strongly connected if everyrutex
can be reached from every other vertex by a directed path.
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A strongly connected component of a directed graph G

is a maximal subgraph of G that is strongly connected.
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A strongly connected component of a directed graph G

is a maximal subgraph of G that is strongly connected.

--
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STRONGLY CONNECTED COMPONENTS

A strongly connected component of a directed graph G

is a maximal subgraph of G that is strongly connected.

-- -X
↑ I Y ↓-

N
+

-
-



STRONGLY CONNECTED COMPONENTS

Theorem : Given a directed graph G , define a "meta" graph H =(x , #)
that has a vetex for every see of G ,

and an edge
(n , y) EF if there is an edge from some vertex in

SCC corresponding toa to some vertex in 2CC corresponding to y
Then

,
H is a DAG.

- - ↳
G ↑

Y ↓
H

-

N
-

-
-
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- ↓ an SCC !
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STRONGLY CONNECTED COMPONENTS via DFS

-%↑ union of SCCs
- #
·T -
~

Maybe do a DFS from every node to identify all SCCs ?
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STRONGLY CONNECTED COMPONENTS via DFS

No information

-- at all !

↑ I Y ↓-

N
-

- X-
↓

Maybe do a DFS from every node to identify all SCCs ?



STRONGLY CONNECTED COMPONENTS via DFS
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starting point matters !
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Recall : Starting here worked !
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(as per topological ordering algo)



FIRST ATTEMPT

Recall : Starting here worked !

-- ↓
↑ I Y ↓-

N
+

-
- generates some ordering

even for cyclic graphs
Start DFS at the "last" vatex

(as per topological ordering algo)



FIRST ATTEMPT

--
↑ I Y-

N
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-
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Let's run topological ordering (via DFS) and see what happens.
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f(ll] = 3

-2
↑ 10

fli0] = a

24 3 f(3] = 4 I Y
f(l) = 1

S-
a<oflo] = 7f(4) = 5

f[9]= 8T 4 -
- X
5 7 f(7] = 6

f(5]= 10 ↓L
6 f(6] = 11

Perhaps the "smallest-label" vertex is always in "source" SCC ?
(as per topological ordering)
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Theorem : Leto be the labeling of directed graph G generated by the

topological ordering algorithm on G Carbitrary ordering of vertices).
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KEY OBSERVATION

Theorem : Leto be the labeling of directed graph G generated by the

topological ordering algorithm on G Carbitrary ordering of vutius).

Let S1 , S, be two "adjacent" saCs of G , i . e ., there is

an edge (v, w) with res, and we s . Then,

min fly < min fly)
NES

, yesz

U

Generalization of every DAG has a topological ordering"
"



KEY OBSERVATION

Theorem : Leto be the labeling of directed graph G generated by the

topological ordering algorithm on G Carbitrary ordering of vutius).

Let S1 , S, be two "adjacent" saCs of G , i . e ., there is

an edge (v, w) with res, and we s . Then,

min fl < min fly)
NES

, yesz

Corollary : The vertex v with fir] = I must lie in source SCC.
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=> Recursive calls for all vertices in 52 finish

before that of some vetex in S1.

Case I : Topological algo· discovers some verted inI before S.
Recall : SCC meta-graph is acyclic.
5
, is unreachable from S2.

=> Recursive calls for all vertices in 52 finish

before that of merely vetex in S1. T



What we have : A way of identifying a vetex in source see.

What we want : A way of identifying a vatex in sink see.

What's the fix :



What we have : A way of identifying a vetex in source see.

What we want : A way of identifying a vatex in sink see.

What's the fix : Reverse the graph !
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sees stay the same !
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G G

tsource ( sink sink-source
L

↑ I Y ↓ ↑ I /X- ->

# L

N
+

I
->

↑ )-
-

I
↳-
2

Tut

Source/sink in meta graph of G
sink/source "G

rev


