
COL866: Special Topics in Algorithms Fall 2023

Assignment 1

Total points: 100 Deadline: Aug 21 (Monday)

1. a) [5 points] Show that under the men-proposing DA algorithm, there is always at least
one woman who receives exactly one proposal.

By way of contradiction, suppose every woman receives at least two proposals.
Consider the round in which the last proposal is made under the DA algorithm.
The woman receiving this proposal must either be previously unmatched (in which
case she receives two or more proposals simultaneously in that round) or be
tentatively matched already. In both cases, some man will be rejected by this
woman, prompting a future proposal. This contradicts the fact that the proposal
under consideration was the last one.

b) [5 points] Suppose there are n men and n women. As a function of n, what is the
maximum number of proposals that can be made during the DA algorithm? (Hint: Use
the above result.)

By the above result, there is at least one woman who receives exactly one proposal.
Each of the other (n− 1) women can receive at most n proposals each. Thus, the
maximum number of proposals can be n(n− 1) + 1 = n2 − n+ 1.

c) [5 points] For an arbitrary n, construct an instance where the number of proposals made
by men under the DA algorithm matches the bound shown by you above.

The stable matching instance given below results in n2 − n+ 1 proposals.

m1: w1 w2 w3 . . . wn−1 wn w1: m2 m3 . . . mn−1 mn m1

m2: w2 w3 . . . wn−1 w1 wn w2: m3 m4 . . . mn m1 m2

m3: w3 w4 . . . w1 w2 wn w3: m4 m5 . . . m1 m2 m3

...
...

mn−1:wn−1 w1 w2 . . . wn−1 wn wn−1:mn m1 . . . mn−3 mn−2 mn−1

mn: w1 w2 w3 . . . wn−1 wn wn: m1 m2 m3 . . . mn−1 mn

2. [10 points] In this exercise, we will show that the strategy of repeatedly fixing blocking pairs
may not give a stable matching. Consider the matching instance given below:

m1: w2 w1 w3 w1: m1 m3 m2

m2: w1 w2 w3 w2: m3 m1 m2

m3: w1 w2 w3 w3: m3 m1 m2
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Show that there is a cyclic sequence of unstable matchings in the above instance such that each
matching in sequence can be obtained from its predecessor by “fixing” a blocking pair (i.e., by
matching the blocking agents with each other, and also matching their previously assigned
partners with each other).

Start with the matching µ1 = {(m1, w1), (m2, w2), (m3, w3)}.

• Fix the blocking pair (m1, w2) to get the matching µ2 =
{(m1, w2), (m2, w1), (m3, w3)}.

• Fix the blocking pair (m3, w2) in µ2 to get the matching µ3 =
{(m1, w3), (m2, w1), (m3, w2)}.

• Fix the blocking pair (m3, w1) in µ3 to get the matching µ4 =
{(m1, w3), (m2, w2), (m3, w1)}.

• Fix the blocking pair (m1, w1) in µ4 to get back µ1.

This example is due to Knuth (1997); see Example 2 in Chapter 1.

3. Define the cost of a stable matching as sum of ranks of matched partners of all agents (men
and women). For example, for the stable matching given by the underlined outcomes in the
instance below, the cost is 1+1+2+1+4+1+2+3 = 15.

m1: w3 w2 w1 w4 w1: m4 m3 m1 m2

m2: w1 w4 w2 w3 w2: m4 m3 m2 m1

m3: w2 w4 w1 w3 w3: m3 m1 m2 m4

m4: w2 w1 w3 w4 w4: m2 m1 m3 m4

a) [5 points] For a general n, construct an instance with n men and n women and a stable
matching for that instance with cost n(n+ 1).

Consider any instance where, if man m ranks a woman w at kth position, then w
ranks m at (n+ 1− k)th position. The sum of ranks for any man-woman pair is
(n+ 1), and any stable matching will contain n such man-woman pairs, giving the
desired cost.

b) [15 points] Prove that for any given preferences of n men and n women, the cost of any
stable matching is at most n(n+ 1).

Suppose, for contradiction, that there is a stable matching µ with cost strictly
greater than n(n+ 1).

Let M and W denote the set of all men and women, respectively.
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For any man m, let Sm := {w ∈ W : w ≻m µ(m)} denote the set of all women
that m strictly prefers over his µ-partner. Likewise, for any woman w, let
Sw := {m ∈ M : m ≻w µ(w)} denote the set of all men that w strictly prefers
over her µ-partner. Further, let us call a man-woman pair (m,w) ∈ M × W
man-improving if w ∈ Sm, and woman-improving if m ∈ Sw. Note that by
stability of µ, no man-woman pair can be simultaneously man-improving and
woman-improving.

Observe that by definition of cost, we have∑
m∈M

|Sm|+
∑
w∈W

|Sw| = cost of µ− 2n

> n(n+ 1)− 2n

= n2 − n.

That is, the total number of man-improving and woman-improving pairs is strictly
greater than n2 − n.

Since there are n men and n women, there can be n2 distinct man-woman pairs
overall. Out of these, n pairs are contained in the stable matching µ. Among
the remaining n2 − n pairs, only a subset can be either man-improving or
woman-improving. Thus, the number of such pairs cannot exceed n2 − n, giving
us the desired contradiction.

Proof adapted from Tanya Khovanova’s Math Blog.

4. [10 points] Recall from Lecture 3 that when a woman manipulates optimally under the
men-proposing DA algorithm, the resulting matching is guaranteed to be stable with respect
to the true preferences.

Define suboptimal manipulation by a woman as a misreport where she gets a partner who,
according to her true list, is better than her true match but worse than her optimally
manipulated match (that is, a suboptimal manipulation is better than telling the truth, but
not as good as optimal manipulation). Provide an instance where the DA matching after
suboptimal manipulation is not stable with respect to the true preferences.
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Consider the stable matching instance given below (Vaish and Garg, 2017, Example 1)
where the DA outcomes are underlined:

m1: w2 w1 w3 w4 w1: m1 m2 m3 m4

m2: w3 w1 w2 w4 w2: m3 m1 m2 m4

m3: w1 w2 w3 w4 w3: m1 m2 m3 m4

m4: w1 w4 w2 w3 w4: m1 m2 m3 m4

The woman w1 can optimally manipulate by reporting m1 ≻ m4 ≻ m2 ≻ m3 to get
matched with man m1, her top choice according to her true preferences. Observe that
the optimal misreport is obtained in an “inconspicuous” manner by promoting m4 in
the true list of w1.

There also exists a suboptimal misreport m2 ≻ m4 ≻ m3 ≻ m1 which gets w1 matched
with man m2. This is an improvement over her true match m3 but is strictly worse than
her optimal match m1. The resulting matching {(m1, w3), (m2, w1), (m3, w2), (m4, w4)}
is not stable with respect to the true preferences as the pair (m1, w1) blocks it.

5. Consider the stable matching instance given below:

m1: w1 w2 w3 w4 w1: m3 m4 m2 m1

m2: w2 w1 w4 w3 w2: m4 m3 m1 m2

m3: w3 w4 w1 w2 w3: m1 m2 m4 m3

m4: w4 w3 w2 w1 w4: m2 m1 m3 m4

a) [10 points] List all matchings that are stable for this instance.

The following seven matchings are stable for the given instance:

• µ1 = {(m1, w1), (m2, w2), (m3, w3), (m4, w4)}

• µ2 = {(m1, w2), (m2, w1), (m3, w3), (m4, w4)}

• µ3 = {(m1, w1), (m2, w2), (m3, w4), (m4, w3)}

• µ4 = {(m1, w2), (m2, w1), (m3, w4), (m4, w3)}

• µ5 = {(m1, w2), (m2, w4), (m3, w1), (m4, w3)}

• µ6 = {(m1, w3), (m2, w1), (m3, w4), (m4, w2)}

• µ7 = {(m1, w3), (m2, w4), (m3, w1), (m4, w2)}

b) [5 points] Illustrate the lattice of stable matchings for the above instance. (You may
find it convenient to use the “vector of ranks of matched partners” notation discussed in
Lecture 2.)
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µ1 : ⟨1, 1, 1, 1|4, 4, 4, 4⟩ Men-optimal

µ2 : ⟨2, 2, 1, 1|3, 3, 4, 4⟩ µ3 : ⟨1, 1, 2, 2|4, 4, 3, 3⟩

µ4 : ⟨2, 2, 2, 2|3, 3, 3, 3⟩ Median and min. regret

µ5 : ⟨2, 3, 3, 2|1, 3, 3, 1⟩
Min. regret

µ6 : ⟨3, 2, 2, 3|3, 1, 1, 3⟩
Min. regret

µ7 : ⟨3, 3, 3, 3|1, 1, 1, 1⟩
Women-optimal, egalitarian,
and min. regret

The arrow heads denote the direction of women’s preferences (men’s preferences
are in the opposite direction).

c) [5 points] Identify the men-optimal, women-optimal, median, egalitarian, and minimum
regret matchings. If multiple matchings satisfy a given criterion (e.g., median, egalitarian,
etc.), identify all matchings that do.

Shown in the figure above.

6. [10 points] Prove or disprove the following statement for many-to-one stable matchings: It is
impossible to have one stable matching where a hospital is matched only with its 1st and 4th
choices, and another stable matching in which it is matched only with its 2nd and 3rd choices.

We will prove that it is impossible to have one stable matching where a hospital is
matched only with its 1st and 4th choices and another stable matching in which it is
matched only with its 2nd and 3rd choices.

Suppose, for contradiction, that there exists an instance where a hospital, say h, is
matched with its 1st and 4th choice doctors, say d1 and d4, respectively, in one stable
matching, say µ1, and is matched with its 2nd and 3rd choice doctors, say d2 and d3,
respectively, in another stable matching, say µ2.

From the rural hospitals theorem, it follows that hospital h must be saturated (indeed,

5



Assignment 1:

if it was unsaturated, then it must be matched with the same set of doctors in all
stable matchings).

Consider the canonical one-to-one instance associated with such a many-to-one instance.
Denote the copies of hospital h in the canonical instance by h1 and h2. Observe that
under both matchings µ1 and µ2, the “more preferred” doctor must be matched with
the “more preferred” copy of hospital h. That is, under µ1, doctor d1 is matched with
h1 and doctor d4 is matched with h2, while under µ2, doctor d2 is matched with h1

and doctor d3 is matched with h2. If this is not the case, then under either µ1 or µ2, h
1

and the “better” doctor will constitute a blocking pair as the doctors have the same
preferences over the copies of any hospital.

We will now show that under the matching µ1, doctor d2 must be matched with a
hospital that is distinct from h. Indeed, under µ1, doctor d2 cannot be unmatched as it
will then create a blocking pair with the copy h2. Thus, d2 must be a matched to a
hospital, say h′, that it strictly prefers over h, i.e., h′ ≻d2 h.

Let us now define the “min” mapping for the one-to-one matchings µ1 and µ2 wherein
each doctor points to its less preferred partner while each copy of a hospital points to
its more preferred partner. In the resulting mapping, d2 will point to h1 (with whom it
is matched under µ2) while h1 points to d1 (with whom it is matched under µ1). This,
however, shows that the induced mapping is not a matching, contradicting the lattice
theorem for one-to-one stable matchings.

7. Consider a two-hospital kidney exchange setting with seven patient-donor pairs. The com-
patibility graph among these patient-donor pairs is as shown below. Each node in this graph
represents a patient-donor pair and each edge denotes the possibility of a two-way exchange
between adjacent nodes (we will assume that only two-way exchanges are allowed). The
shaded (respectively, unshaded) nodes belong to hospital 1 (respectively, hospital 2).

a b c d e f g

Suppose the hospitals are strategic agents who are only interested in getting as many of their
own nodes matched as possible. Each hospital can choose to hide a subset of its patient-donor
pairs from the centralized exchange (and match them internally if possible). Thus, hospital 1
(respectively, hospital 2) can hide any subset of the shaded (respectively, unshaded) nodes.
The centralized exchange only sees the nodes revealed by the two hospitals as well as the
edges (if any) between pairs of revealed nodes.

a) [5 points] Suppose the centralized exchange uses a deterministic maximum matching
algorithm. Show that under any such algorithm, some hospital will have an incentive to
not reveal all of its nodes. (In other words, show that any maximum matching algorithm
fails to be strategyproof.)
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Consider the instance shown in the figure above where both hospitals reveal all of
their patient-donor pairs. The centralized exchange will pick one of the following
four maximum matchings:

Case 1: {(a, b), (c, d), (e, f)} leaving the node g unmatched

a b c d e f g

In this case, hospital 2 (which owns the unshaded nodes) can deviate by
concealing the nodes b and c and matching them internally. The maximum
matching on the revealed nodes will match the node g, leading to a strict
improvement for hospital 2.

a b c d e f g

Case 2: {(b, c), (d, e), (f, g)} leaving the node a unmatched

a b c d e f g

In this case, hospital 1 (which owns the shaded nodes) can deviate by
concealing the nodes e and f and matching them internally. The maximum
matching on the revealed nodes will match the node a, leading to a strict
improvement for hospital 1.

a b c d e f g

Case 3: {(a, b), (c, d), (f, g)} leaving the node e unmatched

a b c d e f g

In this case, hospital 1 (which owns the shaded nodes) can deviate by
concealing the nodes e and f and matching them internally. The maximum
matching on the revealed nodes will match the nodes a and d, leading to a
strict improvement for hospital 1.

a b c d e f g

Case 4: {(a, b), (d, e), (f, g)} leaving the node c unmatched

a b c d e f g

In this case, hospital 2 (which owns the unshaded nodes) can deviate by
concealing the nodes b and c and matching them internally. The maximum
matching on the revealed nodes will match the node g, leading to a strict
improvement for hospital 2.
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a b c d e f g

Thus, regardless of which maximum matching the centralized exchange selects
on the original instance, one of the hospitals can improve by concealing a
subset of its nodes. This implies that any maximum matching algorithm
fails strategyproofness.

b) [10 points] Now suppose the centralized exchange uses a deterministic strategyproof
algorithm.1 Show that any such algorithm, on some input, will be forced to match
at most half as many nodes as the maximum matching algorithm. (In other words,
no deterministic strategyproof algorithm can guarantee more than half the size of a
maximum matching.)

A strategyproof algorithm is presented in (Ashlagi et al., 2015). For the purpose
of this exercise, we will simply assume that a strategyproof algorithm exists.

Consider once again the original instance where both hospitals reveal all of their
patient-donor pairs. This instance has an odd number of nodes, and therefore at
least one node will remain unmatched, resulting in the following two mutually
exclusive and exhaustive cases.

Case 1: At least one of the shaded nodes is not matched in the original instance.

In this case, consider another input instance wherein hospital 1 deviates
from the original instance by hiding the nodes e and f (and matches them
internally), as shown below.

a b c d e f g

On this input, the centralized exchange cannot match both a and d as
that would constitute a profitable deviation for hospital 1. Therefore, the
centralized exchange can match at most one of the edges (a, b), (b, c) or (c, d).
On the other hand, a maximum matching algorithm will necessarily select
the edges (a, b) and (c, d). Therefore, the centralized exchange is forced to
match at most half as many nodes as the maximum matching algorithm on
this input.

Case 2: At least one of the unshaded nodes is not matched in the original instance.

By a similar argument as before, consider a deviation by hospital 2 from
the original instance wherein it hides the nodes b and c (and matches them
internally).

1Showing the existence of a strategyproof algorithm is non-trivial. For the purpose of this exercise, you can simply
assume that there exists some strategyproof algorithm.
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a b c d e f g

On this input, a maximum matching algorithm will necessarily select the
edges (d, e) and (f, g). However, strategyproofness forces the centralized
exchange to leave the node g unmatched.
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