
COL866: Special Topics in Algorithms Fall 2023

Assignment 3

Total points: 100 Deadline: Oct 26 (Thursday)

1. [20 points] An instance with indivisible chores is said to have binary valuations if for every
agent i and for every chore j, it holds that vi,j ∈ {0,−1}. Prove that determining whether a
given chores instance with binary and additive valuations admits an envy-free allocation is
NP-complete.

Hint: You may reduce from the NP-complete problem SET SPLITTING, which is defined as
follows: Given a finite set S and a family F of subsets of S, does there exist a partition of the
set S into S1 and S2 such that every element of F is split by this partition (i.e., no element of
F is completely contained in S1 or in S2)?

Membership in NP is clear since checking whether a given allocation is envy-free can
be done in polynomial time.

To show NP-hardness, we will show a reduction from SET SPLITTING. Given an
instance ⟨S,F⟩ of SET SPLITTING, we will construct an instance of the fair division
problem as follows: Let s := |S| and r := |F|. Note that we can assume, without loss
of generality, that r ⩾ s (otherwise, one can add copies of the set S to the family F
without changing the solution). It will be helpful to think of the elements of the set S
as vertices, the members of the family F as hyperedges, and membership in one of the
sets S1 or S2 in the solution of SET SPLITTING as being assigned the color 1 or 2.

The fair division instance consists of r + 2 agents, which includes r edge agents
e1, . . . , er and two color agents c1 and c2. Additionally, there are r + s chores, which
includes r dummy chores D1, . . . , Dr and s vertex chores V1, . . . , Vs.

The valuations are defined as follows: Each dummy chore is valued at −1 by all (edge
and color) agents. Each vertex chore Vi is valued at −1 by those edge agents ej whose
corresponding hyperedge is adjacent to the vertex vi in the SET SPLITTING instance,
and is valued at 0 by all other edge agents. The color agents value each vertex chore at 0.

We will now argue the equivalence of the solutions.

SET SPLITTING ⇒ ENVY-FREE CHORE ALLOCATION :
Suppose there exists a partition of the set S into S1 and S2 such that each member of
the family F is split by this partition. (Equivalently, suppose there exists a 2-coloring of
associated hypergraph such that each hyperedge sees both colors.) Then, an envy-free
allocation can be constructed as follows: Each edge agent is assigned exactly one
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dummy chore. Additionally, if the vertex vi is assigned the color ℓ ∈ {1, 2} in the SET
SPLITTING solution, then the corresponding chore Vi is assigned to the color agent cℓ.

The above allocation assigns each chore to exactly one agent and is therefore feasible.
Furthermore, it is also envy-free for the following reason: Each color agent only receives
vertex chores which it values at 0; thus, it does not envy any other agent. An edge agent
does not envy another edge agent because the dummy chores are valued identically at
−1. Furthermore, an edge agent also does not envy any of the color agents because by
the splitting property, each color agent gets at least one vertex chore that is valued at
−1 by the edge agent.

ENVY-FREE CHORE ALLOCATION ⇒ SET SPLITTING :
Now suppose there exists an envy-free allocation, say A. Then, it can argued that neither
of the color agents are assigned a dummy chore. This is because assigning a dummy
chore to a color agent will give it a utility of −1, and in order to compensate for the envy,
every other agent will need to be assigned a chore that the color agent values at −1. This,
however, is impossible as there are r + 1 other agents but only r − 1 such chores. Thus,
all dummy chores must be allocated among the edge agents in the envy-free allocation A.

We will now argue that no edge agent receives more than one dummy chore under A.
Suppose, for contradiction, that an edge agent ei receives two or more dummy chores.
Then, due to envy-freeness, every other agent must receive at least two chores that
ei values at −1. There are r + 1 other agents in total, requiring there to be at least
2r + 2 such chores. However, the total number of chores is r + s ⩽ 2r (recall that
s ⩽ r), which is insufficient. Thus, each edge agent receives at most one dummy chore.
Furthermore, since the number of dummy chores and edge agents is equal, we get that
each edge agent receives exactly one dummy chore.

Since each edge agent receives exactly one dummy chore, in order to compensate for
the envy, each color agent must be assigned at least one vertex chore that the edge
agent values at −1. The desired 2-coloring of the hypergraph (equivalently, desired
partition of the set S) can now be inferred from the allocation A; in particular, the
vertex chores that are assigned to an edge agent can be arbitrarily put into S1 or S2.

This problem was based on (Bhaskar et al., 2021, Section A.1, Theorem 2).

2. [15 points] Consider a weighted generalization of the fair division problem with indivisible
goods, where each agent i is associated with a weight wi > 0 such that

∑
iwi = 1.

Let us define weighted generalizations of the fairness notions seen in the lectures as follows: A
randomized allocation X is said to be weighted envy-free (wEF) if, for any pair of agents i

and j, we have E[vi(Xi)]
wi

⩾ E[vi(Xj)]
wj

. Similarly, a deterministic allocation A is said to satisfy

weighted envy-freeness up to one good (wEF1) if, for any pair of agents i and j with Aj ≠ ∅,
there exists a good g ∈ Aj such that vi(Ai)

wi
⩾ vi(Aj\{g})

wj
.
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Prove or disprove: For two agents with additive valuations over indivisible goods, there always
exists a randomized allocation that is ex-ante wEF and ex-post wEF1.

We will disprove the statement by means of the following counterexample: Consider an
instance with two agents a1 and a2 with weights w1 = 0.5 + ε and w2 = 0.5 − ε and
two items g1 and g2. Agent a1 has equal positive values for the two items, and agent
a2 also has equal positive values for the two items that may be different from a1’s values.

Observe that there are only two wEF1 allocations in this instance—namely,
A = ({g1}, {g2}) and B = ({g2}, {g1}); in particular, assigning both items to a single
agent violates wEF1 from the other agent’s perspective.

Now, in order for a randomized allocation X to satisfy ex-post wEF1, it must be
supported only over A and B. Under any such distribution, agent a1’s expected
utility for its own randomized bundle X1 is equal to its expected utility for agent a2’s
randomized bundle X2, which violates ex-ante wEF.

This problem was based on (Aziz et al., 2023, Theorem 4.1).

3. [10 points] For the voting instance given below, compute the election winners under Plurality,
Borda, Plurality-with-runoff, STV, Copeland, and Schulze voting rules. Ties are broken
according to the lexicographic ordering a ≻ b ≻ c ≻ d ≻ e.

3 voters: c ≻ d ≻ b ≻ a ≻ e
8 voters: c ≻ e ≻ b ≻ d ≻ a
18 voters: d ≻ e ≻ c ≻ b ≻ a
22 voters: e ≻ c ≻ b ≻ d ≻ a
16 voters: b ≻ d ≻ c ≻ e ≻ a
33 voters: a ≻ b ≻ c ≻ d ≻ e

Plurality: a (Plurality scores are a 33, b 16, c:11, d:18, e:22)

Plurality-with-runoff: e (since a and e survive round 1 and e beats a in a head-to-head).

Borda count: b (Borda scores are a:135, b:247, c:244, d:192, e:182 )

Copeland and Schulze: c (since c is a Condorcet winner and both Copeland and Schulze
satisfy the Condorcet criterion)

STV: d

Acknowledgement: The voting instance used in this problem is based on the one in
Lecture 1 of the course on “Optimized Democracy” by Ariel Procaccia.
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4. [15 points] On the YouTube channel of the online COMSOC video seminar:

https://www.youtube.com/channel/UCa_l2EzXiJxzfZKtu2mTkdA/videos

pick any one talk of your choice and summarize it in no more than 500 words. (Each video
on the channel contains two or more talks; you only need to pick one talk that is sufficiently
different from your project topic.) Feel free to use mathematical notation, examples or pictures
in your summary if needed. Also provide the bibliographical information of the article(s) that
the talk is based on.

5. [30 points] The Gibbard-Satterthwaite theorem establishes that no “reasonable” voting rule
is strategyproof, meaning there is always a worst-case profile where some voter could misreport
and improve. However, this result does not inform us about how often such bad profiles arise.
In this exercise, we will experimentally analyze the frequency of manipulability of certain
voting rules.

Say there are n voters and m candidates. Design an experiment where the preference of
each voter is generated independently and uniformly at random from among the m! possible
rankings over the candidates. Consider the following three voting rules: Plurality, Borda, and
Copeland. Compare these rules in terms of the fraction of manipulable preference profiles (i.e.,
preference profiles where at least one voter can improve by misreporting). Assume throughout
that ties are broken lexicographically.

Clearly explain the (a) hypothesis (e.g., which voting rule did you expect to be the “most
frequently manipulable” before you started the experiments and why), (b) experimental setup
(e.g., what values of n and m did you consider, how many preference profiles did you sample
for each setting of n and m and what were the reasons for these choices, which algorithm did
you use to determine the manipulability of a profile), (c) experimental observations, and (d)
inference.

6. [10 points] A tournament graph G = (V,E) is a complete directed graph where, for any pair
of vertices i, j ∈ V , either there is a directed edge from i to j or there is one from j to i.

Given an arbitrary tournament graph G = (V,E) on |V | = m vertices, construct an election
with m candidates and at most m2 voters such that, for any pair of candidates i and j, a
majority of voters prefer i over j if and only if there is a directed edge from i to j in G.

In other words, show that any preference pattern can be realized as the majority vote of some
group of voters.

Here’s a proof sketch for a graph with four vertices (the same idea can be extended to
any given graph):
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a b

c d

For the edge a → b, create the following two votes:

v1 : a ≻ b ≻ c ≻ d

v2 : d ≻ c ≻ a ≻ b

This has the effect of reinforcing the comparisons between a and b and canceling out the comparisons
between all other pairs of candidates. Similarly,

v3 : c ≻ a ≻ b ≻ d

v4 : d ≻ b ≻ c ≻ a

v5 : a ≻ d ≻ b ≻ c

v6 : c ≻ b ≻ a ≻ d

v7 : b ≻ c ≻ a ≻ d

v8 : d ≻ a ≻ b ≻ c

v9 : b ≻ d ≻ a ≻ c

v10 : c ≻ a ≻ b ≻ d

v11 : c ≻ d ≻ a ≻ b

v12 : b ≻ a ≻ c ≻ d
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