
COL866: Special Topics in Algorithms Fall 2023

Assignment 2

Total points: 100 Deadline: Sept 11 (Monday)

1. Given below is a list of cake-cutting subroutines. You are required to show how these
subroutines can be implemented using Robertson-Webb queries. Also mention the worst-case
number of queries needed by your implementation.

Specifically, you can use the following two queries:

• α← evala(X): returns the value α that agent a assigns to the (possibly non-contiguous)
piece X, and

• Y ← cuta(X,α): returns a piece Y ⊆ X such that va(Y) = α. Here X and Y need not
be contiguous segments in [0, 1].

a) [5 points] EQUALIZE(X,Y, a): This subroutine takes as input two pieces X and Y
of the cake [0, 1] and an agent a (where, as a matter of convention, we assume that
va(X) ⩾ va(Y)), and returns two pieces X ′ and Y ′ such that there is no wastage (i.e.,
X ∪ Y = X ′ ∪ Y ′), and the returned pieces are of equal value according to agent a (i.e.,
va(X

′) = va(Y
′)). Additionally, the piece Y should be completely contained in Y ′. That

is, the equalization is done by taking something away from the more valuable piece and
adding it to the less valuable piece.

ALGORITHM 1: EQUALIZE

Input: Pieces X and Y and agent a
Output: Pieces X ′ and Y ′

1 Let x = evala(X) and y = evala(Y).

2 X ′ ← cuta(X, x+y
2) ▷ this is feasible because x ⩾ y

3 Y ′ ← Y ∪ (X \X ′)
4 return X ′, Y ′

Number of queries: Two eval(·) queries and one cut(·) query.

b) [5 points] EQ-DIVIDE(X, a, k): This subroutine takes as input a piece X of the cake
[0, 1], an agent a, and a positive integer k, and returns k mutually disjoint pieces
X1, . . . , Xk such that X1∪X2∪· · ·∪Xk = X and va(Xi) = va(Xj) for all i, j ∈ {1, . . . , k}.
That is, the subroutine divides the piece X into k equally valued pieces according to
agent a.

1

Assignment 2:

ALGORITHM 2: EQ-DIVIDE

Input: Piece X, agent a, positive integer k
Output: Pieces X1, . . . , Xk

1 Let x = evala(X).
2 for i ∈ {1, 2, . . . , k − 1} do
3 Xi ← cuta(X, a, x/k)
4 X ← X \Xi

5 Xk ← X
6 return X1, . . . , Xk

Number of queries: One eval(·) query and k − 1 cut(·) queries.

c) [5 points] SELECT({X1, . . . , Xℓ}, a, k): This subroutine takes as input ℓ piecesX1, . . . , Xℓ

of the cake [0, 1] (where ℓ is a positive integer), an agent a, and a positive integer k ⩽ ℓ,
and returns the top-k favorite pieces of agent a among X1, . . . , Xℓ. As a matter of
convention, we will assume that the returned pieces are sorted in non-increasing order of
values.

ALGORITHM 3: SELECT
Input: Pieces X1, . . . , Xℓ, agent a, positive integer k ⩽ ℓ
Output: Pieces Xi1 , . . . , Xik

1 for i ∈ {1, 2, . . . , ℓ} do
2 Let xi = evala(Xi).

3 Sort x1, . . . , xℓ in non-increasing order (ties are broken arbitrarily) and return the
pieces corresponding to the first k values.

Number of queries: ℓ eval(·) queries, no cut(·) query

d) [5 points] TRIM({X1, X2}, a): This subroutine takes as input two pieces X1, X2 of the
cake [0, 1] and an agent a (where, for convention, we assume va(X1) ⩾ va(X2)), and
returns three pieces X ′

1, X2, T such that va(X
′
1) = va(X2) and X ′

1 = X1 \ T . That is,
agent a trims the more valuable piece X1 to make it equal in value to the less valuable
piece X2.

ALGORITHM 4: TRIM
Input: Pieces X1, X2 and agent a
Output: Pieces X ′

1, X2, T
1 Let x = evala(X2). ▷ x is the value of less valuable piece.

2 X ′
1 ← cuta(X1, a, x)

3 T ← X1 \X ′
1

4 return X ′
1, X2, T

Number of queries: One eval(·) queries, one cut(·) query

2. [25 points] Consider a simple undirected graph where each vertex represents an agent and
the edges denote friendships. Only friends are allowed to envy each other. A cake division

2

Assignment 2:

among the agents on this graph is envy-free if no pair of friends envy each other (though,
agents who are not friends may envy each other). Note that the model discussed in class is a
special case of this setting when the graph is complete.

Design a discrete cake-cutting protocol (in the Robertson-Webb query model) for finding an
envy-free division when the graph is a path on four vertices (see below). Prove the correctness
of your protocol and also mention the number of queries made.

Hint#1: Use the subroutines from Problem 1.

Hint#2: Revisiting the Selfridge-Conway procedure may be helpful.

a b c d

3

Assignment 2:

ALGORITHM 5: Envy-freeness for four agents on a path

Input: A path graph over the agents a, b, c, d and a cake [0, 1]
Output: An allocation Aa, Ab, Ac, Ad of the cake

▷ ----------------Phase 1: Creating trimmings----------------

1 X1, X2, X3, X4 ← EQ-DIVIDE([0, 1], b, 4) ▷ agent b is the "cutter" for the cake

[0, 1]

2 X1 ← SELECT({X1, X2, X3, X4}, a, 1) ▷ agent a selects its favorite piece

3 X3, X4 ← SELECT({X2, X3, X4}, c, 2) ▷ agent c selects its top two favorite

pieces among the remaining three pieces

4 X ′
3, X4, T ← TRIM({X3, X4}, c) ▷ agent c trims the more valuable piece; thus,

vc(X
′
3) = vc(X4) and X ′

3 ← X3 \ T
▷ ----------------Phase 2: Equalizing----------------

5 T1, T2, T3, T4 ← EQ-DIVIDE(T, b, 4) ▷ agent b is the "cutter" for the trimmings T

6 T1 ← SELECT({T1, T2, T3, T4}, a, 1) ▷ agent a selects its favorite piece from the

trimmings

7 T3, T4 ← SELECT({T2, T3, T4}, c, 2) ▷ agent c selects its top two favorite pieces

among the remaining three pieces of the trimmings

8 T ′
3, T

′
4 ← EQUALIZE({T3, T4}, c, 2) ▷ agent c equalizes the pieces selected in the

previous step such that T ′
3 ⊆ T3 and T ′

4 ⊇ T4

▷ ----------------Phase 3: Bundling and Allocation----------------

9 Aa ← X1 ∪ T1 ▷ Agent a gets its preferred pieces from Phases 1 and 2

10 Ab ← X2 ∪ T2 ▷ Agent b (the "cutter") gets the leftovers

11

▷ Combine the "enriched" trimmed piece T ′
4 with the "diminished" main piece

X ′
3

12 if evald(X
′
3 ∪ T ′

4) > evald(X4 ∪ T ′
3) then

13 Ad ← X ′
3 ∪ T ′

4 ▷ Give agent d its preferred bundle

14 Ac ← X4 ∪ T ′
3

15 else
16 Ad ← X4 ∪ T ′

3

17 Ac ← X ′
3 ∪ T ′

4

18 return Aa, Ab, Ac, Ad

Query count: The algorithm uses the EQ-DIVIDE subroutine twice, the SELECT

subroutine four times, the TRIM subroutine once, and the EQUALIZE subroutine once,
followed by two eval(·) queries in the final phase. By directly substituting the query
bounds obtained in the above problems, we get a total of 21 eval(·) queries and 8
cut(·) queries.
Note that we can shave off some eval queries thanks to the normalization assumption.
Indeed, in the first two steps in Phase 1, we can use the fact that the entire cake is
valued at 1 to save two eval queries, one in the EQ-DIVIDE step and another in the
SELECT step. Likewise, for the TRIM step in Phase 1 and EQUALIZE step in Phase 2, we
can simply reuse the evaluations for agent c done by the preceding SELECT operations.

4

Assignment 2:

This further saves three eval queries, giving an improved bound of 16 eval queries
overall.

Correctness: It can be easily verified that the algorithm terminates. To argue
envy-freeness, let us consider the perspective of the individual agents.

• Agent a does not envy agent b because it prefers both pieces in its final allocation,
namely X1 and T1, over the respective pieces in the bundle of agent b, namely X2

and T2.

• Agent b does not envy agent a because, by virtue of being the “cutter”, it values
the pieces X1 and X2 (and, likewise, the pieces T1 and T2) equally.

It also does not envy agent c because of the following reason: If Ac = X ′
3∪T ′

4, then
agent b has an “irrevocable advantage” over agent c and does not envy it even if
the entirety of the trimmings T are given to agent c. Otherwise, if Ac = X4 ∪ T ′

3,
then since T ′

3 ⊆ T3 (and because agent b is the “cutter” in both Phases 1 and 2),
agent b incurs no additional envy.

• Agent d does not envy agent c because the bundle that is less preferred by agent
d is given to agent c in Phase 3.

• Finally, let us analyze the envy from agent c’s perspective. Note that agent
c values the pieces X ′

3 and X4 equally (and, likewise, the pieces T ′
3 and T ′

4).
Therefore, agent c has equal value for the bundles Ac and Ad and does not envy
agent d.

Furthermore, regardless of whether Ac = X ′
3 ∪ T ′

4 or Ac = X4 ∪ T ′
3, agent c

does not envy agent b because of the following reason: By the SELECT and TRIM

steps in Phase 1, we have vc(X
′
3) = vc(X4) ⩾ vc(X2) and by the SELECT and

EQUALIZE steps in Phase 2, we have vc(T
′
3) = vc(T

′
4) ⩾ vc(T4) ⩾ vc(T2). As before,

envy-freeness follows by additivity.

Acknowledgement: This problem was based on Section 3.1 of Ghalme et al. (2022).

3. Recall the envy-cycle elimination algorithm for computing an allocation satisfying envy-freeness
up to one good (EF1). A fairness notion stronger than EF1 is envy-freeness up to any good
(EFX), which states that any pairwise envy can be eliminated by removing any good from
the envied bundle. Formally, an allocation A = (A1, . . . , An) satisfies EFX if for every pair
of agents i, k and every good g ∈ Ak, we have vi(Ai) ⩾ vi(Ak \ {g}). Observe that an EFX
allocation satisfies EF1.

a) [10 points] Provide examples of instances with additive valuations where the round-robin
and envy-cycle elimination algorithms fail to return an EFX allocation.

5

Assignment 2:

Round-robin fails EFX on the following instance:
g1 g2 g3 g4

a1 5 2 2 1
a2 5 2 2 1

Envy-cycle elimination will also fail to give EFX on the above instance if the goods
are allocated in the order g2, g3, g4, g1 since, in that case, the output allocation is
the same as under the round-robin algorithm.

b) [10 points] Consider the indivisible goods problem under additive valuations. Show
that when agents have identical rankings of the goods (but not necessarily identical
numerical values), an EFX allocation can be computed in polynomial time. For example,
in the instance given below, both agents rank the goods as g1 ≻ g2 ≻ g3 but have
different numerical valuations for them. Also note that the ranking of bundles need not
be identical; indeed, agent a2 prefers the bundle {g2, g3} over {g1}, while agent a1 has
the opposite preference.

g1 g2 g3
a1 11 7 2
a2 8 7 5

Algorithm (sketch): At each step, ask the source agent to pick its favorite re-
maining good. The existence of source agent is guaranteed by resolving envy cycles.

Correctness (sketch): The EFX property is maintained while assigning the good
to the source because the most recently added good in any bundle is also the
least valuable good in that bundle w.r.t. any agent’s preferences (due to identical
rankings assumption). EFX is also maintained while resolving envy cycles even
when the rankings are not identical (this fact will be useful in the next part).

c) [15 points] Whether an EFX allocation always exists under additive valuations remains
an important open problem in fair division. In view of this, one can ask whether relaxations
of EFX (which, remember, is itself a relaxation of EF) always exist. Specifically, one
can consider a “multiplicative” approximation of EFX defined as follows: Given any
α ∈ (0, 1], an allocation A = (A1, . . . , An) is said to satisfy α-EFX if for every pair of
agents i, k and every good g ∈ Ak, we have vi(Ai) ⩾ α · vi(Ak \ {g}). Thus, 1-EFX is
equivalent to exact EFX, which is stronger than, say, 1

2 -EFX.

Consider a fair division problem with n agents where all valuations are additive and
integral (i.e., for every agent i and every good g, vi({g}) is a non-negative integer). Show
that a 1

2 -EFX allocation always exists.

Hint#1: Use the envy-cycle elimination algorithm. Think about what happens when
assigning a good g∗ to the source agent i violates 1

2 -EFX from the perspective of some
agent k. That is, there is some good g ∈ Ai such that vk(Ak) <

1
2vk(Ai ∪ {g∗} \ {g}).

6

Assignment 2:

Hint#2: You may find it helpful to “unassign” some of the currently allocated goods
and return them to the pool of unallocated goods.

Algorithm (sketch): At each step, give an unallocated good, say g∗, to the source
agent i as long as doing so preserves 1

2 -EFX. However, if
1
2 -EFX is violated from the

perspective of, say, agent k (i.e., for some g ∈ Ai, vk(Ak) <
1
2vk(Ai ∪ {g∗} \ {g})),

then return agent k’s existing bundle Ak to the set of unallocated goods, and
instead assign to it the good g∗.

Termination (sketch): To show that the algorithm terminates, we will use a
potential function argument. This involves constructing an objective function and
an upper (or, lower) bound on this function, and, in addition, showing that at
each step, the objective strictly increases (or, decreases).

A natural idea might be to think of the “number of unallocated goods” as a
potential. However, note that this number can decrease (when assigning the good
to the source while preserving 1

2 -EFX) as well as increase (when returning the
goods back to the unallocated pool) during the execution of algorithm. So, the
size of the unallocated pool alone may not be a useful potential function.

However, note that the sum total of agents’ values for their own bundles
(specifically, the “utilitarian social welfare” objective

∑
i vi(Ai)) weakly increases

when giving a good to a source and strictly increases when returning goods back
to the pool. The weak increase is due to the fact that the source agent gets an
additional good while every other agent’s bundle is unchanged. The strict increase
is due to the fact that agent k gets a strictly better bundle, namely the good g∗,
at the expense of its old bundle Ak.

Indeed, when assigning a good to the source agent, if 1
2 -EFX is maintained, then

the said objective function clearly increases (since |U | strictly decreases and sum
of utilities does not decrease). Otherwise, the algorithm substitutes the bundle Ak

with the good g∗. However, note that since agent i was the source to begin with,
it must be that vk(Ak) ⩾ vk(Ai). Furthermore, by violation of 1

2 -EFX, we have
that vk(Ak) <

1
2vk(Ai ∪ {g∗} \ {g}) for some g ∈ Ai. By additivity, we get that

vk({g∗}) > vk(Ak). Thus, agent k is strictly happier under the new allocation
while every other agent is as happy as before.

Define the following objective (or potential) function for any allocation A:

ϕ(A) := m ·
∑
i

vi(Ai)− |U |,

where m is the total number of goods and U is the set of unallocated goods.

Note that if assigning a good to a source vertex does not violate 1
2 -EFX, then the

7

Assignment 2:

objective increases by at least 1 since the number of unassigned goods |U | strictly
decreases and the sum of agents’ utilities

∑
i vi(Ai) does not decrease. Similarly,

the objective increases by at least 1 also when there is a violation of 1
2 -EFX; in this

case, although |U | may increase, the sum of agents’ utilities strictly increases by at
least 1 (recall that valuations are integral). Since the social welfare term is scaled
by a factor of m, the overall objective will nevertheless strictly increase in each step.

Note that the potential function cannot increase beyond m ·maxi
∑

i vi(M) where
M is the set of goods. Thus, there is a finite upper bound on the potential
function. Therefore, the algorithm must terminate after a finite number of steps.

Correctness (sketch): Recall that if assigning a good g∗ to the source agent
creates a violation of 1

2 -EFX, then instead we assign the good g∗ to any agent k
who experiences this violation. It suffices to show that substituting agent k’s old
bundle Ak with the singleton bundle g∗ maintains 1

2 -EFX.

This is easily verified for pairs of agents whose bundles are unchanged. Further,
since agent k is strictly happier, there are no new 1

2 -EFX violations from its
perspective. Therefore, any violation of 1

2 -EFX can only be towards agent
k. However, since agent k’s bundle contains only one good, no agent will
envy agent k up to the removal of this good. Therefore, 1

2 -EFX is satisfied
for any envy directed towards agent k, implying that the overall allocation is 1

2 -EFX.

Acknowledgement: This problem was based on Section 6 and Section A of Plaut
and Roughgarden (2020).

4. In this problem, we will focus on a subclass of additive valuations induced by geometric
sequences (e.g., 20, 21, 22, 23, . . .). Suppose there are n agents with additive valuations over m
goods. For any agent i, we will assume that it values its most preferred good at 2m−1, next
most-preferred good at 2m−2, and so on, and its least-preferred good at 20 = 1 (thus, every
agent has strictly different valuations for all m goods). See the instance below for an example
with two agents and four goods. We will call such instances geometric additive instances.

g1 g2 g3 g4
a1 8 4 2 1
a2 4 1 8 2

a) [5 points] Show that for any geometric additive instance with indivisible goods, an
allocation is EFX if and only if any envied bundle contains exactly one good.

If the envied bundle is a singleton, then any envy towards it can be eliminated by
removing the only good in that bundle, thus satisfying EFX.

8

Assignment 2:

To prove the converse, let us argue by contradiction. Suppose the allocation A is
EFX and agent i envies agent k under A, but Ak is not a singleton, i.e., |Ak| > 1.
Due to geometric valuations, the bundle Ak must contain a good, say g, such that
vi(Ai) < vi({g}). Without loss of generality, let g be the highest-valued good in
Ak according to agent i. Then, even after removing the good of lowest value in
Ak (in agent i’s valuation), agent i will continue to envy the residual bundle of
agent k since it still has the good g in it. This is a violation of EFX, giving us the
desired contradiction.

b) [10 points] Let us denote the n agents by a1, . . . , an and the m goods by g1, . . . , gm.
A picking sequence is an m-length ordered tuple σ := ⟨s1, s2, . . . , sm⟩ where, for every
i ∈ [m], we have si ∈ {a1, . . . , an}, and starting with s1, agents take turns according to
σ to pick their favorite remaining item. For example, consider the instance below with
three agents a1, a2, a3 and six goods g1, . . . , g6.

g1 g2 g3 g4 g5 g6
a1 8 4 2 1 32 16
a2 4 1 2 16 8 32
a3 1 2 4 8 16 32

Suppose σ := ⟨a3, a2, a2, a1, a3, a1⟩. This means that under σ, agent a3 goes first and
picks its favorite good g6. Then, agent a2 picks its favorite remaining good g4. The next
turn also belongs to a2, where it picks the good g5, and so on.

An allocation is said to be sequencible if there is an m-length picking sequence of agents
which results in that allocation. In the above example, the underlined allocation is
sequencible since it is induced by the picking sequence σ.

Show that for any geometric additive instance with indivisible goods, an allocation is
Pareto optimal (PO) if and only if it can be induced by a picking sequence.

(PO ⇒ sequencible). In any PO allocation under additive valuations (geometric or
otherwise), some agent must get its favorite item (because if not, then there should
be an envy-cycle of favorite items that Pareto improves the current allocation).
Eliminate the corresponding item and record the name of the corresponding agent.
Among the remaining items, some agent must again get its favorite item. Repeat
this procedure to construct a picking sequence of agents.

(Sequencible ⇒ PO). Suppose, for contradiction, that a sequencible allocation A is
not PO. Then, there must be another allocation B that Pareto dominates it. Let
σA be the sequence that generates A (recall that A is sequencible by assumption).

Since A and B are distinct, there must be some agent who, during its turn under
the picking sequence σA, picks a good that it receives under A but not under B.

9

Assignment 2:

Let i be the first such agent under σA, and let g be the good picked by i in that
turn. Note that g ∈ Ai \Bi.

Under geometric valuations, any two distinct bundles must have distinct values.
Since B Pareto dominates A and agent i’s bundles under A and B are distinct,
we have that vi(Bi) > vi(Ai). Again, due to geometric valuations, we get that
there must a good g′ ∈ Bi \ Ai such that vi({g′}) > vi(Ai); thus, in particular,
vi({g′}) > vi({g}).

Consider again the picking sequence σA. In this sequence, all agents before agent
i’s first turn pick a good that they get under both A and B. Thus, the goods g and
g′ must both be available at the time of agent i’s first turn. However, under σA,
agent i chose to pick good g even though it has a higher value for g′ as observed
above. This is a contradiction. Thus, the allocation A must be Pareto optimal.

c) [5 points] Design an algorithm that, given as input any geometric additive instance,
returns an allocation that is EFX and PO.

Run the picking sequence a1, a2, . . . , an−1, an, . . . , an︸ ︷︷ ︸
m−n+1 times

.

Acknowledgement: This problem was based on Theorem 1 of Hosseini et al.
(2021).

References

Ganesh Ghalme, Xin Huang, and Nidhi Rathi. Envy-Free Cake Cutting with Graph Constraints.
arXiv preprint arXiv:2205.12559, 2022. (Cited on page 5)

Hadi Hosseini, Sujoy Sikdar, Rohit Vaish, and Lirong Xia. Fair and Efficient Allocations under
Lexicographic Preferences. In Proceedings of the AAAI Conference on Artificial Intelligence,
volume 35, pages 5472–5480, 2021. (Cited on page 10)

Benjamin Plaut and Tim Roughgarden. Almost Envy-Freeness with General Valuations. SIAM
Journal on Discrete Mathematics, 34(2):1039–1068, 2020. (Cited on page 8)

10

https://arxiv.org/pdf/2205.12559.pdf
https://ojs.aaai.org/index.php/AAAI/article/view/16689
https://ojs.aaai.org/index.php/AAAI/article/view/16689
https://epubs.siam.org/doi/pdf/10.1137/19M124397X

