COL866: Special Topics in Algorithms

Assignment 4

Total points: 100

Deadline: Nov 17 (Friday)

1. [20 points] Recall that computing a ranking that minimizes the Kemeny score is NP-hard. Also recall that we saw a deterministic 2-approximation algorithm using the Footrule distance. In this exercise, we will design a *randomized* algorithm with the same approximation factor.

For any natural number $m \in \mathbb{N}$, let $[m] \coloneqq \{1, 2, \ldots, m\}$ and $\Pi([m])$ be the space of all permutations (or rankings) on the set [m]. Say we are given a set $S = \{\pi_1, \pi_2, \ldots, \pi_n\}$ consisting of *n* rankings over a set of candidates [m] and any ranking $\tau \in \Pi([m])$ not necessarily in *S*. The Kemeny score of τ with respect to *S* is defined as $d^{\mathsf{Kt}}(\tau, S) \coloneqq \sum_{k \in [n]} d^{\mathsf{Kt}}(\tau, \pi_k)$, where $d^{\mathsf{Kt}}(\cdot)$ denotes the Kendall's tau distance between two rankings.

Consider a randomized algorithm ALG whose output is ranking drawn uniformly at random from S. Show that ALG is a randomized 2-approximation algorithm. That is,

$$\mathbb{E}_{\pi \sim \text{Unif}(S)}[\mathsf{d}^{\mathsf{Kt}}(\pi, S)] \leqslant 2 \cdot \mathsf{d}^{\mathsf{Kt}}(\sigma^*, S),$$

where σ^* is a Kemeny optimal ranking for S, i.e.,

$$\sigma^* \in \operatorname*{arg\,min}_{\sigma \in \Pi([m])} \mathbf{d}^{\mathsf{Kt}}(\sigma, S).$$

Note that σ^* may not belong to the set S.

- 2. [20 points] Consider the problem of determining whether, given a preference profile and a nonnegative integer k, there exists a ranking with Kemeny score at most k. Design an $\mathcal{O}(2^k \cdot \text{poly}(n,m))$ algorithm for this problem, where n is the number of the voters and m is the number of candidates.
- 3. [20 points] Consider the following two-sided matching instance:

m_1 : w_3	w_2	w_1	w_1 :	m_1	m_3	m_2
m_2 : w_1	w_2	w_3	w_2 :	m_3	m_2	m_1
m_3 : w_3	w_1	w_2	w_3 :	m_2	m_1	m_3

What is the distortion of the men-proposing and women-proposing deferred-acceptance algorithms on the above instance? Note that the optimal (i.e., utilitarian welfare maximizing) matching does not have to be stable.

4. [20 points] Consider the approval-based multiwinner voting problem. Here, we are given a set C of m candidates, a set V of n voters, and a positive integer k. Each voter $i \in V$ approves a subset $A_i \subseteq C$ of the candidates. The goal is to find a committee $W \subseteq C$ of kcandidates (i.e., |W| = k) that satisfies some notion of representation. We will focus on the notion called *justified representation* (JR) which says that no large, cohesive group of voters

Assignment 4:

should be unrepresented. Formally, a k-sized committee $W \subseteq C$ satisfies JR if there is no subset of voters $S \subseteq V$ with $|S| \ge n/k$ and $\bigcap_{i \in S} A_i \ne \emptyset$ such that W contains no candidate from $\bigcup_{i \in S} A_i$.

Prove that if each candidate is approved by at least one voter (i.e., for every candidate $c \in C$, there exists some voter $i \in V$ such that $c \in A_i$), then there are at least m - k + 1 committees of size k each that satisfy JR.

5. [20 points] In this exercise, we will think about the multiwinner voting problem where the voters' preferences are given not as *approvals* but as *rankings*. Let $C = \{c_1, c_2, \ldots, c_m\}$ denote the set of *m* candidates, and $V = \{v_1, v_2, \ldots, v_n\}$ denote the set of *n* voters. Each voter v_i has a strict and complete ranking R_i over the candidates in *C*.

Consider the following voting rule f for selecting a committee of k candidates: Given any k-sized committee of candidates $W \subseteq C$, the score that voter v_i assigns to the committee W is equal to m - j if voter v_i 's favorite candidate in W is ranked at j^{th} position in its ranking R_i . The score of the committee W is the minimum of the scores it receives from all voters. The voting rule returns a committee with the highest score.

For example, suppose there are three voters v_1, v_2, v_3 and five candidates c_1, \ldots, c_5 . The rankings of the voters are $v_1 : c_1 \succ c_2 \succ c_3 \succ c_4 \succ c_5$, $v_2 : c_4 \succ c_2 \succ c_1 \succ c_5 \succ c_3$, and $v_3 : c_5 \succ c_4 \succ c_3 \succ c_2 \succ c_1$. Then, the committee $\{c_2, c_5\}$ gets a score of 3 from voter v_1 because its favorite candidate in the committee, namely c_2 , is ranked second. Likewise, the committee gets scores of 3 and 4 from voters v_2 and v_3 , respectively, resulting in an overall score of min $\{3, 3, 4\} = 3$.

Show that when the rankings R_1, \ldots, R_n are single-peaked (with respect to a known axis σ), the output of the voting rule f can be computed in polynomial time.