
COL866: Special Topics in Algorithms Fall 2023

Assignment 4

Total points: 100 Deadline: Nov 17 (Friday)

1. [20 points] Recall that computing a ranking that minimizes the Kemeny score is NP-hard.
Also recall that we saw a deterministic 2-approximation algorithm using the Footrule distance.
In this exercise, we will design a randomized algorithm with the same approximation factor.

For any natural number m ∈ N, let [m] := {1, 2, . . . ,m} and Π([m]) be the space of all
permutations (or rankings) on the set [m]. Say we are given a set S = {π1, π2, . . . , πn}
consisting of n rankings over a set of candidates [m] and any ranking τ ∈ Π([m]) not necessarily
in S. The Kemeny score of τ with respect to S is defined as dKt(τ, S) :=

∑
k∈[n] d

Kt(τ, πk),

where dKt(·) denotes the Kendall’s tau distance between two rankings.

Consider a randomized algorithm ALG whose output is ranking drawn uniformly at random
from S. Show that ALG is a randomized 2-approximation algorithm. That is,

Eπ∼Unif(S)[d
Kt(π, S)] ⩽ 2 · dKt(σ∗, S),

where σ∗ is a Kemeny optimal ranking for S, i.e.,

σ∗ ∈ argmin
σ∈Π([m])

dKt(σ, S).

Note that σ∗ may not belong to the set S.

For any pair of candidates i, j ∈ [m], let wi,j :=
1
n · |{π ∈ S : i is ranked above j in π}|

denote the fraction of rankings in S where i is preferred over j, and wj,i analogously de-
note the fraction of rankings in S where j is preferred over i. Note that wi,j , wj,i ∈ [0, 1]
and wi,j + wj,i = 1.

Let σ∗ be a Kemeny optimal ranking for S, and suppose that under σ∗, candidate i is
preferred over candidate j.

Consider a randomized algorithm ALG that picks a ranking in S uniformly at random.
Then, the probability that the ranking chosen by ALG agrees with σ∗ for the candidate
pair (i, j) is wi,j . Likewise, the probability it disagrees is wj,i.

If the ranking chosen by ALG agrees (respectively, disagrees) with σ∗ over the pair
(i, j), then the ‘cost’ incurred by ALG in terms of the Kendall’s tau objective is wj.i · n
(respectively, wi,j · n); this is the number of rankings in S that disagree with the choice
of ALG for the pair (i, j).
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By linearity of expectation, the expected Kemeny score (equivalently, the expected cost)
of ALG is given by:

E[dKt(ALG, S)] =
∑
k∈[n]

1

n
· E[dKt(ALG, πk)]

=
1

n
·
∑
k∈[n]

∑
(i,j)∈[n]×[n]

E[1(i ≻ j in πk and j ≻ i in ALG)]

where 1(·) is the indicator variable

=
1

n
·

∑
(i,j)∈[n]×[n]

∑
k∈[n]

Pr(i ≻ j in πk and j ≻ i in ALG)

=
1

n

∑
(i,j)∈[n]×[n]

wi,j · wj,i · n

⩽
∑

(i,j)∈[n]×[n]

min{wi,j , wj,i}

which holds because wi,j , wj,i ∈ [0, 1]

=
∑

(i,j)∈[n]×[n]: i≻ j in σ∗

min{wi,j , wj,i}+
∑

(i,j)∈[n]×[n]: j≻ i in σ∗

min{wi,j , wj,i}

⩽ dKt(σ∗, S) + dKt(σ∗, S)

= 2 · dKt(σ∗, S).

Thus, ALG is a randomized 2-approximation algorithm for Kemeny score.

2. [20 points] Consider the problem of determining whether, given a preference profile and
a nonnegative integer k, there exists a ranking with Kemeny score at most k. Design an
O(2k · poly(n,m)) algorithm for this problem, where n is the number of the voters and m is
the number of candidates.

(Proof sketch.) The desired running time can be achieved by a branching algorithm.

For any candidate pair (a, b), let Ra,b denote the set of rankings in the given preference
profile where a is ranked above b, and similarly let Rb,a denote the set of rankings in
the profile where b is ranked above a.

Let D (“the disagreement set”) denote the set of unordered candidate pairs {a, b} for
which both Ra,b and Rb,a are nonempty; we will call any such pair of candidates a
conflicting pair. Thus, any ranking will incur a hit of at least 1 in its Kemeny score for
each conflicting pair. Note that the set D can be constructed in O(poly(n,m)) time.

If there are more than k conflicting pairs (i.e., if |D| > k), our algorithm can safely
return NO, as any ranking will have a Kemeny score of at least |D|. Thus, we will
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assume from here onwards that |D| ⩽ k.

For each conflicting pair {a, b}, our algorithm will consider the two possibilities
of ordering it, namely, whether to rank a above b or b above a. This branching
strategy can be visualized as a complete binary tree with |D| levels, wherein each level
corresponds to a unique conflicting pair, and the left and right branches at each node
correspond to the two ordering choices. Each leaf of this tree corresponds to a fixed
choice for each conflicting pair. Note that the set of assignments leading up to a leaf
node may not induce a transitive ordering.

By the unanimity property of Kemeny rule, we can assume that the candidate pairs
not included in D are ordered in the same way as in the given preference profile.

There are 2|D| (hence, at most 2k) leaf nodes in total. For each leaf node, the algorithm
checks whether the resulting assignment of the conflicting pairs (together with the
natural assignment of the non-conflicting pairs) induces a valid ranking. If so, the
algorithm checks whether the Kemeny score of the induced ranking is at most k. If,
for any leaf node, there exists such a ranking, the algorithm returns YES, otherwise it
returns NO.

3. [20 points] Consider the following two-sided matching instance:

m1: w3 w2 w1 w1: m1 m3 m2

m2: w1 w2 w3 w2: m3 m2 m1

m3: w3 w1 w2 w3: m2 m1 m3

What is the distortion of the men-proposing and women-proposing deferred-acceptance al-
gorithms on the above instance? Note that the optimal (i.e., utilitarian welfare maximizing)
matching does not have to be stable.

The men-proposing outcome is µ1 := (m1, w3), (m2, w2), (m3, w1) and the women-
proposing outcome is µ2 := (m1, w1), (m2, w3), (m3, w2).

The welfare loss of the men-proposing algorithm is maximized for the following cardinal
utility profile:

m3 w3

m2 w2

m1 w1

1 0
0

1

0

0

0

1

0 0
1

01
3

0

1
3

0

1
3 1

and the corresponding welfare loss (or distortion) is:
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W({(m1, w1), (m2, w3), (m3, w2)})
W(µ1)

=
1
3 + 3

1
3

= 10.

The welfare loss of the women-proposing algorithm is maximized for the following
cardinal utility profile:

m3 w3

m2 w2

m1 w1

1 1
3

0

1
3

0

1
3

0

1
3

0 1
3

1

1
3

1
2

1
3

1
2

1
3

0 1
3

and the corresponding welfare loss (or distortion) is:

W({(m1, w2), (m2, w1), (m3, w3)})
W(µ2)

=
1 + 1 + 1

2 + 1

1
= 3.5.

4. [20 points] Consider the approval-based multiwinner voting problem. Here, we are given
a set C of m candidates, a set V of n voters, and a positive integer k. Each voter i ∈ V
approves a subset Ai ⊆ C of the candidates. The goal is to find a committee W ⊆ C of k
candidates (i.e., |W | = k) that satisfies some notion of representation. We will focus on the
notion called justified representation (JR) which says that no large, cohesive group of voters
should be unrepresented. Formally, a k-sized committee W ⊆ C satisfies JR if there is no
subset of voters S ⊆ V with |S| ⩾ n/k and ∩i∈SAi ̸= ∅ such that W contains no candidate
from ∪i∈SAi.

Prove that if each candidate is approved by at least one voter (i.e., for every candidate c ∈ C,
there exists some voter i ∈ V such that c ∈ Ai), then there are at least m− k + 1 committees
of size k each that satisfy JR.

Starting with an empty committee, consider a greedy procedure that, at each step,
includes a candidate in the existing committee that is approved by the largest set of
“uncovered” voters, i.e., voters for whom none of the approved candidates has been
included in the committee so far.

Notice that after k steps, the committee constructed by this procedure, say c1, c2, . . . , ck,
satisfies JR.

Now consider the execution of the greedy procedure for the first k − 1 steps (i.e., the
committee is W = {c1, . . . , ck−1}). If all voters are covered by W , then it already
satisfies justified representation. There are m− (k − 1) choices for the kth member of
the committee, and thus there are at least m− k + 1 committees that satisfy JR.
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Otherwise, suppose W does not cover all the voters. Thus, there must be a group of at
least n

k uncovered voters, say U . By the greedy selection rule, each candidate ci in W
must cover at least n

k voters that are not covered by c1, . . . , ci−1. This implies that
the voter block for each candidate ci (i.e., the set of voters who approve ci) must be
disjoint. Let us call these voter blocks B1, B2, . . . , Bk−1.

Thus, none of the voters in the remaining uncovered set U approve any candidate in
W . We know that the greedy procedure successfully computes a JR committee in k
steps. Thus, there must be a candidate ck that covers all voters in U . Therefore, we
can consider U also as a “block” Bk = U .

By assumption, each of the remaining m− k candidates (other than c1, . . . , ck) must be
approved by at least one voter in the disjoint sets B1, B2, . . . , Bk. If that voter belongs
to Bi, we replace the corresponding candidate ci with this external candidate, and
obtain m− k different committees satisfying JR. Furthermore, W ∪ ck also satisfies JR.
This gives the desired bound.

Acknowledgments: This problem was based on the SAGT 2022 paper titled “Justifying
Groups in Multiwinner Approval Voting” by Edith Elkind, Piotr Faliszewski, Ayumi
Igarashi, Pasin Manurangsi, Ulrike Schmidt-Kraepelin, and Warut Suksompong. See
Theorem 2 in the full version at https://arxiv.org/pdf/2108.12949.pdf.

5. [20 points] In this exercise, we will think about the multiwinner voting problem where the
voters’ preferences are given not as approvals but as rankings. Let C = {c1, c2, . . . , cm} denote
the set of m candidates, and V = {v1, v2, . . . , vn} denote the set of n voters. Each voter vi
has a strict and complete ranking Ri over the candidates in C.

Consider the following voting rule f for selecting a committee of k candidates: Given any
k-sized committee of candidates W ⊆ C, the score that voter vi assigns to the committee W
is equal to m− j if voter vi’s favorite candidate in W is ranked at jth position in its ranking
Ri. The score of the committee W is the minimum of the scores it receives from all voters.
The voting rule returns a committee with the highest score.

For example, suppose there are three voters v1, v2, v3 and five candidates c1, . . . , c5. The
rankings of the voters are v1 : c1 ≻ c2 ≻ c3 ≻ c4 ≻ c5, v2 : c4 ≻ c2 ≻ c1 ≻ c5 ≻ c3, and
v3 : c5 ≻ c4 ≻ c3 ≻ c2 ≻ c1. Then, the committee {c2, c5} gets a score of 3 from voter v1
because its favorite candidate in the committee, namely c2, is ranked second. Likewise, the
committee gets scores of 3 and 4 from voters v2 and v3, respectively, resulting in an overall
score of min{3, 3, 4} = 3.

Show that when the rankings R1, . . . , Rn are single-peaked (with respect to a known axis σ),
the output of the voting rule f can be computed in polynomial time.
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We will provide an algorithm that, for any given threshold θ ∈ Q, determines
whether there exists a committee with score at least θ. By iterating over all values of
θ between 1 and m−1, such an algorithm can be used to evaluate the given voting rule f .

Towards this goal, we will use the contiguous segments property, which, as discussed in
class, is equivalent to single-peakedness. Recall that the contiguous segments property
says that for any k, the set of top k favorite candidates of any voter constitute a
connected set with respect to the given axis σ.

Note that there exists a committee with score at least θ if and only if there exists one
where each voter derives a utility of at least θ. This, in turn, happens if the committee
contains a candidate from the top (m− θ) candidates in each voter’s ranking. By the
contiguous segments property, the set of top (m−θ) candidates for each voter constitute
a connected segment with respect to the axis σ. Thus, the task of determining the
existence of a committee with score at least θ turns out to be equivalent to finding a
“hitting set” of size k with respect to the voters’ intervals. The latter problem admits a
well-known greedy algorithm.
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