1. Given below is a list of cake-cutting subroutines. You are required to show how these subroutines can be implemented using Robertson-Webb queries. Also mention the worst-case number of queries needed by your implementation.

Specifically, you can use the following two queries:

- $\alpha \leftarrow \operatorname{eval}_{a}(X):$ returns the value α that agent a assigns to the (possibly non-contiguous) piece X, and
- $Y \leftarrow \operatorname{cut}_{a}(X, \alpha)$: returns a piece $Y \subseteq X$ such that $v_{a}(Y)=\alpha$. Here X and Y need not be contiguous segments in $[0,1]$.
a) [5 points] EQUALIZE (X, Y, a) : This subroutine takes as input two pieces X and Y of the cake $[0,1]$ and an agent a (where, as a matter of convention, we assume that $v_{a}(X) \geqslant v_{a}(Y)$), and returns two pieces X^{\prime} and Y^{\prime} such that there is no wastage (i.e., $X \cup Y=X^{\prime} \cup Y^{\prime}$), and the returned pieces are of equal value according to agent a (i.e., $v_{a}\left(X^{\prime}\right)=v_{a}\left(Y^{\prime}\right)$). Additionally, the piece Y should be completely contained in Y^{\prime}. That is, the equalization is done by taking something away from the more valuable piece and adding it to the less valuable piece.

```
ALGORITHM 1: EQUALIZE
Input: Pieces \(X\) and \(Y\) and agent \(a\)
Output: Pieces \(X^{\prime}\) and \(Y^{\prime}\)
Let \(x=\operatorname{eval}_{a}(X)\) and \(y=\operatorname{eval}_{a}(Y)\).
\(X^{\prime} \leftarrow \operatorname{cut}_{a}\left(X, \frac{x+y}{2}\right) \quad \triangleright\) this is feasible because \(x \geqslant y\)
\(Y^{\prime} \leftarrow Y \cup\left(X \backslash X^{\prime}\right)\)
return \(X^{\prime}, Y^{\prime}\)
```

Number of queries: Two eval (\cdot) queries and one $\operatorname{cut}(\cdot)$ query.
b) [$\mathbf{5}$ points] EQ-DIVIDE (X, a, k) : This subroutine takes as input a piece X of the cake $[0,1]$, an agent a, and a positive integer k, and returns k mutually disjoint pieces X_{1}, \ldots, X_{k} such that $X_{1} \cup X_{2} \cup \cdots \cup X_{k}=X$ and $v_{a}\left(X_{i}\right)=v_{a}\left(X_{j}\right)$ for all $i, j \in\{1, \ldots, k\}$. That is, the subroutine divides the piece X into k equally valued pieces according to agent a.

```
ALGORITHM 2: EQ-DIVIDE
Input: Piece \(X\), agent \(a\), positive integer \(k\)
Output: Pieces \(X_{1}, \ldots, X_{k}\)
Let \(x=\operatorname{eval}_{a}(X)\).
for \(i \in\{1,2, \ldots, k-1\}\) do
    \(X_{i} \leftarrow \operatorname{cut}_{a}(X, a, x / k)\)
    \(X \leftarrow X \backslash X_{i}\)
\(X_{k} \leftarrow X\)
return \(X_{1}, \ldots, X_{k}\)
```

Number of queries: One eval (\cdot) query and $k-1 \operatorname{cut}(\cdot)$ queries.
c) [5 points] $\operatorname{SELECT}\left(\left\{X_{1}, \ldots, X_{\ell}\right\}, a, k\right)$: This subroutine takes as input ℓ pieces X_{1}, \ldots, X_{ℓ} of the cake $[0,1]$ (where ℓ is a positive integer), an agent a, and a positive integer $k \leqslant \ell$, and returns the top- k favorite pieces of agent a among X_{1}, \ldots, X_{ℓ}. As a matter of convention, we will assume that the returned pieces are sorted in non-increasing order of values.

```
ALGORITHM 3: SELECT
Input: Pieces \(X_{1}, \ldots, X_{\ell}\), agent \(a\), positive integer \(k \leqslant \ell\)
Output: Pieces \(X_{i_{1}}, \ldots, X_{i_{k}}\)
for \(i \in\{1,2, \ldots, \ell\}\) do
    Let \(x_{i}=\operatorname{eval}_{a}\left(X_{i}\right)\).
Sort \(x_{1}, \ldots, x_{\ell}\) in non-increasing order (ties are broken arbitrarily) and return the
    pieces corresponding to the first \(k\) values.
Number of queries: \(\ell\) eval(•) queries, no cut(•) query
```

d) [5 points] $\operatorname{TRIM}\left(\left\{X_{1}, X_{2}\right\}, a\right)$: This subroutine takes as input two pieces X_{1}, X_{2} of the cake $[0,1]$ and an agent a (where, for convention, we assume $v_{a}\left(X_{1}\right) \geqslant v_{a}\left(X_{2}\right)$), and returns three pieces X_{1}^{\prime}, X_{2}, T such that $v_{a}\left(X_{1}^{\prime}\right)=v_{a}\left(X_{2}\right)$ and $X_{1}^{\prime}=X_{1} \backslash T$. That is, agent a trims the more valuable piece X_{1} to make it equal in value to the less valuable piece X_{2}.

```
ALGORITHM 4: TRIM
Input: Pieces \(X_{1}, X_{2}\) and agent \(a\)
Output: Pieces \(X_{1}^{\prime}, X_{2}, T\)
Let \(x=\operatorname{eval}_{( }\left(X_{2}\right) . \quad \triangleright x\) is the value of less valuable piece.
\(X_{1}^{\prime} \leftarrow \operatorname{cut}_{a}\left(X_{1}, a, x\right)\)
\(T \leftarrow X_{1} \backslash X_{1}^{\prime}\)
return \(X_{1}^{\prime}, X_{2}, T\)
```

Number of queries: One eval(•) queries, one cut (\cdot) query
2. [25 points] Consider a simple undirected graph where each vertex represents an agent and the edges denote friendships. Only friends are allowed to envy each other. A cake division
among the agents on this graph is envy-free if no pair of friends envy each other (though, agents who are not friends may envy each other). Note that the model discussed in class is a special case of this setting when the graph is complete.

Design a discrete cake-cutting protocol (in the Robertson-Webb query model) for finding an envy-free division when the graph is a path on four vertices (see below). Prove the correctness of your protocol and also mention the number of queries made.

Hint\#1: Use the subroutines from Problem 1.
Hint\#2: Revisiting the Selfridge-Conway procedure may be helpful.


```
ALGORITHM 5: Envy-freeness for four agents on a path
Input: A path graph over the agents }a,b,c,d\mathrm{ and a cake [0, 1]
Output: An allocation }\mp@subsup{A}{a}{},\mp@subsup{A}{b}{},\mp@subsup{A}{c}{},\mp@subsup{A}{d}{}\mathrm{ of the cake
\triangleright -----------------Phase 1: Creating trimmings---------------------
1 }\mp@subsup{X}{1}{},\mp@subsup{X}{2}{},\mp@subsup{X}{3}{},\mp@subsup{X}{4}{}\leftarrow\operatorname{EQ-DIVIDE}([0,1],b,4)\quad\triangleright agent b is the "cutter" for the cak
        [0,1]
2 X & SELECT}({\mp@subsup{X}{1}{},\mp@subsup{X}{2}{},\mp@subsup{X}{3}{},\mp@subsup{X}{4}{}},a,1) \triangleright agent a selects its favorite piec
3 X X , X4}\leftarrow\leftarrow\operatorname{SELECT}({\mp@subsup{X}{2}{},\mp@subsup{X}{3}{},\mp@subsup{X}{4}{}},c,2) \triangleright agent c selects its top two favorit
    pieces among the remaining three pieces
4 X 攻, X4,T\leftarrowTRIM ({\mp@subsup{X}{3}{},\mp@subsup{X}{4}{}},c) \triangleright agent c trims the more valuable piece; thus,
        v
    \triangleright ------------------Phase 2: Equalizing--------------------
5 T , , T2, T3, T4\leftarrowEQ-DIVIDE (T, b,4) \triangleright agent b is the "cutter" for the trimmings T
6 T T \leftarrow SELECT ({T, ,T T , T , , T4 },a,1) \triangleright agent a selects its favorite piece from the
        trimmings
7 T},\mp@subsup{T}{3}{},\mp@subsup{T}{4}{}\leftarrow\operatorname{SELECT}({\mp@subsup{T}{2}{},\mp@subsup{T}{3}{},\mp@subsup{T}{4}{}},c,2) \triangleright agent c selects its top two favorite piece
        among the remaining three pieces of the trimmings
8 T
        previous step such that }\mp@subsup{T}{3}{\prime}\subseteq\mp@subsup{T}{3}{}\mathrm{ and }\mp@subsup{T}{4}{\prime}\supseteq\mp@subsup{T}{4}{
    \triangleright ----------------Phase 3: Bundling and Allocation--------------------
```



```
    Ab}\leftarrow\mp@subsup{X}{2}{}\cup\mp@subsup{T}{2}{}\quad\triangleright\mathrm{ Agent b (the "cutter") gets the leftovers
1 1
    \triangleright Combine the "enriched" trimmed piece T}\mp@subsup{T}{4}{\prime}\mathrm{ with the "diminished" main piece
        X '
    if eval}\mp@subsup{}{d}{}(\mp@subsup{X}{3}{\prime}\cup\mp@subsup{T}{4}{\prime})>\mp@subsup{\operatorname{eval}}{d}{}(\mp@subsup{X}{4}{}\cup\mp@subsup{T}{3}{\prime})\mathrm{ then
        Ad}\leftarrow\mp@subsup{X}{3}{\prime}\cup\mp@subsup{T}{4}{\prime}\quad\triangleright\mathrm{ Give agent d its preferred bundle
        Ac}\leftarrow\mp@subsup{X}{4}{}\cup\mp@subsup{T}{3}{\prime
    else
        Ad}\leftarrow\mp@subsup{X}{4}{}\cup\mp@subsup{T}{3}{\prime
        A
    return }\mp@subsup{A}{a}{},\mp@subsup{A}{b}{},\mp@subsup{A}{c}{},\mp@subsup{A}{d}{
```

Query count: The algorithm uses the EQ-DIVIDE subroutine twice, the SELECT subroutine four times, the TRIM subroutine once, and the EQUALIZE subroutine once, followed by two eval(•) queries in the final phase. By directly substituting the query bounds obtained in the above problems, we get a total of $21 \mathrm{eval}(\cdot)$ queries and 8 cut (•) queries.
Note that we can shave off some eval queries thanks to the normalization assumption. Indeed, in the first two steps in Phase 1, we can use the fact that the entire cake is valued at 1 to save two eval queries, one in the EQ-DIVIDE step and another in the SELECT step. Likewise, for the TRIM step in Phase 1 and EQUALIZE step in Phase 2, we can simply reuse the evaluations for agent c done by the preceding SELECT operations.

This further saves three eval queries, giving an improved bound of 16 eval queries overall.

Correctness: It can be easily verified that the algorithm terminates. To argue envy-freeness, let us consider the perspective of the individual agents.

- Agent a does not envy agent b because it prefers both pieces in its final allocation, namely X_{1} and T_{1}, over the respective pieces in the bundle of agent b, namely X_{2} and T_{2}.
- Agent b does not envy agent a because, by virtue of being the "cutter", it values the pieces X_{1} and X_{2} (and, likewise, the pieces T_{1} and T_{2}) equally.
It also does not envy agent c because of the following reason: If $A_{c}=X_{3}^{\prime} \cup T_{4}^{\prime}$, then agent b has an "irrevocable advantage" over agent c and does not envy it even if the entirety of the trimmings T are given to agent c. Otherwise, if $A_{c}=X_{4} \cup T_{3}^{\prime}$, then since $T_{3}^{\prime} \subseteq T_{3}$ (and because agent b is the "cutter" in both Phases 1 and 2), agent b incurs no additional envy.
- Agent d does not envy agent c because the bundle that is less preferred by agent d is given to agent c in Phase 3.
- Finally, let us analyze the envy from agent c 's perspective. Note that agent c values the pieces X_{3}^{\prime} and X_{4} equally (and, likewise, the pieces T_{3}^{\prime} and T_{4}^{\prime}). Therefore, agent c has equal value for the bundles A_{c} and A_{d} and does not envy agent d.
Furthermore, regardless of whether $A_{c}=X_{3}^{\prime} \cup T_{4}^{\prime}$ or $A_{c}=X_{4} \cup T_{3}^{\prime}$, agent c does not envy agent b because of the following reason: By the SELECT and TRIM steps in Phase 1, we have $v_{c}\left(X_{3}^{\prime}\right)=v_{c}\left(X_{4}\right) \geqslant v_{c}\left(X_{2}\right)$ and by the SELECT and EQUALIZE steps in Phase 2, we have $v_{c}\left(T_{3}^{\prime}\right)=v_{c}\left(T_{4}^{\prime}\right) \geqslant v_{c}\left(T_{4}\right) \geqslant v_{c}\left(T_{2}\right)$. As before, envy-freeness follows by additivity.

Acknowledgement: This problem was based on Section 3.1 of Ghalme et al. (2022).
3. Recall the envy-cycle elimination algorithm for computing an allocation satisfying envy-freeness up to one good (EF1). A fairness notion stronger than EF1 is envy-freeness up to any good (EFX), which states that any pairwise envy can be eliminated by removing any good from the envied bundle. Formally, an allocation $A=\left(A_{1}, \ldots, A_{n}\right)$ satisfies EFX if for every pair of agents i, k and every good $g \in A_{k}$, we have $v_{i}\left(A_{i}\right) \geqslant v_{i}\left(A_{k} \backslash\{g\}\right)$. Observe that an EFX allocation satisfies EF1.
a) [10 points] Provide examples of instances with additive valuations where the round-robin and envy-cycle elimination algorithms fail to return an EFX allocation.

Round-robin fails EFX on the following instance:

	g_{1}	g_{2}	g_{3}	g_{4}
a_{1}	$\underline{5}$	2	$\underline{2}$	1
a_{2}	5	$\underline{2}$	2	$\underline{1}$

Envy-cycle elimination will also fail to give EFX on the above instance if the goods are allocated in the order $g_{2}, g_{3}, g_{4}, g_{1}$ since, in that case, the output allocation is the same as under the round-robin algorithm.
b) [$\mathbf{1 0}$ points] Consider the indivisible goods problem under additive valuations. Show that when agents have identical rankings of the goods (but not necessarily identical numerical values), an EFX allocation can be computed in polynomial time. For example, in the instance given below, both agents rank the goods as $g_{1} \succ g_{2} \succ g_{3}$ but have different numerical valuations for them. Also note that the ranking of bundles need not be identical; indeed, agent a_{2} prefers the bundle $\left\{g_{2}, g_{3}\right\}$ over $\left\{g_{1}\right\}$, while agent a_{1} has the opposite preference.

	g_{1}	g_{2}	g_{3}
a_{1}	11	7	2
a_{2}	8	7	5

> Algorithm (sketch): At each step, ask the source agent to pick its favorite remaining good. The existence of source agent is guaranteed by resolving envy cycles.
> Correctness (sketch): The EFX property is maintained while assigning the good to the source because the most recently added good in any bundle is also the least valuable good in that bundle w.r.t. any agent's preferences (due to identical rankings assumption). EFX is also maintained while resolving envy cycles even when the rankings are not identical (this fact will be useful in the next part).
c) [15 points] Whether an EFX allocation always exists under additive valuations remains an important open problem in fair division. In view of this, one can ask whether relaxations of EFX (which, remember, is itself a relaxation of EF) always exist. Specifically, one can consider a "multiplicative" approximation of EFX defined as follows: Given any $\alpha \in(0,1]$, an allocation $A=\left(A_{1}, \ldots, A_{n}\right)$ is said to satisfy α-EFX if for every pair of agents i, k and every good $g \in A_{k}$, we have $v_{i}\left(A_{i}\right) \geqslant \alpha \cdot v_{i}\left(A_{k} \backslash\{g\}\right)$. Thus, 1-EFX is equivalent to exact EFX, which is stronger than, say, $\frac{1}{2}$-EFX.

Consider a fair division problem with n agents where all valuations are additive and integral (i.e., for every agent i and every good $g, v_{i}(\{g\})$ is a non-negative integer). Show that a $\frac{1}{2}$-EFX allocation always exists.
Hint\#1: Use the envy-cycle elimination algorithm. Think about what happens when assigning a good g^{*} to the source agent i violates $\frac{1}{2}$-EFX from the perspective of some agent k. That is, there is some good $g \in A_{i}$ such that $v_{k}\left(A_{k}\right)<\frac{1}{2} v_{k}\left(A_{i} \cup\left\{g^{*}\right\} \backslash\{g\}\right)$.

Hint\#2: You may find it helpful to "unassign" some of the currently allocated goods and return them to the pool of unallocated goods.

Algorithm (sketch): At each step, give an unallocated good, say g^{*}, to the source agent i as long as doing so preserves $\frac{1}{2}$-EFX. However, if $\frac{1}{2}$-EFX is violated from the perspective of, say, agent k (i.e., for some $g \in A_{i}, v_{k}\left(A_{k}\right)<\frac{1}{2} v_{k}\left(A_{i} \cup\left\{g^{*}\right\} \backslash\{g\}\right)$), then return agent k 's existing bundle A_{k} to the set of unallocated goods, and instead assign to it the good g^{*}.

Termination (sketch): To show that the algorithm terminates, we will use a potential function argument. This involves constructing an objective function and an upper (or, lower) bound on this function, and, in addition, showing that at each step, the objective strictly increases (or, decreases).

A natural idea might be to think of the "number of unallocated goods" as a potential. However, note that this number can decrease (when assigning the good to the source while preserving $\frac{1}{2}$-EFX) as well as increase (when returning the goods back to the unallocated pool) during the execution of algorithm. So, the size of the unallocated pool alone may not be a useful potential function.

However, note that the sum total of agents' values for their own bundles (specifically, the "utilitarian social welfare" objective $\sum_{i} v_{i}\left(A_{i}\right)$) weakly increases when giving a good to a source and strictly increases when returning goods back to the pool. The weak increase is due to the fact that the source agent gets an additional good while every other agent's bundle is unchanged. The strict increase is due to the fact that agent k gets a strictly better bundle, namely the good g^{*}, at the expense of its old bundle A_{k}.

Indeed, when assigning a good to the source agent, if $\frac{1}{2}$-EFX is maintained, then the said objective function clearly increases (since $|U|$ strictly decreases and sum of utilities does not decrease). Otherwise, the algorithm substitutes the bundle A_{k} with the good g^{*}. However, note that since agent i was the source to begin with, it must be that $v_{k}\left(A_{k}\right) \geqslant v_{k}\left(A_{i}\right)$. Furthermore, by violation of $\frac{1}{2}$-EFX, we have that $v_{k}\left(A_{k}\right)<\frac{1}{2} v_{k}\left(A_{i} \cup\left\{g^{*}\right\} \backslash\{g\}\right)$ for some $g \in A_{i}$. By additivity, we get that $v_{k}\left(\left\{g^{*}\right\}\right)>v_{k}\left(A_{k}\right)$. Thus, agent k is strictly happier under the new allocation while every other agent is as happy as before.

Define the following objective (or potential) function for any allocation A :

$$
\phi(A):=m \cdot \sum_{i} v_{i}\left(A_{i}\right)-|U|
$$

where m is the total number of goods and U is the set of unallocated goods.

Note that if assigning a good to a source vertex does not violate $\frac{1}{2}$-EFX, then the
objective increases by at least 1 since the number of unassigned goods $|U|$ strictly decreases and the sum of agents' utilities $\sum_{i} v_{i}\left(A_{i}\right)$ does not decrease. Similarly, the objective increases by at least 1 also when there is a violation of $\frac{1}{2}$-EFX; in this case, although $|U|$ may increase, the sum of agents' utilities strictly increases by at least 1 (recall that valuations are integral). Since the social welfare term is scaled by a factor of m, the overall objective will nevertheless strictly increase in each step.

Note that the potential function cannot increase beyond $m \cdot \max _{i} \sum_{i} v_{i}(M)$ where M is the set of goods. Thus, there is a finite upper bound on the potential function. Therefore, the algorithm must terminate after a finite number of steps.

Correctness (sketch): Recall that if assigning a good g^{*} to the source agent creates a violation of $\frac{1}{2}$-EFX, then instead we assign the good g^{*} to any agent k who experiences this violation. It suffices to show that substituting agent k 's old bundle A_{k} with the singleton bundle g^{*} maintains $\frac{1}{2}$-EFX.

This is easily verified for pairs of agents whose bundles are unchanged. Further, since agent k is strictly happier, there are no new $\frac{1}{2}$-EFX violations from its perspective. Therefore, any violation of $\frac{1}{2}$-EFX can only be towards agent k. However, since agent k 's bundle contains only one good, no agent will envy agent k up to the removal of this good. Therefore, $\frac{1}{2}$-EFX is satisfied for any envy directed towards agent k, implying that the overall allocation is $\frac{1}{2}$-EFX.

Acknowledgement: This problem was based on Section 6 and Section A of Plaut and Roughgarden (2020).
4. In this problem, we will focus on a subclass of additive valuations induced by geometric sequences (e.g., $2^{0}, 2^{1}, 2^{2}, 2^{3}, \ldots$). Suppose there are n agents with additive valuations over m goods. For any agent i, we will assume that it values its most preferred good at 2^{m-1}, next most-preferred good at 2^{m-2}, and so on, and its least-preferred good at $2^{0}=1$ (thus, every agent has strictly different valuations for all m goods). See the instance below for an example with two agents and four goods. We will call such instances geometric additive instances.

	g_{1}	g_{2}	g_{3}	g_{4}
a_{1}	8	4	2	1
a_{2}	4	1	8	2

a) [5 points] Show that for any geometric additive instance with indivisible goods, an allocation is EFX if and only if any envied bundle contains exactly one good.

If the envied bundle is a singleton, then any envy towards it can be eliminated by removing the only good in that bundle, thus satisfying EFX.

To prove the converse, let us argue by contradiction. Suppose the allocation A is EFX and agent i envies agent k under A, but A_{k} is not a singleton, i.e., $\left|A_{k}\right|>1$. Due to geometric valuations, the bundle A_{k} must contain a good, say g, such that $v_{i}\left(A_{i}\right)<v_{i}(\{g\})$. Without loss of generality, let g be the highest-valued good in A_{k} according to agent i. Then, even after removing the good of lowest value in A_{k} (in agent i 's valuation), agent i will continue to envy the residual bundle of agent k since it still has the good g in it. This is a violation of EFX, giving us the desired contradiction.
b) [$\mathbf{1 0}$ points] Let us denote the n agents by a_{1}, \ldots, a_{n} and the m goods by g_{1}, \ldots, g_{m}. A picking sequence is an m-length ordered tuple $\sigma:=\left\langle s_{1}, s_{2}, \ldots, s_{m}\right\rangle$ where, for every $i \in[m]$, we have $s_{i} \in\left\{a_{1}, \ldots, a_{n}\right\}$, and starting with s_{1}, agents take turns according to σ to pick their favorite remaining item. For example, consider the instance below with three agents a_{1}, a_{2}, a_{3} and six goods g_{1}, \ldots, g_{6}.

	g_{1}	g_{2}	g_{3}	g_{4}	g_{5}	g_{6}
a_{1}	$\underline{8}$	$\underline{4}$	2	1	32	16
a_{2}	4	1	2	$\underline{16}$	$\underline{8}$	32
a_{3}	1	2	$\underline{4}$	8	16	$\underline{32}$

Suppose $\sigma:=\left\langle a_{3}, a_{2}, a_{2}, a_{1}, a_{3}, a_{1}\right\rangle$. This means that under σ, agent a_{3} goes first and picks its favorite good g_{6}. Then, agent a_{2} picks its favorite remaining good g_{4}. The next turn also belongs to a_{2}, where it picks the good g_{5}, and so on.

An allocation is said to be sequencible if there is an m-length picking sequence of agents which results in that allocation. In the above example, the underlined allocation is sequencible since it is induced by the picking sequence σ.

Show that for any geometric additive instance with indivisible goods, an allocation is Pareto optimal (PO) if and only if it can be induced by a picking sequence.
($\mathrm{PO} \Rightarrow$ sequencible). In any PO allocation under additive valuations (geometric or otherwise), some agent must get its favorite item (because if not, then there should be an envy-cycle of favorite items that Pareto improves the current allocation). Eliminate the corresponding item and record the name of the corresponding agent. Among the remaining items, some agent must again get its favorite item. Repeat this procedure to construct a picking sequence of agents.
(Sequencible $\Rightarrow \mathrm{PO}$). Suppose, for contradiction, that a sequencible allocation A is not PO. Then, there must be another allocation B that Pareto dominates it. Let σ_{A} be the sequence that generates A (recall that A is sequencible by assumption).

Since A and B are distinct, there must be some agent who, during its turn under the picking sequence σ_{A}, picks a good that it receives under A but not under B.

Let i be the first such agent under σ_{A}, and let g be the good picked by i in that turn. Note that $g \in A_{i} \backslash B_{i}$.

Under geometric valuations, any two distinct bundles must have distinct values. Since B Pareto dominates A and agent i 's bundles under A and B are distinct, we have that $v_{i}\left(B_{i}\right)>v_{i}\left(A_{i}\right)$. Again, due to geometric valuations, we get that there must a good $g^{\prime} \in B_{i} \backslash A_{i}$ such that $v_{i}\left(\left\{g^{\prime}\right\}\right)>v_{i}\left(A_{i}\right)$; thus, in particular, $v_{i}\left(\left\{g^{\prime}\right\}\right)>v_{i}(\{g\})$.

Consider again the picking sequence σ_{A}. In this sequence, all agents before agent i 's first turn pick a good that they get under both A and B. Thus, the goods g and g^{\prime} must both be available at the time of agent i 's first turn. However, under σ_{A}, agent i chose to pick good g even though it has a higher value for g^{\prime} as observed above. This is a contradiction. Thus, the allocation A must be Pareto optimal.
c) [5 points] Design an algorithm that, given as input any geometric additive instance, returns an allocation that is EFX and PO.

Run the picking sequence $a_{1}, a_{2}, \ldots, a_{n-1}, \underbrace{a_{n}, \ldots, a_{n}}_{m-n+1 \text { times }}$.
Acknowledgement: This problem was based on Theorem 1 of Hosseini et al. (2021).

References

Ganesh Ghalme, Xin Huang, and Nidhi Rathi. Envy-Free Cake Cutting with Graph Constraints. arXiv preprint arXiv:2205.12559, 2022. (Cited on page 5)

Hadi Hosseini, Sujoy Sikdar, Rohit Vaish, and Lirong Xia. Fair and Efficient Allocations under Lexicographic Preferences. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 35 , pages 5472-5480, 2021. (Cited on page 10)

Benjamin Plaut and Tim Roughgarden. Almost Envy-Freeness with General Valuations. SIAM Journal on Discrete Mathematics, 34(2):1039-1068, 2020. (Cited on page 8)

