
Chapter 5

Manipulating Gale-Shapley Algorithm

5.1 Introduction

The theory of two-sided matching (Roth and Sotomayor, 1992) has been a cornerstone of market

design, inspiring a wide array of applications such as school choice (Abdulkadiroğlu et al., 2005a,b),

entry-level labor markets (Roth and Peranson, 1999), and kidney exchange (Roth et al., 2004). All of

these markets are built around a centralized matching procedure, which solicits the preferences of

the participating agents (typically in the form of rank ordered lists) and selects a matching outcome

based on these preferences (i.e., decides who gets matched to whom).

Arguably the most famous of such procedures is the Gale-Shapley algorithm (Gale and Shapley,

1962), which takes as input the preferences of two sets of agents over each other (commonly referred

to as men and women), and after a sequence of proposal and rejection steps, outputs a matching that

is stable in the sense that no pair of agents prefer each other over their assigned partners. Over the

years, the notion of stability has emerged as the most signi�cant predictor of a market’s long term

success—while markets with stable matching procedures have successfully persisted, the unstable

ones have failed and are out of use (Roth, 2002).

A frequent concern in such markets, however, is that of strategic behavior by individual agents.

Indeed, Roth (1982) has shown that no stable matching mechanism makes it a dominant strategy

for every agent to announce its true preferences. This, in particular, means that the Gale-Shapley

algorithm is also vulnerable to manipulation.

Our interest in this chapter is to study the conditions under which the Gale-Shapley matching

for the manipulated instance remains stable with respect to the true preferences. It is known from

the results of Dubins and Freedman (1981) and Roth (1982) that the proposing side (say, the men) in

the algorithm has no incentive to manipulate. Therefore, any strategic behavior must occur on the
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proposed-to side (i.e., the women). Our starting point, therefore, is the following natural question:

Suppose a woman can manipulate by permuting her true preference list while everyone

else is truthful. Then, is the resulting Gale-Shapley matching stable with respect to the

true preferences?

Our �rst result (Theorem 23) shows that the answer to the above question is YES if the manip-

ulation is optimal. That is, if, by misreporting, the manipulator secures the best possible partner

(according to her true preferences), then the resulting Gale-Shapley matching is stable with respect

to the true preferences of the agents. This is an encouraging result for both the market designer (who

cares about stability with respect to the true preferences) and the manipulator (who cares about �nd-

ing the optimal partner). We complement this result by showing that sub-optimal manipulations can

sometimes lead to instability (Example 5).

Besides optimality, the manipulator might also want to avoid being suspected of strategic be-

havior. Indeed, it is reasonable to expect that the market designer has a coarse idea of the true

preferences of the agents, say from past runs of the algorithm or from survey data. In such a setting,

strategic misreporting can be easily detected if the announced list of an agent looks signi�cantly

di�erent from the market designer’s estimate. Our second result (Theorem 24) shows that this is

an avoidable concern for the manipulator: For any optimal manipulation, there exists an equivalent

inconspicuous manipulation which results in the same matched partner, and can be derived from

the true list by promoting only one man (and making no other changes). In other words, an optimal

manipulation is nearly indistinguishable from the true list.

Our third result (Theorem 25) strengthens the stability implication of Theorem 23 for inconspic-

uous optimal manipulations. Speci�cally, we show that every matching (including the Gale-Shapley

matching) that is stable with respect to the manipulated instance is also stable with respect to the

true preferences. We complement this result by giving an example of a non-inconspicuous optimal

manipulation, where a matching that is stable with respect to the manipulated instance is not stable

with respect to the true preferences (Example 6).

Why study permutation manipulations? By far, the most commonly studied model of manipula-

tion in the stable matching literature has been that of truncation (Gale and Sotomayor, 1985; Roth

and Rothblum, 1999; Coles and Shorrer, 2014; Jaramillo et al., 2014). This model allows the ma-

nipulator to remove a tail of her true preference list and report the rest of the list unshu�ed. An

especially attractive feature of truncation-based manipulations is exhaustiveness, which means that

any possible misrepresentation can be replicated or improved by a truncation strategy (Roth and

Vate, 1991; Jaramillo et al., 2014). However, an optimal truncation manipulation by an agent can

look very di�erent from her true preference list. In fact, Coles and Shorrer (2014) have shown that
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when the true preferences of all the other agents are generated uniformly at random, the optimal

truncation strategy for the manipulator involves the removal of a large fraction of her true list. This

phenomenon is particularly severe for large markets, where the ratio of the length of the reported

list to that of the true list goes to zero as the size of the market grows. By contrast, as our results

show, an optimal permutation manipulation can be nearly identical to the true list of the manipu-

lator. We consider this feature of permutation manipulations to be an important one, both from a

theoretical and a practical standpoint.

5.2 Related Work

The literature on permutation manipulations of Gale-Shapley algorithm has focused primarily on

computational questions (Teo et al., 2001; Kobayashi and Matsui, 2009, 2010; Deng et al., 2015; Gupta

et al., 2016). The earliest result in this direction is by Teo et al. (2001), who gave an O(n3) algo-

rithm for computing an optimal permutation manipulation of Gale-Shapley algorithm by a single

manipulator. In conjunction with our result (Theorem 23), this means that not only are optimal

manipulations stability-preserving, but are also e�ciently computable.

The work of Teo et al. (2001) was generalized to the coalitional manipulation setting by Deng et al.

(2015). For permutation manipulations, they provide an O(n6) algorithm for computing a pareto-

optimal manipulation for any �xed coalition. Additionally, they show that any such manipulation

can be made inconspicuous. There are two important ways in which the work of Deng et al. (2015)

di�ers from ours: First, their model only allows for manipulations that are stability-preserving in the

�rst place. On the other hand, we allow the manipulator to pick any permutation (not just a stability-

preserving one), and identify a class of manipulations that induce stability. Second, their result on

the inconspicuousness of coalitional manipulation involves a reduction to the stable roommates

problem (Irving, 1985), and uses sophisticated combinatorial structures like rotations and suitor

graphs (Kobayashi and Matsui, 2010). Our proof, on the other hand, is direct and much simpler.

Another set of relevant works is by Kobayashi and Matsui (2009, 2010), who study the following

extension version of the manipulation problem: Suppose we are given the preference lists of all

men, and a complete/partial matching. The goal is to compute a set (if it exists) of the preference

lists of all women such that the men-proposing Gale-Shapley matching contains the given matching.

They show that this problem is NP-complete in general (when the given matching is partial), but

polynomial time solvable if the given matching is complete.

Finally, the recent work of Gupta et al. (2016) studies the question of total stability of a manipu-

lation strategy when all women are strategic individuals and all men are truthful. A manipulation

strategy is totally stable if (i) it is stability-preserving, and (ii) it constitutes a stable Nash equilib-
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rium, meaning that any unilateral deviation from the strategy is either non-improving or induces

instability. It is shown that checking a given strategy for total stability can be done in polynomial

time.

5.3 Preliminaries

Problem setup An instance 〈M,W,�〉 of the stable marriage problem consists of a set M of n

men, a set W of n women, and a preference pro�le � = {�m1 , . . . ,�mn ,�w1 , . . . ,�wn} consisting

of the preference lists of all men and women. The preference list of each man m ∈ M , denoted

by �m, is a strict total order over the set of all women (the preference lists of women are de�ned

analogously). We will use the shorthand w1 �m w2 to denote ‘either w1�mw2 or w1 = w2’. We let

�−w denote the preference lists of all men and women except woman w. Thus, � = {�−w,�w}.

Stable matchings A matching refers to a function µ : M ∪W →M ∪W , where µ(m) ∈ W for

all m ∈ M , µ(w) ∈ M for all w ∈ W , and µ(m) = w if and only if µ(w) = m. A matching µ

admits a blocking pair with respect to� if there is a pair of agents (m,w) such that w�m µ(m) and

m�w µ(w). A matching µ is stable if it admits no blocking pair with respect to�. We let S� denote

the set of all matchings that are stable with respect to �.

Gale-Shapley algorithm A matching algorithm takes as input a preference pro�le and outputs a

matching. In this chapter, we study the well-known deferred acceptance algorithm (Gale and Shapley,

1962), also known as Gale-Shapley algorithm. In particular, we will focus on the men-proposing

version of this algorithm, abbreviated as GS algorithm. We let µ = GS(�) denote the matching

output by the men-proposing Gale-Shapley algorithm for the input pro�le �.

Brie�y, GS algorithm proceeds in rounds, and each round consists of two phases: (i) a proposal

phase, where each single man proposes to his favorite woman from among those who haven’t re-

jected him yet, and (ii) a rejection phase, where each woman with multiple proposals in hand rejects

all proposals except the one that she likes best. The algorithm terminates when no single agents

remain.

Gale and Shapley (1962) showed that GS algorithm always terminates with a stable matching.

Moreover, this matching is simultaneously the best for all men from among all stable matchings

(and, as McVitie and Wilson (1971) later observed, the worst for all women). Theorem 21 recalls

these results.

Theorem21 (Men-optimality of GS). Let� be a preference pro�le, and let µ = GS(�). Then, µ ∈ S�.
Moreover, for any µ′ ∈ S�, µ(m) �m µ′(m) for allm ∈M and µ′(w) �w µ(w) for all w ∈ W .
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We let Prop(w,�) denote the set of all men who propose to w during the run of GS algorithm

on �. Further, we let Prop(w,�, i) denote the ith favorite man of w (according to �w) in the set

Prop(w,�). Thus, Prop(w,�, 1) = µ(w) for µ = GS(�).

Stable lattice Given a preference pro�le � and two matchings µ and µ′, de�ne the join function

µ∨ = µ ∨ µ′ as follows: for each m ∈M and w ∈ W ,

µ∨(m) =

 µ(m) if µ(m)�m µ′(m)

µ′(m) otherwise,

and µ∨(w) =

 µ′(w) if µ(w)�w µ′(w)

µ(w) otherwise.

Similarly, de�ne the meet function µ∧ = µ ∧ µ′ for all m ∈M and w ∈ W as:

µ∧(m) =

 µ′(m) if µ(m)�m µ′(m)

µ(m) otherwise,

and µ∧(w) =

 µ(w) if µ(w)�w µ′(w)

µ′(w) otherwise.

The following result from (Knuth, 1997), attributed to John Conway, shows that the join and meet

of any pair of stable matchings are also stable.

Theorem 22 (Lattice of stable matchings). Let � be a preference pro�le and let µ, µ′ ∈ S�. Then,

µ∨, µ∧ ∈ S�.

Manipulation A matching algorithm is said to be manipulable by an agent w if there exists a pair

of preference pro�les � and �′, di�ering only in the preferences of w, such that µ′(w)�w µ(w),

where µ and µ′ are the matchings before and after the manipulation respectively. The agent w is

referred to as the manipulator. In this chapter, we focus on permutation manipulations, i.e., �′w is a

permutation of �w. Besides, we focus only on the manipulation of GS algorithm, and the manipu-

lator is assumed to be a woman, who knows the preferences of all the other agents.

We will often use �′ = (�−w,�′w) and µ′ = GS(�′) to denote the manipulated pro�le (with

respect to �) and the resulting GS matching respectively. The matching µ′ and the set S�′ will be

referred to as the induced matching and the induced lattice respectively. The set S� will be referred

to as the original lattice. We will say that a manipulation�′w with respect to� is stability-preserving

if µ′ ∈ S�.

Optimal manipulation Given a preference pro�le �, an optimal manipulation of GS algorithm

by an agent w with respect to a pro�le � refers to a preference list �′w such that (i) µ′(w)�w µ(w),

and (ii) µ′(w) �w µ′′(w) for any other preference list �′′w, where µ′ = GS(�−w,�′w) and µ′′ =

GS(�−w,�′′w).
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Inconspicuous equivalent of a manipulation Given a preference pro�le �, we call �′′w an

inconspicuous equivalent of a manipulation �′w (of GS algorithm by woman w) if (i) �′′w can be de-

rived from the true preference list �w by moving at most one man, and (ii) µ′′(w) = µ′(w), where

µ′ = GS(�′) and µ′′ = GS(�′′).

5.4 Main Results

Our �rst result (Theorem 23) shows that optimal manipulation of GS algorithm by a single woman

preserves stability.
1

Theorem 23 (Optimal manipulation is stability-preserving). Let �′w be an optimal manipulation

with respect to � for woman w and let µ′ = GS(�′). Then, µ′ ∈ S�.

This is a positive result, since the stability of the resulting matching is not a�ected by optimal

strategic behaviour of a single agent. Example 5 complements this result by showing that sub-

optimal strategic behavior can lead to instability.

Example 5. (Sub-optimal manipulation can be unstable) Consider the stable marriage instance

shown below.

True preferences of men True preferences of women

m1: 2 1 3 4 w1: 1 2 3 4

m2: 3 1 2 4 w2: 3 1 2 4

m3: 1 2 3 4 w3: 1 2 3 4

m4: 1 4 2 3 w4: 1 2 3 4

w1 manipulates sub-optimally (�′) w1 manipulates optimally (�′′)

w1: 2 4 3 1 w1: 1 4 3 2

w2: 3 1 2 4 w2: 3 1 2 4

w3: 1 2 3 4 w3: 1 2 3 4

w4: 1 2 3 4 w4: 1 2 3 4

The top row shows the true preferences of the agents, and the bottom row shows two di�erent manip-

ulations by w1 with respect to �. The underlined numbers denote the matched partners of the women

under the men-proposing Gale-Shapley algorithm.

1
After the publication of our paper (Vaish and Garg, 2017), it was pointed out to us by Yannai Gonczarowski that a

similar result was stated in (Gonczarowski and Friedgut, 2013).
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Notice that the manipulation under�′ is sub-optimal for w1 because she matches to a strictly better

partner (according to her true preference list �w1) under �′′. Besides, the matching induced under �′

is not stable with respect to the true preferences � since (m1, w1) is a blocking pair. On the other hand,

the manipulation under �′′ is optimal, and the induced matching is stable with respect to the true

preferences.

As mentioned earlier in Section 5.1, it is still possible that the list reported by the manipulator

(as part of optimal manipulation) might look very di�erent from her true list. Indeed, for the stable

marriage instance in Example 5, notice that except for the most preferred man (namely m1), the

optimal manipulation �′′w1
by w1 is a complete reversal of her true preference list �w. Theorem 24

addresses this concern by showing that any optimal manipulation has an inconspicuous equivalent

which results in the same matched partner for the manipulator (thus maintaining optimality) while

di�ering from the true list in the positioning of only one man (thus making the manipulation hard

to be detected).

Theorem 24 (Inconspicuous equivalent of optimal manipulation). Let �′w be an optimal manipula-

tion with respect to � for woman w. Let �′′w be another preference list derived from her true list �w
by promoting the man Prop(w,�′, 2) to the position right after Prop(w,�′, 1) while making no other

changes. Then,�′′w is the inconspicuous equivalent of�′w, i.e., µ′′(w) = µ′(w), where µ′ = GS(�′) and
µ′′ = GS(�′′).

Going back to Example 5, it can be observed that w1 can achieve her optimal partner (i.e., m1)

by reporting the list m1�m4�m2�m3, derived from her true list �w by promoting the man m4

and making no other changes.

Our �nal result strengthens the stability implication of Theorem 23 for inconspicuous optimal

manipulations. Recall from Theorem 23 that the men-proposing Gale-Shapley matching for the

optimally manipulated instance is stable with respect to the true preferences. This result can be

alternatively interpreted in the lattice terminology as follows: Theorem 23 shows that the “men-

optimal extreme” of the lattice S�′ always lies inside the original lattice S�. One might wonder

whether the same holds for the rest of the manipulation lattice as well. Theorem 25 shows that this

is indeed the case for inconspicuous optimal manipulations.

Theorem 25 (Lattice containment result). Let �′w be an optimal manipulation with respect to � for

woman w, and let �′′w be its inconspicuous equivalent (as described in Theorem 24). Then, S�′′ ⊆ S�.

Example 6 complements Theorem 25 by showing that the implication does not extend to non-

inconspicuous optimal manipulations.
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True preferences of men True preferences of women

m1: 2 1 3 4 5 w1: 1 2 3 4 5

m2: 4 1 5 3 2 w2: 3 2 4 5 1

m3: 3 1 4 5 2 w3: 4 2 1 5 3

m4: 1 3 4 5 2 w4: 5 1 4 3 2

m5: 1 5 4 3 2 w5: 1 2 3 4 5

Opt + Non-Inconsp manipulation (�′) Opt + Inconsp manipulation (�′′)

w1: 2 5 4 3 1 w1: 1 2 5 3 4

w2: 3 2 4 5 1 w2: 3 2 4 5 1

w3: 4 2 1 5 3 w3: 4 2 1 5 3

w4: 5 1 4 3 2 w4: 5 1 4 3 2

w5: 1 2 3 4 5 w5: 1 2 3 4 5

Example 6. Consider the following stable marriage instance

The top row shows the true preferences of the agents, while the bottom row shows two di�erent

optimal manipulations�′ and�′′ for the manipulatorw1. The underlined numbers denote the matched

partners of the women under the men-proposing Gale-Shapley algorithm.

First, we brie�y describe why �′ and �′′ are both optimal. Observe that during the run of GS algo-

rithm on the true pro�le�,w1 receives proposals only fromm4 andm5. Therefore, any manipulation by

w1 must involve swapping the relative ordering ofm4 andm5. By rejectingm4 in favor ofm5, w1 forces

m4 to propose to w3, thereby displacing m3. As a result, m3 is forced to propose to w1. This already

is an improvement for w1 over her original partner m4. However, w1 can do even better by pretending

to prefer m5 over m3 in the manipulated list. This forces m3 to propose to w4, thereby displacing m2,

who in turn is forced to propose to w1, giving her a more preferred match. Notice that w1 can do no

better, since rejecting m2 in favor of m5 will not displace m1 in the preference list of w2. Thus, m2 is

the optimal partner for w1.

Let us now consider the matching φ de�ned as φ =

(m1, w5), (m2, w1), (m3, w2), (m4, w3), (m5, w4). It is easy to verify that φ ∈ S�′ but φ /∈ S�′′

and φ /∈ S� since (m1, w1) constitutes a blocking pair in each case. Therefore, the stable lattice induced

by an optimal manipulation (in this case �′) need not be completely contained inside the original

lattice.
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5.5 Proofs of Main Results

5.5.1 Proof of Stability of Optimal Manipulation (Theorem 23)

We start with a lemma (Lemma 29) that will be useful in the proof of Theorem 23. The lemma states

that if a �xed man m proposes to a �xed woman w during the run of GS algorithm, then the same

holds when w moves that man up/down in her list while making no other changes. Notice that the

lemma applies only to the �xed man m who was moved in the preference list of w, and not to any

other man who proposed to w but was not moved.

Lemma 29. Let� and�′ be two preference pro�les that are completely identical except for the prefer-

ences of a �xed woman w. Let �′w be derived from �w by moving a �xed manm and making no other

changes. Then,m ∈ Prop(w,�)⇒ m ∈ Prop(w,�′).

Proof. Suppose, for contradiction, thatm ∈ Prop(w,�) \ Prop(w,�′). LetR andR′ denote the runs

of GS algorithm on � and �′ respectively, and let µ = GS(�) and µ′ = GS(�′). Since m proposes

to w during R but not during R′, it must be that he is rejected by µ′(m) during R. In other words,

the matchings µ and µ′ must be non-identical.

Since µ 6= µ′, the runs R and R′ must di�er at some round if we run the GS algorithm in parallel

on the two pro�les. Let t be the earliest round at which this happens. The following observations

will help us identify the point of departure of the runs R and R′.

1. The proposal phase in round 1 is identical for R and R′.

Reason: Proposals made in the �rst round of GS algorithm depend only on the preferences of

the men, which are identical between � and �′.

2. If R and R′ have an identical rejection phase for each round until (and including) round i, then

the proposal phases for the two runs in round (i+ 1) are also identical.

Reason: Since the preferences of the men are identical between the two pro�les, the proposals

made at round (i+1) depend only on the rejections made until (and including) round i, which

are the same for the two runs.

Therefore, for R and R′ to di�er for the �rst time at round t, all proposal and rejection phases until

(and including) the proposal phase at round t must be identical between the two runs, while the

rejection phases at round t must be di�erent. We already know that the two instances di�er only

in the positioning of m in the preference list of w. Therefore, for the rejection phases at round t to

di�er, w must have in hand a proposal from m in at least one of the runs R and R′. This means that

m must have proposed to w at (or before) round t of that run. Since the proposal phases for R and
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R′ are identical upto that point, it must be that m proposes to w during both R and R′, which is a

contradiction.

We will now provide the proof of Theorem 23.

Theorem 23 (Optimal manipulation is stability-preserving). Let �′w be an optimal manipulation

with respect to � for woman w and let µ′ = GS(�′). Then, µ′ ∈ S�.

Proof. Suppose, for contradiction, that µ′ /∈ S�. Then, there must exist a pair (m′, w′) that blocks µ′

with respect to �. That is, w′�m′ µ′(m′) and m′�w′ µ′(w′).

We �rst claim that w′ = w. Indeed, by the stability of GS algorithm, we have µ′ ∈ S�′ . Hence,

either µ′(m′)�′m′ w′ or µ′(w′)�′w′m′ or both. If w′ 6= w, then by construction �′w′ = �w′ . Sim-

ilarly, �′m′ = �m′ . Therefore, we have that either µ′(m′)�m′ w′ or µ′(w′)�w′m′ or both, which

contradicts the blocking pair condition. Hence, w′ = w.

Next, consider a preference list �′′w for w derived from �′w by promoting the man m′ to the top

position and making no other changes. Let �′′ = (�−w,�′′w) and µ′′ = GS(�′′). Since w′ = w, we

have that m′�w µ′(w) and w�m′ µ′(m′). Moreover, since �′m′ = �m′ , we have that w�′m′ µ′(m′).

Therefore, during the run of GS algorithm on �′, it must be that m′ proposes to and is rejected by

w before he is matched to µ′(m′). That is, m′ ∈ Prop(w,�′). By applying Lemma 29 with �′ and

�′′ as the old and the new pro�les respectively, we get that m′ ∈ Prop(w,�′′). Since m′ is at the top

position in �′′w, we must have µ′′(w) = m′. This, however, contradicts the optimality of �′w, since

m′�w µ′(w) according to the blocking pair condition.

5.5.2 Proof of Inconspicuous Equivalent of Optimal Manipulation (Theo-

rem 24)

Our proof of Theorem 24 crucially relies on the swapping lemma (Lemma 30). This lemma provides

a complete description of the matched partners that the manipulator can secure by swapping any

pair of adjacent men in her preference list. We state the lemma below and defer its proof to Sec-

tion 5.5.3. It will be convenient to denote the set of non-proposing men by Non-Prop(w,�). Thus,

Non-Prop(w,�) = M \ Prop(w,�).

Lemma 30 (Swapping lemma). Let� and�′ be two preference pro�les di�ering only in the preferences
of a �xed woman w, and let µ = GS(�) and µ′ = GS(�′). Let �′w be derived from �w by swapping

the positions of an adjacent pair of men (mi,mj) and making no other changes. Then,

(1) ifmi ∈ Non-Prop(w,�) ormj ∈ Non-Prop(w,�), then µ′(w) = µ(w).
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(2) ifmi,mj /∈ {Prop(w,�, 1), Prop(w,�, 2)}, then µ′(w) = µ(w).

(3) ifmi = Prop(w,�, 2) andmj = Prop(w,�, 3), then µ′(w) ∈ {µ(w),mj}.

(4) ifmi = Prop(w,�, 1) andmj = Prop(w,�, 2), then Prop(w,�′, 2) ∈ {mi,mj}.

In words, case (1) shows that swapping two non-proposers or a proposer and a non-proposer

cannot give a di�erent matched partner. Case (2) shows the same result for swapping a pair of

proposers outside the �rst and the second best. Case (3) shows that the matched partner either

stays the same or becomes worse (according to the true preference list) if the second and third-

best proposers are swapped. Finally, case (4) shows that swapping the �rst and the second-best

proposers can lead to at most one new proposal that is better than the old partner (according to the

true preference list).

Theorem 24 (Inconspicuous equivalent of optimal manipulation). Let �′w be an optimal manipula-

tion with respect to � for woman w. Let �′′w be another preference list derived from her true list �w
by promoting the man Prop(w,�′, 2) to the position right after Prop(w,�′, 1) while making no other

changes. Then,�′′w is the inconspicuous equivalent of�′w, i.e., µ′′(w) = µ′(w), where µ′ = GS(�′) and
µ′′ = GS(�′′).

Proof. We construct the preference list �′′w by starting from �′w and performing a sequence of mas-

saging operations on it in order to make it resemble the original preference list �w, except for the

placement of the man Prop(w,�′, 2). Each such operation involves swapping a pair of adjacent

men in the current list. By repeatedly invoking swapping lemma (Lemma 30), we will argue that w

continues to receive a proposal from µ′(w) at each intermediate step, giving us the desired result.

We start by describing the construction of the list �′′w followed by arguing the correctness of this

construction. For notational convenience, we will use p = Prop(w,�′, 1) and q = Prop(w,�′, 2).

(1) Constructing �′′w: Starting from �′w, we construct a sequence of preference lists �(1)
w ,�(2)

w , . . .

culminating in �′′w as follows (refer Figure 5.1):

(a) Promoting q: The list �(1)
w is obtained from �′w by promoting q to the position right af-

ter p. Since any men between p and q in the list �′w can only be non-proposers, it fol-

lows from case (1) of swapping lemma (Lemma 30) that the run of the algorithm on the

pro�le �(1) = (�−w,�(1)
w ) is identical to that on �′. Thus, Prop(w,�(1), 1) = p and

Prop(w,�(1), 2) = q. Notice that any man above p in the list �(1)
w must be a non-proposer.

(b) Fixing the part of the list above p: Our goal in this step will be to make the part of the list

�(1)
w above and including p resemble that in the list �w. We achieve this by replacing the
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Figure 5.1: The sequence of preference lists constructed in the proof of Theorem 24. Here, p =
Prop(w,�′, 1) = µ′(w) and q = Prop(w,�′, 2).

set of non-proposers above p in �(1)
w with the set of men above p in the true list �w. It is

easy to see that no man in the latter set can be a proposer to w at any stage, or else the

optimality of the manipulation is violated. Thus, our task involves shu�ing around a set

of non-proposers in the list �(1)
w , which, by case (1) of swapping lemma (Lemma 30), does

not a�ect the run of GS algorithm. We call the resulting preference list �(2)
w .

It is easy to verify that after this step, the new list �(2)
w resembles the true prefer-

ence list �w for all positions above and including p, and that Prop(w,�(2), 1) = p and

Prop(w,�(2), 2) = q, where �(2) = (�−w,�(2)
w ).

(c) Fixing the part of the list below q: The �nal step in our construction involves a se-

quence of preference lists {�(3)
w ,�(4)

w , . . . }. The list �(k+1)
w is derived from �(k)

w by swap-

ping a pair of adjacent men (mi,mj) in �(k)
w such that (i) Prop(w,�(k), 2)�(k)

w mi and

Prop(w,�(k), 2)�(k)
w mj , and (ii) mi�wmj and mj �(k)

w mi. In words, each new list in the

sequence is derived from the previous list by swapping a pair of adjacent men that are (i)

both positioned below the second-favorite proposer according to the previous list, and (ii)

are incorrectly ordered with respect to the true preference list �w. No other changes are

made. Notice that this sequence of preference lists must be �nite since there can only be a

�nite number of pairs of men that are incorrectly ordered with respect to the true list. Let

�(`)
w be the �nal list in this sequence, and let �(k) = (�−w,�(k)

w ) and µ(k) = GS(�(k)) de-

note the preference pro�le and the corresponding GS matching at each step. This �nishes

the construction of the sequence of preference lists.

(2) Correctness: We will now show that Theorem 24 holds for�′′w = �(`)
. That is, we will show that:

(a) The list �(`)
w can be obtained from the true list �w by promoting q to the position right

after p while making no other changes, and
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(b) Prop(w,�(`), 1) = µ(`)(w) = p.

Case (a) follows easily from the above construction. Indeed, the steps (1a) and (1b) ensure that

�(`)
w resembles�w for all positions above and including p, while step (1c) incrementally corrects

for pairs that are out of order with respect to �w, thus eventually terminating with a list �(`)
w

that is identical to �w except for the positioning of the man q.

We prove case (b) by induction. The base case consists of showing that µ(3)(w) = p. Indeed,

let (mi,mj) be the pair of adjacent men in �(2)
w that are swapped in �(3)

w . By construction, we

know that mi,mj /∈ {Prop(w,�(2), 1), Prop(w,�(2), 2)}. Therefore, from cases (1) and (2) of

swapping lemma (Lemma 30), we have that µ(3)(w) = p.

We now proceed to the induction hypothesis. That is, we now assume that µ(k)(w) = p for all

3 < k ≤ K , and show that µ(K+1)(w) = p.

As before, let (mi,mj) be the pair of adjacent men that are swapped in �(K)
w to obtain �(K+1)

w .

By construction, we have that mi,mj /∈ {Prop(w,�(K), 1), Prop(w,�(K), 2)}. Therefore, from

cases (1) and (2) of swapping lemma (Lemma 30), we have that µ(K+1)(w) = µ(K)(w). Finally,

using the induction hypothesis, we get that µ(K+1)(w) = p.

Hence, by induction, we have that µ(`)(w) = p. This �nishes the proof of case (b) and, as a result, of

Theorem 24.

5.5.3 Proof of Swapping Lemma (Lemma 30)

Recall the statement of Swapping Lemma.

Lemma 30 (Swapping lemma). Let� and�′ be two preference pro�les di�ering only in the preferences
of a �xed woman w, and let µ = GS(�) and µ′ = GS(�′). Let �′w be derived from �w by swapping

the positions of an adjacent pair of men (mi,mj) and making no other changes. Then,

(1) ifmi ∈ Non-Prop(w,�) ormj ∈ Non-Prop(w,�), then µ′(w) = µ(w).

(2) ifmi,mj /∈ {Prop(w,�, 1), Prop(w,�, 2)}, then µ′(w) = µ(w).

(3) ifmi = Prop(w,�, 2) andmj = Prop(w,�, 3), then µ′(w) ∈ {µ(w),mj}.

(4) ifmi = Prop(w,�, 1) andmj = Prop(w,�, 2), then Prop(w,�′, 2) ∈ {mi,mj}.

Proof. Case (1) follows from the contrapositive of Lemma 29, since the list�′w is derived from�w by

changing the position of a �xed non-proposer (namely, either mi or mj), which does not a�ect the
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run of the algorithm before and after the change. Cases (2), (3) and (4) follow from Lemmas 33, 34

and 35 respectively, which we state and prove below. We remark that only the cases (1) and (2) are

relevant to the proof of Theorem 24; cases (3) and (4) are listed for completeness.

The remainder of this section will focus on the proofs of Lemmas 33 to 35. Before stating the lem-

mas, we describe two other intermediate results—Lemmas 31 and 32—that will be useful in proving

these results.

We will start with the precedence lemma (Lemma 31), which says that a necessary condition for

the manipulator to make a previously non-proposing man propose to her in some round of the new

run is to reject her old partner at an earlier round. In other words, a “new proposal” event must

be preceded by the “rejection of old partner” event. This result explains why the manipulator must

promote one (or more) of the previously non-favorite proposers above her old partner in order to

secure a better partner.

Lemma 31 (Precedence Lemma). Let � and �′ be a pair of preference pro�les di�ering only in the

preferences of a �xed woman w, and let µ = GS(�) and µ′ = GS(�′). Let m ∈ Prop(w,�′) \
Prop(w,�). Then, during the run of GS algorithm on�′, the event “m proposes to w” must be preceded

in time by the event “µ(w) is rejected by w”.

Proof. Let R and R′ denote the runs of the Gale-Shapley algorithm on the pro�les � and �′ re-

spectively. For the ease of exposition, we will refer to µ and µ′ as the old and the new matching

respectively.

We know that �m = �′m by construction. Therefore, the reason m proposes to w during R′

but not during R is because he is rejected by his old partner (say w2 = µ(m)) during R′. That is,

w2�′mw, and therefore w2�mw.

Similarly, w2 rejects m during R′ because she receives one or more proposals that she strictly

prefers over him. Letm2 denote the earliest such proposal received byw2 duringR′. Thus,m2�′w2
m.

Moreover, since w2 6= w, we also have that m2�w2 m.

We now claim thatm2 does not propose tow2 duringR. Indeed, ifm2 does propose tow2 duringR,

thenw2 must eventually be matched underR to a man she weakly prefers overm2, which contradicts

the above condition that m2�w2 m (since µ(w2) = m).

Thus,m2 does not propose tow2 duringR, but does so duringR′. By a similar reasoning as above,

we know that this is possible only if he is rejected by his old partner (say w3 = µ(m2)) during R′

in favor of one or more better proposals. Let m3 denote the earliest such proposal received by w3

during R′.

Proceeding in this manner, we obtain a sequence of women and men (wi,mi), starting with

w1 = w and m1 = m, such that (i) for i ≥ 1, mi is rejected by his old partner wi+1 during R′,
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Figure 5.2: The sequence of events arising in the proof of precedence lemma (Lemma 31). The rectangles

and circles correspond to men and women respectively. A dashed edge stands for “ rejection by old

partner during R′”, while a solid edge denotes “ the earliest proposal received during R′ that is better

than the old partner” (except for the edgem→ w, which simply denotes a proposal event without the

requirement of being the earliest such).

and (ii) for i ≥ 2, mi is the earliest proposal received by wi during R′ that she strictly prefers over

her old partner mi−1. This way, each pair of consecutive agents in the sequence, namely (wi,mi)

or (mi, wi+1), is associated with either a proposal or a rejection event during R′. Furthermore, a

proposal event involving (wi,mi) is preceded in time by a rejection event involving (mi, wi+1).

Similarly, a rejection event involving (mi, wi+1) is preceded in time by a proposal event involving

(mi+1, wi+1), and so on. This sequence is pictorially depicted in Figure 5.2.

Since the number of men and women is �nite, some member of this sequence must eventually

repeat. If the �rst agent to repeat is a man (say mk), then we obtain that the event “mk proposes to

wk” is both preceded and succeeded in time by another event “mk is rejected by his old partner wk+1

during R′”, which is absurd. Therefore, the �rst agent to repeat in this sequence must be a woman.

By a similar observation, it can be argued that no woman other thanw can be the �rst to repeat. This

implies that the last agent in the sequence before a repeat happens is µ(w), as shown in Figure 5.2.

Thus, putting together the temporal implications of this sequence, we get that the event “m

proposes to w during R′ (and not during R)” is preceded in time by the event “µ(w) is rejected by w”,

as desired.

Another interpretation of precedence lemma (Lemma 31) is that the manipulator cannot secure

a better partner by simply permuting the part of her preference list below the old proposer, while

keeping all men above and including the old proposer intact. Lemma 32 formalizes this.

Lemma 32 (Shu�ing men below the favorite proposer). Let � and �′ be two preference pro�les

di�ering only in the preferences of a �xed woman w, and let µ = GS(�) and µ′ = GS(�′). Let �′w
be derived from �w by arbitrarily permuting the positions of the men below µ(w) while keeping the

positions of all men above and including µ(w) intact. Then, µ(w) �w µ′(w).

Proof. Suppose, for contradiction, that µ′(w)�w µ(w). Let R and R′ denote the runs of the Gale-

Shapley algorithm on the pro�les � and �′ respectively. Notice that, by construction, we have

176



µ′(w)�w µ(w)⇒ µ′(w)�′w µ(w). That is, w is matched under µ′ to a man she strictly prefers over

µ(w) according to�′w. This means that w receives one or more proposals during R′ that she strictly

prefers over µ(w) according to �′w. Let t denote the earliest round during R′ at which w receives a

proposal that she prefers over µ(w) according to�′w, and letm1 denote the corresponding proposer.

Thus, m1 ∈ Prop(w,�′) \ Prop(w,�). By precedence lemma (Lemma 31), we have that during

R′, the event “m1 proposes to w” is preceded in time by the event “µ(w) is rejected by w”. Moreover,

µ(w) is rejected by w during R′ because, at an earlier round, she receives a strictly better proposal

(say from m2) according to �′w. This, however, contradicts our assumption that m1 is the earliest

such proposal received by w during R′. Hence, µ(w) �w µ′(w).

Lemma 32 rules out the option of ‘permuting the men below the old partner’ as a way of securing

a better match. It is, however, possible that permuting the list in this manner might actually make

the manipulator worse o�. Our next result (Lemma 33) shows that this does not happen as long as

the shu�e is con�ned to the men below the second-favorite proposer.

Lemma 33 (Swapping proposers other than the top two). Let � and �′ be two preference pro�les

di�ering only in the preferences of a �xed woman w, and let µ = GS(�) and µ′ = GS(�′). Let �′w be

derived from �w by swapping the positions of an adjacent pair of men (mi,mj) such that mi,mj ∈
Prop(w,�) \ {Prop(w,�, 1), Prop(w,�, 2)} and making no other changes. Then, µ′(w) = µ(w).

Proof. Notice that the list �′w is derived from �w by swapping a pair of men below µ(w) while

keeping the positions of all men above and including µ(w) intact. Therefore, from Lemma 32, we

have that µ(w) �w µ′(w). If µ′(w) = µ(w), then Lemma 33 follows. Therefore, we will assume

here onwards that µ(w)�w µ′(w). By construction, this also means that µ(w)�′w µ′(w).

We now claim that mi,mj ∈ Prop(w,�′). Indeed, the pro�les � and �′ di�er only

in the preference list of w, and the list �′w is derived from �w by changing the posi-

tion of a �xed man mi (or, equivalently, mj). Therefore, from Lemma 29, we have that

mi,mj ∈ Prop(w,�)⇒ mi,mj ∈ Prop(w,�′).

Let us now assume that mi�′wmj (the argument for mj �′wmi is analogous). Since mi,mj ∈
Prop(w,�′), w must weakly prefer her matched partner under µ′ over the man mi (according to

�′w). That is, µ′(w) �′w mi.

If µ′(w)�′wmi, then the list �w can be thought of as having been obtained from the list �′w by

swapping a pair of non-favorite proposers (namelymi andmj) while keeping the positions of all the

men above and including the favorite proposer, namely µ′(w), intact. Thus, by applying Lemma 32

with �′ and � as the old and the new pro�le respectively, we get that µ′(w) �′w µ(w), which

contradicts the earlier condition µ(w)�′w µ′(w). Thus, µ′(w) = µ(w).
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Lemma 34 (Swapping the second and third-best proposers). Let � and �′ be two preference pro�les
di�ering only in the preferences of a �xed woman w, and let µ = GS(�) and µ′ = GS(�′). Let �′w
be derived from �w by swapping the positions of an adjacent pair of men (m2,m3) such that m2 =

Prop(w,�, 2) andm3 = Prop(w,�, 3) and making no other changes. Then, µ′(w) ∈ {µ(w),m3}.

Proof. Our proof of Lemma 34 closely follows the proof of Lemma 33. Observe that �′w is derived

from �w by shu�ing the positions of a pair of men below µ(w) while keeping the positions of all

men above and including µ(w) intact. Therefore, from Lemma 32, we have that µ(w) �w µ′(w). If

µ′(w) = µ(w), the statement of Lemma 34 follows. Therefore, we will assume here onwards that

µ(w)�w µ′(w). By construction, we also have µ(w)�′w µ′(w).

We now claim that m2,m3 ∈ Prop(w,�′). Indeed, the list �′w is derived from �w by

changing the position of a �xed man m2 (or m3). Therefore, it follows from Lemma 29 that

m2,m3 ∈ Prop(w,�)⇒ m2,m3 ∈ Prop(w,�′).

Since m2,m3 ∈ Prop(w,�′) and m3�′wm2 by construction, it must be that w is matched under

µ′ to someone she weakly prefers over m3 (according to �′w). That is, µ′(w) �′w m3.

If µ′(w)�′wm3, then we can think of the list �w as having been obtained from �′w by swapping

a pair of non-favorite proposers (namely m2 and m3) while keeping everyone above and including

the favorite proposer, namely µ′(w), intact. Therefore, by applying Lemma 32 with �′ and � as the

old and the new pro�le respectively, we get that µ′(w) �′w µ(w), which contradicts the condition

µ(w)�′w µ′(w) obtained above. Therefore, µ′(w) must be m3.

Lemma 35 (Swapping the �rst and second-best proposers). Let � and �′ be two preference pro-

�les di�ering only in the preferences of a �xed woman w, and let µ = GS(�) and µ′ = GS(�′). Let
�′w be derived from �w by swapping the positions of an adjacent pair of men (m1,m2) such that

m1 = Prop(w,�, 1) and m2 = Prop(w,�, 2) and making no other changes. Then, Prop(w,�′, 2) ∈
{m1,m2}.

Proof. Our proof of Lemma 35 closely resembles our proof of Lemma 32. Letm′ = Prop(w,�′, 1) and

m′′ = Prop(w,�′, 2). Suppose, for contradiction, that m′′ /∈ {m1,m2}. We claim that this condition

implies that m′′�′wm2. Indeed, let R and R′ denote the runs of GS algorithm on the pro�les �
and �′ respectively. Notice that the pro�les � and �′ di�er only in the preference list of w, and

the list �′w is derived from �w by changing the position of a �xed man m1 (or, equivalently, m2).

Therefore, from Lemma 29, we have that m1,m2 ∈ Prop(w,�)⇒ m1,m2 ∈ Prop(w,�′). Hence,

for m′′ to be di�erent from both m1 and m2, we must have m′′�′wm2, since, by construction, we

have that m2�′wm1.

Observe that the condition m′′�′wm2 implies that m′�′wm′′�′wm2�′wm1. Thus, there is at

least one man (namelym′′) who is strictly preferred overm1 byw according to�′w and who proposes
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to w during R′ but not during R. That is, m′′ ∈ Prop(w,�′) \ Prop(w,�). Let p be the earliest such

proposal received by w during R′. Clearly, p ∈ Prop(w,�′) \ Prop(w,�). By precedence lemma

(Lemma 31), we know that during R′, the event “p proposes to w” is preceded in time by the event

“m1 is rejected by w”. The latter event, however, happens because at an earlier round, w receives one

or more proposals that she strictly prefers overm1 according to�′w. This contradicts the assumption

that p is the earliest such proposal. Therefore, m′′ ∈ {m1,m2}.

5.5.4 Proof of Lattice Containment (Theorem 25)

Theorem 25 (Lattice containment result). Let �′w be an optimal manipulation with respect to � for

woman w, and let �′′w be its inconspicuous equivalent (as described in Theorem 24). Then, S�′′ ⊆ S�.

Proof. Let us assume, for contradiction, that there exists a matching φ such that φ ∈ S�′′ \S�. Then,

there must exist a pair (m,w) that blocks φ with respect to � (it follows from the argument in the

proof of Theorem 23 that one of the blocking agents must be the manipulator w). Thus, m�w φ(w)

and w�m φ(m).

Consider the set S�′′ . Since φ ∈ S�′′ , it follows from Theorem 22 that φ(w) �′′w µ′′(w), where

µ′′ = GS(�′′). Moreover, from Theorem 24, we know that µ′(w) = µ′′(w) for µ′ = GS(�′).

Therefore, we also have that φ(w) �′′w µ′(w).

By inconspicuousness of �′′w, we have that φ(w) �w µ′(w). Combining this with the blocking

pair condition above, we get that m�w φ(w) �w µ′(w). Once again, by inconspicuousness of �′′w,

we have that m�′′w φ(w).

We also know that �m = �′′m by construction. Therefore, from the blocking pair condition, we

have that w�′′m φ(m). Combining this with the condition m�′′w φ(w), we get that the pair (m,w)

blocks φ with respect to �′′, which contradicts the assumption φ ∈ S�′′ . Therefore, S�′′ ⊆ S�.

5.6 Concluding Remarks

We studied the problem of manipulation of Gale-Shapley algorithm by a single agent, and identi�ed

a class of manipulations called inconspicuous manipulations which are optimal, stability-preserving,

and nearly identical to the manipulator’s true preference list.

Several directions for future work remain. First, extensions of the current model to a setting with

several self-interested manipulators (seeking an equilibrium strategy) will be interesting to study.

It will also be interesting to �nd out if our techniques—in particular, swapping lemma—can lead to

faster algorithms for optimal manipulation by a single agent or a coalition of agents; the current best

algorithms for these problems are O(n3) (Teo et al., 2001) and O(n6) (Deng et al., 2015) respectively.
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Finally, it would be of interest to conduct a similar analysis for other stable matching algorithms,

such as ones that compute minimum regret (Knuth, 1997; Gus�eld, 1987), egalitarian (Irving et al.,

1987; Teo and Sethuraman, 1998) or median (Teo and Sethuraman, 1998) stable matchings.
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