1. [$\mathbf{2 0}$ points] Recall that computing a ranking that minimizes the Kemeny score is NP-hard. Also recall that we saw a deterministic 2-approximation algorithm using the Footrule distance. In this exercise, we will design a randomized algorithm with the same approximation factor.

For any natural number $m \in \mathbb{N}$, let $[m]:=\{1,2, \ldots, m\}$ and $\Pi([m])$ be the space of all permutations (or rankings) on the set $[m]$. Say we are given a set $S=\left\{\pi_{1}, \pi_{2}, \ldots, \pi_{n}\right\}$ consisting of n rankings over a set of candidates $[m]$ and any ranking $\tau \in \Pi([m])$ not necessarily in S. The Kemeny score of τ with respect to S is defined as $\mathrm{d}^{\mathrm{Kt}}(\tau, S):=\sum_{k \in[n]} \mathrm{d}^{\mathrm{Kt}}\left(\tau, \pi_{k}\right)$, where $\mathrm{d}^{\mathrm{Kt}}(\cdot)$ denotes the Kendall's tau distance between two rankings.
Consider a randomized algorithm ALG whose output is ranking drawn uniformly at random from S. Show that ALG is a randomized 2-approximation algorithm. That is,

$$
\mathbb{E}_{\pi \sim \mathrm{Unif}(S)}\left[\mathrm{d}^{\mathrm{Kt}}(\pi, S)\right] \leqslant 2 \cdot \mathrm{~d}^{\mathrm{Kt}}\left(\sigma^{*}, S\right),
$$

where σ^{*} is a Kemeny optimal ranking for S, i.e.,

$$
\sigma^{*} \in \underset{\sigma \in \Pi([m])}{\arg \min } \mathrm{d}^{\mathrm{Kt}}(\sigma, S) .
$$

Note that σ^{*} may not belong to the set S.
2. [20 points] Consider the problem of determining whether, given a preference profile and a nonnegative integer k, there exists a ranking with Kemeny score at most k. Design an $\mathcal{O}\left(2^{k} \cdot \operatorname{poly}(n, m)\right)$ algorithm for this problem, where n is the number of the voters and m is the number of candidates.
3. [20 points] Consider the following two-sided matching instance:

$m_{1}: w_{3}$	w_{2}	w_{1}	$w_{1}: m_{1}$	m_{3}	m_{2}
$m_{2}: w_{1}$	w_{2}	w_{3}	$w_{2}: m_{3}$	m_{2}	m_{1}
$m_{3}: w_{3}$	w_{1}	w_{2}	$w_{3}: m_{2}$	m_{1}	m_{3}

What is the distortion of the men-proposing and women-proposing deferred-acceptance algorithms on the above instance? Note that the optimal (i.e., utilitarian welfare maximizing) matching does not have to be stable.
4. [20 points] Consider the approval-based multiwinner voting problem. Here, we are given a set C of m candidates, a set V of n voters, and a positive integer k. Each voter $i \in V$ approves a subset $A_{i} \subseteq C$ of the candidates. The goal is to find a committee $W \subseteq C$ of k candidates (i.e., $|W|=k$) that satisfies some notion of representation. We will focus on the notion called justified representation (JR) which says that no large, cohesive group of voters
should be unrepresented. Formally, a k-sized committee $W \subseteq C$ satisfies JR if there is no subset of voters $S \subseteq V$ with $|S| \geqslant n / k$ and $\cap_{i \in S} A_{i} \neq \emptyset$ such that W contains no candidate from $\cup_{i \in S} A_{i}$.

Prove that if each candidate is approved by at least one voter (i.e., for every candidate $c \in C$, there exists some voter $i \in V$ such that $c \in A_{i}$), then there are at least $m-k+1$ committees of size k each that satisfy JR.
5. [20 points] In this exercise, we will think about the multiwinner voting problem where the voters' preferences are given not as approvals but as rankings. Let $C=\left\{c_{1}, c_{2}, \ldots, c_{m}\right\}$ denote the set of m candidates, and $V=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ denote the set of n voters. Each voter v_{i} has a strict and complete ranking R_{i} over the candidates in C.

Consider the following voting rule f for selecting a committee of k candidates: Given any k-sized committee of candidates $W \subseteq C$, the score that voter v_{i} assigns to the committee W is equal to $m-j$ if voter v_{i} 's favorite candidate in W is ranked at $j^{\text {th }}$ position in its ranking R_{i}. The score of the committee W is the minimum of the scores it receives from all voters. The voting rule returns a committee with the highest score.

For example, suppose there are three voters v_{1}, v_{2}, v_{3} and five candidates c_{1}, \ldots, c_{5}. The rankings of the voters are $v_{1}: c_{1} \succ c_{2} \succ c_{3} \succ c_{4} \succ c_{5}, v_{2}: c_{4} \succ c_{2} \succ c_{1} \succ c_{5} \succ c_{3}$, and $v_{3}: c_{5} \succ c_{4} \succ c_{3} \succ c_{2} \succ c_{1}$. Then, the committee $\left\{c_{2}, c_{5}\right\}$ gets a score of 3 from voter v_{1} because its favorite candidate in the committee, namely c_{2}, is ranked second. Likewise, the committee gets scores of 3 and 4 from voters v_{2} and v_{3}, respectively, resulting in an overall score of $\min \{3,3,4\}=3$.

Show that when the rankings R_{1}, \ldots, R_{n} are single-peaked (with respect to a known axis σ), the output of the voting rule f can be computed in polynomial time.

